THE n-GENERALIZED COMPOSITION OPERATORS FROM ZYGMUND SPACES TO $Q_K(p,q)$ SPACES

Taha Ibrahim Yassen*

ABSTRACT. The boundedness and compactness of the so-called *n*-generalized composition operator $c_{\varphi}^{\mathfrak{g},n}$ from the class of Zygmund-type spaces into $Q_K(p,q)$ spaces are characterized in this paper.

1. Introduction

Let $\Lambda = \{\zeta \in \mathbb{C} : |\zeta| < 1\}$ be the open unit disc in the complex plane \mathbb{C} , $H(\Lambda)$ denote the class of all analytic functions in Λ .

In [4], for each $\sigma \in \Lambda$, $\varphi_{\sigma} : \Lambda \to \Lambda$ denotes the Möbius transformation defined by

$$\varphi_{\sigma}(\zeta) := \frac{\sigma - \zeta}{1 - \bar{\sigma}\zeta}, \text{ for } \zeta \in \Lambda.$$

Green's function of Λ with a logarithmic singularity at σ , is defined as follows,

$$g(\zeta, \sigma) := \log \left| \frac{1 - \bar{\sigma}\zeta}{\zeta - \sigma} \right| = \log \frac{1}{|\varphi_{\sigma}(\zeta)|}.$$

The known composition operator $C_{\varphi}\mathfrak{f}(\zeta)=\mathfrak{f}(\varphi(\zeta))$, $\mathfrak{f}\in\Lambda$ has been studied for many years (see [5–7,17]). From the recent research on the operator theory of complex-type function spaces, we can introduce the *n*-generalized composition operators $c_{\varphi}^{\mathfrak{g},n}$ used in the current paper as

$$\left(c_{\varphi}^{\mathfrak{g},n}\,\mathfrak{f}\right)(\zeta) = \int_{0}^{\zeta}\mathfrak{f}'(\varphi(\xi))\mathfrak{g}^{(n-1)}(\xi)d\xi,$$

where, $\mathfrak{g} \in H(\Lambda)$ and $\mathfrak{g}^{(n-1)(\zeta)} = \frac{d^{n-1}\mathfrak{g}(\zeta)}{d\zeta^{n-1}}$, with "n-1" order derivatives, $n \in N$.

DEFINITION 1.1. (see [14]) Let $K:[0,\infty)\to[0,\infty)$ be a right continuous and nondecreasing function. For $0< p<\infty$ and $-2< q<\infty$, the space $Q_K(p,q)$ is defined by

$$Q_K(p,q) := \sup_{\sigma \in \Lambda} \int_{\Lambda} |(\mathfrak{f})'(\zeta)|^p (1 - |\zeta|^2)^q K(g(\zeta,\sigma)) dA(\zeta) < \infty.$$

Received January 24, 2024. Revised July 22, 2024. Accepted January 31, 2025.

2010 Mathematics Subject Classification: 47B38, 46E15.

Key words and phrases: n-generalized composition operators $c_{\varphi}^{g,n}$, Zygmund spaces, $Q_K(p,q)$ spaces.

- * Corresponding author.
- © The Kangwon-Kyungki Mathematical Society, 2025.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

If

$$\lim_{|\sigma| \to 1^{-}} \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{f}'(\zeta)|^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta, \sigma)) dA(\zeta) = 0,$$

then $\mathfrak{f} \in Q_{K,0}(p,q)$.

Wulan and Zhou [13] mentioned the following properties of these spaces:

- (1) For p = 2, q = 0, we obtain $Q_K(p, q) = Q_K$ (see [4]).
- (2) For p=2, q=0, and $K(t)=t^p$, we obtain $Q_K(p,q)=Q_p$ (see [1]).
- (3) For $K(t) = t^s$, $Q_K(p,q) = F(p,q,s)$ [3,16].

DEFINITION 1.2. For $0 < \beta < \infty$, a function $\mathfrak{f} \in H(\Lambda)$ belongs to the Zygmund space \mathcal{Z}_{β} if

$$\sup_{\sigma \in \Lambda} |(\mathfrak{f})''(\zeta)|(1-|\zeta|^2)^{\beta} < \infty,$$

$$\|\mathfrak{f}\|_{\mathcal{Z}_{\beta}} = |\mathfrak{f}(0)| + |\mathfrak{f}'(0)| + + \sup_{\sigma \in \Lambda} |(\mathfrak{f})''(\zeta)|(1-|\zeta|^2)^{\beta} < \infty.$$

Zygmund-type spaces and some operators on them were studied in [2,9].

DEFINITION 1.3. (see [11]) The analytic function $\mathfrak{f} \in \Lambda$ has the Hadamard gap (also called as lacunary series) if $\mathfrak{f}(\zeta) = \sum_{k=1}^{\infty} a_k \zeta^{n_k}$, (with $n_k \in \mathbb{N}$; for all $k \in \mathbb{N}$) and there exists a constant $\lambda > 1$ such that $\frac{n_{k+1}}{n_k} \geq \lambda$ for all $k \in \mathbb{N}$.

2. Preliminaries

We need the following lemmas to derive our results.

Lemma 2.1. [15] Let \mathfrak{f} be a holomorphic function in Λ with the gap series expansion

$$\mathfrak{f}(\zeta) = \sum_{k=1}^{\infty} a_k \zeta^{n_k}, \quad \zeta \in \Lambda,$$

where, for a constant $\lambda > 1$, the natural numbers n_k , $k \ge 1$ satisfy $\frac{n_{k+1}}{n_k} \ge \lambda$. Then $\mathfrak{f} \in \mathfrak{B}_{\alpha}$ if and only if $\limsup_{k \to \infty} |a_k| n_k^{1-\alpha} < \infty$.

LEMMA 2.2. [18] Assume that $\{n_k\}$ is an increasing sequence of positive integers satisfying $\frac{n_{k+1}}{n_k} \ge \lambda > 1$ for all $k \in N$. Let $0 . Then there are two positive constants, <math>C_1$ and C_2 , depending only on p and λ such that

$$C_1 \left(\sum_{k=0}^{\infty} |a_k|^2 \right)^{\frac{1}{2}} \le \left(\frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{k=0}^{\infty} a_k e^{in_k \vartheta} \right| d\vartheta \right)^{\frac{1}{p}} \le C_2 \left(\sum_{k=0}^{\infty} |a_k|^2 \right)^{\frac{1}{2}}.$$

LEMMA 2.3. [8] Let $0 < \beta < \infty$, for $\mathfrak{f} \in \mathcal{Z}_{\beta}$.

- 1. For $0 < \beta < 1$. $|\mathfrak{f}'(\zeta)| \leq \frac{2}{1-\beta} ||\mathfrak{f}||_{\mathcal{Z}_{\beta}}$ and $|\mathfrak{f}(\zeta)| \leq \frac{2}{1-\beta} ||\mathfrak{f}||_{\mathcal{Z}_{\beta}}$;
- 2. For $\beta = 1$. $|\mathfrak{f}'(\zeta)| \le 2 \ln \frac{2}{1-|\zeta|^2} ||\mathfrak{f}||_{\mathcal{Z}_{\beta}}$ and $|\mathfrak{f}(\zeta)| \le ||\mathfrak{f}||_{\mathcal{Z}_{\beta}}$;
- 3. For $\beta > 1$. $|f'(\zeta)| \le \frac{2\|f\|_{\mathcal{Z}_{\beta}}}{(\beta-1)(1-|\zeta|^2)^{\beta-1}};$

- 4. For $1 < \beta < 2$. $|f(\zeta)| \le \frac{2}{(\beta 1)(\beta 2)} ||f||_{\mathcal{Z}_{\beta}}$;
- 5. For $\beta = 2$. $|\mathfrak{f}(\zeta)| \le 2||\mathfrak{f}||_{\mathcal{Z}_{\beta}} \ln \frac{2}{1-|\zeta|^2}$;
- 6. For $\beta > 2$. $|\mathfrak{f}(\zeta)| \le \frac{2\|\mathfrak{f}\|_{\mathcal{Z}_{\beta}}}{(\beta-1)(\beta-2)(1-|\zeta|^2)^{\beta-2}}$.

The following lemma follows by standard arguments of the corresponding results in [12].

LEMMA 2.4. Let $0 < \beta < \infty$ and K be a nonnegative non decreasing continuous function on $[0, \infty)$. Assume φ is an analytic mapping from Λ into itself. Then $C_{\varphi}^{\mathfrak{g},n}$: $\mathcal{Z}_{\beta} \to Q_K(p,q)$ is compact if and only if for any bounded sequence $\{n_i\} \in \mathcal{Z}_{\beta}$ which converges to zero uniformly on compact subsets of Λ , $\lim_{n \to \infty} ||C_{\varphi}^{\mathfrak{g},n} n_i||_{Q_K(p,q)} = 0$.

The proof of following lemma is similar to the proof of Lemma 1 in [10].

LEMMA 2.5. Let $0 < \beta < \infty$ and K be a nonnegative non decreasing continuous function on $[0,\infty)$. Assume φ is an analytic mapping from Λ into itself. If $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is compact, then for any ε there exists a δ , $0 < \delta < 1$ such that for all $\mathfrak{f} \in \mathcal{Z}_{\beta}$,

$$\sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta) > r|} |\mathfrak{f}'(\varphi(\zeta))|^p |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \varepsilon$$

holds whenever $\delta < r < 1$.

- 3. The boundedness of $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$
- **3.1.** The case $0 < \beta < 1$.

THEOREM 3.1. Let $0 < \beta < 1$, and $\mathfrak{g} \in H(\Lambda)$. Let $\varphi \in \Lambda$ be an analytic self-mapping. Then, $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is bounded if and only if

(1)
$$l_1: = \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \infty.$$

Proof. Assume that (1) holds and let $\mathfrak{f} \in \mathcal{Z}_{\beta}$. By Lemma 2.3 (1) we have

$$\mathfrak{f}'(\zeta) \leq \frac{2}{1-\beta} \|\mathfrak{f}\|_{\mathcal{Z}_{\beta}}.$$

Hence

$$\begin{split} ||C_{\varphi}^{\mathfrak{g},n}\mathfrak{f}||_{Q_{K}(p,q)}^{p} &= \sup_{\sigma \in \Lambda} \int_{\Lambda} |(C_{\varphi}^{\mathfrak{g},n}\mathfrak{f})'(\zeta)|^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &= \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{f}(\varphi)'(\zeta)|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &\leq \left(\frac{2}{1-\beta}\right)^{p} \|\mathfrak{f}\|_{\mathcal{Z}_{\beta}}^{p} \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &= C \|\mathfrak{f}\|_{\mathcal{Z}_{\beta}}^{p} \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &= C \|\mathfrak{f}\|_{\mathcal{Z}_{\beta}}^{p} \cdot l_{1} \\ &< \infty. \end{split}$$

It follows that $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is bounded. Conversely, we assume that $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is bounded. Let $\mathfrak{h}(\zeta) = \zeta \in \mathcal{Z}_{\beta}$,

$$\begin{split} & \infty \quad > \quad ||C_{\varphi}^{\mathfrak{g},n}\mathfrak{h}||_{Q_{K}(p,q)}^{p} \\ & = \quad \sup_{\sigma \in \Lambda} \int_{\Lambda} |(C_{\varphi}^{\mathfrak{g},n}\mathfrak{h})'(\zeta)|^{p} (1-|\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ & = \quad \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{h}(\varphi)'(\zeta)|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1-|\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ & = \quad \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1-|\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ & = \quad l_{1}. \end{split}$$

Then (1) holds. The proof of this theorem is completed.

3.2. The case $\beta = 1$.

THEOREM 3.2. Let $\beta = 1$ and $\mathfrak{g} \in H(\Lambda)$. Let $\varphi \in \Lambda$ be an analytic self-mapping. Then

(a)
$$C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_{K}(p,q) \text{ is bounded if}$$

$$l_{2}: = \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} \left(\ln \frac{2}{1 - |\varphi(\zeta)|^{2}} \right)^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta, \sigma)) dA(\zeta) < \infty.$$
(b) If $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_{K}(p,q) \text{ is bounded, then}$

$$l_{3}: = \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p} (n-1) \ln \frac{2}{1 - |\varphi(\zeta)|^{2}} (1 - |\zeta|^{2})^{q} K(g(\zeta, \sigma)) dA(\zeta) < \infty.$$

Proof. (a) Let $\mathfrak{f} \in \mathcal{Z}_{\beta}$, by Lemma 2.3 (2), we have

$$|\mathfrak{f}'(\zeta)| \le 2 \ln \frac{2}{1 - |\zeta|^2} ||\mathfrak{f}||_{\mathcal{Z}_{\beta}}.$$

Then we have

$$\begin{aligned} ||C_{\varphi}^{\mathfrak{g},n}\mathfrak{f}||_{Q_{K}(p,q)}^{p} &= \sup_{\sigma \in \Lambda} \int_{\Lambda} |(C_{\varphi}^{\mathfrak{g},n}\mathfrak{f})'(\zeta)|^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &= \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{f}(\varphi)'(\zeta)|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &\leq 2^{p} \|\mathfrak{f}\|_{\mathcal{Z}_{\beta}}^{p} \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} \left(\ln \frac{2}{1 - |\zeta|^{2}}\right)^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &= C \|\mathfrak{f}\|_{\mathcal{Z}_{\beta}}^{p} \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &= C \|\mathfrak{f}\|_{\mathcal{Z}_{\beta}}^{p} \cdot l_{2} \\ &< \infty. \end{aligned}$$

Hence $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is bounded.

(b) Assume that $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is bounded. Let $h(\zeta) = \zeta \in \mathcal{Z}_{\beta}$. Then

$$\sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \infty.$$

Hence

$$\sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| \le \frac{1}{\sqrt{2}}} |\mathfrak{g}(\zeta)|^{p(n-1)} \ln \frac{1}{1 - |\varphi(\zeta)|^2} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta)
\le \ln 2 \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| \le \frac{1}{\sqrt{2}}} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta)
(2) \qquad \le \ln 2 \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \infty.$$

Now, let

$$\mathfrak{t}(\zeta) = \sum_{k=0}^{k} \frac{1}{2^k + 1} \cdot \zeta^{2^k + 1}$$

where $\zeta \in \lambda$, such that $|\zeta| = r \leq \frac{1}{\sqrt{2}}$. Then

$$\mathfrak{t}'(\zeta) = \sum_{k=0}^k \zeta^{2^k} \in \mathfrak{B}_{\beta}.$$

By Lemma 2.1, from the relationship of Bloch space and Zygmund space, $\mathfrak{t} \in \mathcal{Z}$. Let

$$\mathfrak{t}_{\vartheta}(\zeta) = t(e^{j\vartheta}\zeta) \sum_{k=0}^{k=\infty} \frac{1}{2^k + 1} \cdot (e^{j\vartheta}\zeta)^{2^k + 1}.$$

Then we have $\mathfrak{t}_{\vartheta} \in \mathcal{Z}_{\beta}$. Thus

$$\infty > ||c_{\varphi}^{g,n}||^{p}||\mathfrak{t}_{\vartheta}||_{\mathcal{Z}_{\beta}}^{p}
\geq \sup_{\sigma \in \Lambda} \int_{\Lambda} |(c_{\varphi}^{g,n}\mathfrak{t}_{\vartheta})'|^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta, \sigma)) dA(\zeta)
(3) \geq \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > \frac{1}{\sqrt{2}}} \left| \sum_{k=0}^{k=\infty} e^{j(2^{k}+1)\vartheta} \varphi^{2^{k}}(\zeta) \right|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta, \sigma)) dA(\zeta).$$

So

$$||c_{\varphi}^{g,n}||^{p}||\mathfrak{t}_{\vartheta}||_{\mathcal{Z}_{\beta}}^{p} = \frac{1}{2\pi} \int_{0}^{2\pi} ||c_{\varphi}^{g,n}||^{p}||t||^{p} d\vartheta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} ||c_{\varphi}^{g,n}||^{p}||t_{\vartheta}||^{p} d\vartheta.$$

Using Fubini's theorem, Lemma 2.2 and (3), we have

For 0 < r < 1,

$$\ln \frac{1}{1-r^2} = \sum_{k=1}^{\infty} \frac{r^{2k}}{k} = \sum_{k=0}^{\infty} \sum_{j=2^k}^{2^{k+1}-1} \frac{r^{2j}}{j} \le \sum_{k=0}^{\infty} r^{2^{k+1}}.$$

Then, we have

$$\sum_{k=0}^{k=\infty} |\varphi(\zeta)|^{2^{k+1}} \le \ln \frac{1}{1 - |\varphi(\zeta)|^2}.$$

Thus

$$\infty > \frac{1}{2\pi} \int_{0}^{2\pi} ||c_{\varphi}^{g,n}||^{p} ||t_{\vartheta}||^{p} d\vartheta
(4) \qquad \ge \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > \frac{1}{\sqrt{2}}} |\mathfrak{g}(\zeta)|^{p(n-1)} \ln \frac{1}{1 - |\varphi(\zeta)|^{2}} (1 - |\zeta|^{2})^{q} K(g(\zeta, \sigma)) dA(\zeta).$$

By using (2) and (4), l_3 holds.

3.3. The case $\beta > 1$.

THEOREM 3.3. Let $\beta > 1$, and $\mathfrak{g} \in H(\Lambda)$. Let $\varphi \in \Lambda$ be an analytic self-mapping. Then $C^{\mathfrak{g},n}_{\varphi} : \mathcal{Z}_{\beta} \to Q_K(p,q)$ is bounded if

$$\sup_{\sigma \in \Lambda} \int_{\Lambda} \frac{|\mathfrak{g}(\zeta)|^{p(n-1)}}{(1-|\varphi(\zeta)|^2)^{p(\beta-1)}} (1-|\zeta|^2)^q K(g(\zeta,\sigma)) dA(\zeta) < \infty.$$

Proof. Let $\mathfrak{f} \in \mathcal{Z}_{\beta}$. Then by Lemma 2.3 (3), we have

$$|\mathfrak{f}'(\zeta)| \le \frac{2}{1-\beta} \frac{||\mathfrak{f}||_{\mathcal{Z}_{\beta}}}{(1-|\zeta|^2)^{\beta-1}}.$$

Then we have

$$\begin{aligned} ||C_{\varphi}^{\mathfrak{g},n}\mathfrak{f}||_{Q_{K}(p,q)}^{p} &= \sup_{\sigma \in \Lambda} \int_{\Lambda} |(C_{\varphi}^{\mathfrak{g},n}\mathfrak{f})'(\zeta)|^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &= \sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{f}(\varphi)'(\zeta)|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &\leq \frac{2^{p} ||\mathfrak{f}||_{\mathcal{Z}_{\beta}}^{p}}{(1 - \beta)^{p}} \sup_{\sigma \in \Lambda} \int_{\Lambda} \frac{|\mathfrak{g}(\zeta)|^{p(n-1)}}{(1 - |\varphi(\zeta)|^{2})^{p(\beta-1)}} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &= C ||\mathfrak{f}||_{\mathcal{Z}_{\beta}}^{p} \sup_{\sigma \in \Lambda} \int_{\Lambda} \frac{|\mathfrak{g}(\zeta)|^{p(n-1)}}{(1 - |\varphi(\zeta)|^{2})^{p(\beta-1)}} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta) \\ &< \infty. \end{aligned}$$

Hence $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is bounded.

4. The compactness of $C_{\varphi}^{\mathfrak{g},n}:\mathcal{Z}_{\beta}\to Q_K(p,q)$

THEOREM 4.1. Let $0 < \beta < 1$, and $\mathfrak{g} \in H(\Lambda)$. Let $\varphi \in \Lambda$ be an analytic self-mapping. Then $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is compact if and only if

(5)
$$\sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \infty$$

and

(6)
$$\lim_{r \to 1} \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) = 0.$$

Proof. Let $\{n_i\}$ be a bounded sequence in \mathcal{Z}_{β} , which converges to 0 uniformly on compact subsets of Λ . We need to prove that $||C_{\varphi}^{\mathfrak{g},n}||_{Q_K(p,q)} \to 0$, $i \to \infty$. From (6), we have that, for any $\varepsilon > 0$, there exists an r, 0 < r < 1 such that

(7)
$$\sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \varepsilon.$$

Using Lemma 2.3(1), we have

$$\sup_{\sigma \in \Lambda} \int_{\Lambda} |(C_{\varphi}^{\mathfrak{g},n} n_{i})'(\zeta)|^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$\leq \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |n'_{i}(\varphi(\zeta))|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$+ \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| \le r} |n'_{i}(\varphi(\zeta))|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$\leq C||n_{i}||_{\mathcal{Z}_{\beta}}^{p} \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} \mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$+ \sup_{|\varpi| \le r} |n'_{i}(\varpi)|^{p} \sup_{\sigma \in \Lambda} \int_{\sigma \in \Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta).$$

By Cauchy's estimate, $\{n'_i\}$ also converges to 0 uniformly on compact subsets of Λ , then

$$\sup_{|\varpi| \le r} |n_i'(\varpi)|^p \to 0, i \to \infty.$$

Hence by (5) and (7), $||C_{\varphi}^{\mathfrak{g},n}n_{\imath}||_{Q_{K}(p,q)}^{p} \to 0$, $\imath \to \infty$. By Lemma 2.4, $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_{K}(p,q)$ is compact.

Conversely, assume that $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is compact. Let $\hbar(\zeta) = \zeta \in \mathcal{Z}_{\beta}$, then (5) holds. Using Lemma 2.5 we have

(8)
$$\sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |\mathfrak{f}'(\varphi(\zeta))|^p |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \varepsilon.$$

Let $\mathfrak{f}(\varphi(\zeta)) = \zeta \in \mathcal{Z}_{\beta}$ in (8), then

$$\sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \varepsilon.$$

THEOREM 4.2. Let $\beta=1,$ and $\mathfrak{g}\in H(\Lambda).$ Let $\varphi\in\Lambda$ be an analytic-self mapping. If

(9)
$$\sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \infty$$

and

(10)
$$\lim_{r \to 1} \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |\mathfrak{g}(\zeta)|^{p(n-1)} \Big(\ln \frac{2}{1 - |\varphi(\zeta)|^2} \Big)^p (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) = 0,$$

then $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is compact.

Proof. Let $\{n_i\}$ be a bounded sequence in \mathcal{Z}_{β} which converges to 0 uniformly on compact subsets of Λ . Using Lemma 2.4, we need to prove that $||C_{\varphi}^{\mathfrak{g},n}||_{Q_K(p,q)} \to 0$, $i \to \infty$. From (10), for any $\varepsilon > 0$, there exists an r, 0 < r < 1 such that,

(11)
$$\sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |\mathfrak{g}(\zeta)|^{p(n-1)} \left(\ln \frac{2}{1 - |\varphi(\zeta)|^2} \right)^p (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \varepsilon.$$

Using Lemma 2.3(2), we have

$$\sup_{\sigma \in \Lambda} \int_{\Lambda} |(C_{\varphi}^{\mathfrak{g},n} n_{i})'(\zeta)|^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$\leq \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |n'_{i}(\varphi(\zeta))|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$+ \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| \le r} |n'_{i}(\varphi(\zeta))|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$\leq C||n_{i}||_{\mathcal{Z}_{\beta}}^{p} \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |\mathfrak{g}(\zeta)|^{p(n-1)} \left(\ln \frac{2}{1 - |\varphi(\zeta)|^{2}}\right)^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$+ \sup_{|\varpi| \le r} |n'_{i}(\varpi)|^{p} \sup_{\sigma \in \Lambda} \int_{\sigma \in \Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta).$$

By Cauchy's estimate, $\{n_i'\}$ also converges to 0 uniformly on compact subsets of Λ . Then

(12)
$$\sup_{|\varpi| \le r} |n_i'(\varpi)|^p \to 0, i \to \infty.$$

Hence, by (9), (11) and (12), $||C_{\varphi}^{\mathfrak{g},n}n_{i}||_{Q_{K}(p,q)}^{p} \to 0$, $i \to \infty$. By Lemma 2.4, $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_{K}(p,q)$ is compact.

THEOREM 4.3. Let $\beta > 1$, and $\mathfrak{g} \in H(\Lambda)$. Let $\varphi \in \Lambda$ be an analytic self-mapping. If

(13)
$$\sup_{\sigma \in \Lambda} \int_{\Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \infty$$

and

(14)
$$\sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} \frac{|\mathfrak{g}(\zeta)|^{p(n-1)}}{(1 - |\varphi(\zeta)|^2)^{p(\beta-1)}} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) = 0,$$

then $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_K(p,q)$ is compact.

Proof. Let $\{n_i\}$ be a bounded sequence in \mathcal{Z}_{β} which converges to 0 uniformly on compact subsets of Λ . Using Lemma 2.4, we need to prove that $||C_{\varphi}^{\mathfrak{g},n}||_{Q_K(p,q)} \to 0$, $i \to \infty$. From (14), for any $\varepsilon > 0$, there exists an r, 0 < r < 1 such that,

(15)
$$\sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} \frac{|\mathfrak{g}(\zeta)|^{p(n-1)}}{(1 - |\varphi(\zeta)|^2)^{p(\beta-1)}} (1 - |\zeta|^2)^q K(g(\zeta, \sigma)) dA(\zeta) < \varepsilon.$$

By Lemma 2.3(3),

$$\sup_{\sigma \in \Lambda} \int_{\Lambda} |(C_{\varphi}^{\mathfrak{g},n} n_{i})'(\zeta)|^{p} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$\leq \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} |n'_{i}(\varphi(\zeta))|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$+ \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| \le r} |n'_{i}(\varphi(\zeta))|^{p} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$\leq C||n_{i}||_{\mathcal{Z}_{\beta}}^{p} \sup_{\sigma \in \Lambda} \int_{|\varphi(\zeta)| > r} \frac{|\mathfrak{g}(\zeta)|^{p(n-1)}}{(1 - |\varphi(\zeta)|^{2})^{p(\beta-1)}} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta)$$

$$+ \sup_{|\varpi| \le r} |n'_{i}(\varpi)|^{p} \sup_{\sigma \in \Lambda} \int_{\sigma \in \Lambda} |\mathfrak{g}(\zeta)|^{p(n-1)} (1 - |\zeta|^{2})^{q} K(g(\zeta,\sigma)) dA(\zeta).$$

By Cauchy's estimate, $\{n'_i\}$ also converges to 0 uniformly on compact subsets of Λ . Then

(16)
$$\sup_{|\varpi| \le r} |n_i'(\varpi)|^p \to 0, i \to \infty.$$

Hence, by (13), (15) and (16), $||C_{\varphi}^{\mathfrak{g},n}n_{\imath}||_{Q_{K}(p,q)}^{p} \to 0$, $\imath \to \infty$. By Lemma 2.4, $C_{\varphi}^{\mathfrak{g},n}: \mathcal{Z}_{\beta} \to Q_{K}(p,q)$ is compact.

References

- R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Pitman Research Notes in Mathematics Series. (1994), PP. 136–146.
- B. Choe, H. Koo and W. Smith, Composition operators on small spaces, Integral Equations and Operator Theory. 56 (3) (2006), 357–380.
 https://doi.org/10.1007/s00020-006-1420-x
- [3] A. El-Sayed Ahmed and M. A. Bakhit, Composition operators on some holomorphic Banach function spaces, Mathematica Scandinavica. 104 (2) (2009), 275–295.
- [4] M. Essén, H. Wulan and J. Xiao, Several function-theoretic characterizations of Möbius invariant Q_K spaces, Journal of Functional Analysis. 230 (1) (2006), 78–115.
 https://doi.org/10.1016/j.jfa.2005.07.004
- [5] A. Kamal, A. El-Sayed Ahmed and T. I. Yassen, Quasi-metric spaces and composition operators on B_{α}^* , log and $Q_{p,log}^*$ spaces, Journal of Computational and Theoretical Nanoscience. 12 (8) (2015), 1795–1801.

https://doi.org/10.1166/jctn.2015.3960

- [6] A. Kamal and T. I. Yassen, Some properties of composition operator acting between general hyperbolic type spaces, International Journal of Mathematical Analysis and Applications. 2 (2) (2015), 17–26.
 - https://api.semanticscholar.org/CorpusID:10461622
- [7] A. Kamal and T. I. Yassen, D-metric spaces and composition operators between hyperbolic weighted family of function spaces, Cubo (Temuco). 22 (2) (2020), 215–231. http://dx.doi.org/10.4067/S0719-06462020000200215
- [8] H. Li, T. Ma and Z. Guo, Generalized composition operators from Zygmund type spaces to Q_K spaces, Journal of Mathematical Inequalities. 9 (2) (2015), 425–435.
 http://dx.doi.org/10.7153/jmi-09-36
- [9] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, Journal of Mathematical Analysis and Applications. 338 (2) (2008), 1282–1295. https://doi.org/10.1016/j.jmaa.2007.06.013

- [10] K. Madigan, and A. Matheson, Compact composition operators on the Bloch space, Transactions of the American Mathematical Society. 347 (7) (1995), 2679–2687. https://doi.org/10.2307/2154848
- [11] J. Miao, A property of analytic functions with Hadamard gaps, Bulletin of the Australian Mathematical Society. 45 (1) (1992), 105–112. https://doi.org/10.1017/S0004972700037059
- [12] S. Stević, On an integral-type operator from logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces, Nonlinear Analysis: Theory, Methods & Applications. **71** (12) (2009), 6323–6342.
 - https://doi.org/10.1016/j.na.2009.06.087
- [13] H. Wulan, and Y. Zhang, Hadamard products and Q_K spaces, Journal of Mathematical Analysis and Applications. **337** (2) (2008), 1142–1150.
- [14] H. Wulan, and J. Zhou, Q_K type spaces of analytic functions, Journal of Function Spaces and Applications. 4 (1) (2006), 73–84. https://doi.org/10.1155/2006/910813
- [15] S. Yamashita, Gap series and α -Bloch functions, Yokohama Mathematical Journal. **28** (1-2) (1980), 31–36.
- [16] R. Zhou, On a general family of function spaces, Annales Academiae Scientiarum Fennicae: Mathematica, Suomalainen Tiedeakatemia, Helsinki. 105 (1996).
- [17] Z. Zhou and J. Shi, Compactness of composition operators on the Bloch space in classical bounded symmetric domains, The Michigan Mathematical Journal. **50** (2) (2020), 381–405. http://dx.doi.org/10.1307/mmj/1028575740
- [18] A. Zygmund, Trigonometric series, Cambridge University Press Cambridge. 1 (2002).

Department of Basic Science, The Higher Engineering Institute in Al-Minya (EST-Minya) Mania, Egypt

Current address: King Saud University, Common first year, Basic Science Department, Riyadh, Kingdom of Saudi Arabia

E-mail: taha_hmour@yahoo.com