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A (k, µ)-CONTACT METRIC MANIFOLD AS AN η−EINSTEIN

SOLITON

Arup Kumar Mallick∗ and Arindam Bhattacharyya

Abstract. The aim of the paper is to study an η-Einstein soliton on (2n + 1)-
dimensional (k, µ)-contact metric manifold. At first, we establish various results
related to (2n + 1)-dimensional (k, µ)-contact metric manifold that exhibit an η-
Einstein soliton. Next we study some curvature conditions admitting an η-Einstein
soliton on (2n+1)-dimensional (k, µ)-contact metric manifold. Furthermore, we con-
sider specific conditions associated with an η-Einstein soliton on (2n+1)-dimensional
(k, µ)-contact metric manifold. Finally, we show the existance of an η-Einstein soli-
ton on (k, µ)-contact metric manifold.

1. Introduction

In 1995, Blair et al. [4] introduced the notion of contact metric manifold with char-
acteristic vector field ξ belonging to the (k, µ) distribution and such type of manifold
is called (k, µ)- contact metric manifold. They obtained several results and a full
classification of this manifold has been given by Boeckx [8].
A contact metric manifold is known [13] to exist where the curvature tensor R, in
the direction of the characteristic vector field ξ, satisfies the equation R(X, Y )ξ = 0
for any tangent vector field X, Y . For instance, the tangent sphere bundle of a flat
Riemannian manifold possesses such a structure [5]. By applying a D-homothetic
deformation [21] on M2n+1 with the equation R(X, Y )ξ = 0, A novel class of contact
metric manifolds that fulfills the condition

(1) R(X, Y )ξ = k {η(Y )X − η(X)Y }+ µ {η(Y )hX − η(X)hY } , k, µ ∈ R
where h represents the Lie differentiation of φ in the direction of ξ and R is the curva-
ture tensor. A notable characteristic of this class is that the equation’s type remains
unchanged under a D-homothetic deformation.
A contact metric manifold that satisfies the aforementioned relation (1) is known as
a (k, µ)- contact metric manifold. This class of manifolds encompasses both Sasakian
and non-Sasakian manifolds. In the case of Sasakian manifolds, k = 1, resulting in
h = 0. However, for non-Sasakian manifolds, k < 1. Examples of such manifolds
can be found in all dimensions. Notably, the tangent sphere bundles of Riemannian
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manifolds with constant sectional curvature c, excluding c = 1, serve as character-
istic examples of non-Sasakian (k, µ)- contact metric manifolds. Particularly in the
3-dimensional case, this class includes the Lie group SO(3), SL(2, R), SU(2), O(1, 2),
E(2), E(1, 1) with a left invariant metric [4]. For additional examples and a com-
prehensive classification of such manifolds, we refer to the mentioned paper [4]. It is
worth noting that the papers also discuss contact metric manifolds with ξ belonging
to the (k, µ)- nullity distribution [7, 18, 19, 22, 23], along with numerous other studies
on this topic.

For the real constants k, µ, the (k, µ)- nullity distribution of a contact metric man-
ifold forms a distribution [7]

N(k, µ) : p→ Np(k, µ) = [Z ∈ TpM : R(X, Y )Z

=k {g(Y, Z)X − g(X,Z)Y }
+ µ {g(Y, Z)hX − g(X,Z)hY }],(2)

for each X, Y ∈ TpM .
Consequently, if the characteristic vector field ξ belongs to the (k, µ)- nullity distribu-
tion, the above relation holds true. If ξ ∈ N(k), we classify the manifold as an N(k)
contact metric manifold [3]. For k = 1, then the manifold is Sasakian, and if k = 0,
the manifold is locally isometric to the product En+1(0) × Sn(4) for n > 1 and flat
for n = 1 [6], where n is the dimension of the manifolds. In a (k, µ)- contact metric
manifold, the manifold becomes an N(k)- contact manifold for µ = 0.

In 1982, R.S. Hamilton [15, 16] introduced the concept of the Ricci flow as means
to determine a canonical metric on a smooth manifold. The Ricci flow is an evolution
equation that applies to a Riemannian metric g(t) on a smooth manifold M . It is
defined by the following equation:

(3)
∂g

∂t
= −2S,

where S is the Ricci tensor of the metric g (t).
A smooth manifold M , equipped with a Riemannian metric g, is known as a Ricci
soliton if it moves only by a one parameter family of diffeomorphism and scaling. The
Ricci soliton there exists a constant λ and a smooth vector field V on M that satisfies
the following equation:

(4) £V g + 2S = 2λg,

where £V denotes the Lie derivative along the direction of the vector field V and λ
is a constant. The Ricci soliton exhibits shrinking, steady and expanding behaviour
depending on λ > 0, λ = 0, λ < 0 respectively.
A Ricci soliton is a generalization of an Einstein metric which moves only by an one-
parameter group diffeomorphisms and scaling [15].
A.E. Fischer [14] in 2005, developed the concept of conformal Ricci flow equation
which is a variation of the classical Ricci flow equation that modifies the unit volume
constraint of that equation to a scalar curvature constraint. The conformal Ricci flow
on M is defined by the equation [14]

(5)
∂g

∂t
+ 2

(
S +

g

n

)
= −pg, r(g) = −1,
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where M is considered as a smooth closed connected oriented manifold, p is a non-
dynamical(time dependent) scalar field, r(g) is the scalar curvature of the manifold
and n is the dimension of manifold.
In 2015, N. Basu and A. Bhattacharyya [1] introduced the notion of conformal Ricci
soliton as a generalization of the Ricci soliton and the equation is given by

(6) (£V g) + 2S =

[
2λ−

(
p+

2

n

)]
g,

where p is the conformal pressure.
The concept of η−Ricci soliton introduced by J.T. Cho and M. Kimura [11], and later
C. Calin and M. Crasmareanu [9] studied it on Hopf hyper- surfaces in complex space
forms. A Riemannian manifold is said to admit an η-Ricci soliton if for a smooth
vector field V , the metric g satisfies the following equation

(7) (£V g) + 2S + 2λg + 2µη ⊗ η = 0,

where £V is the Lie derivative along the direction of V .

In 2018, M.D. Siddiqui [12] introduced the concept of a conformal η−Ricci soliton
and the equation is given by

(8) (£V g) + 2S +

[
2λ−

(
p+

2

n

)]
g + 2µη ⊗ η = 0.

In 2018, A.M. Blaga [2] proposed that a Riemannian manifold admits an η−Einstein
soliton if the equation satisfies

(9) £V g + 2S + (2λ− r) g + 2µη ⊗ η = 0,

For µ = 0, the data (g, ξ, λ) is called Einstein soliton [10].

The outline of the paper is organized as follows:
The introduction provides an overview and motivation for the study of an η−Einstein
solitons on (k, µ)-contact metric manifolds. Section 2 presents fundamental tools and
concepts related to (2n+1)-dimensional (k, µ)-contact metric manifolds. Section 3 fo-
cuses on (2n+1)-dimensional (k, µ)-contact metric manifold that admit an η−Einstein
soliton. Section 4 investigates an η−Einstein soliton on (2n + 1)-dimensional (k, µ)-
contact metric manifolds satisfying R(X, Y ).S = 0. Section 5 is devoted to the study
of an η−Einstein soliton on (k, µ)-contact metric manifolds satisfying curvature con-
dition C(ξ,X).S = 0. The investigation continues in Section 6, which delves into
torse-forming vector field on (k, µ)-contact metric manifolds admitting an η−Einstein
solitons. In section 7, a specific example of (2n+ 1)-dimensional (k, µ)-contact metric
manifold possesses an η−Einstein soliton is presented.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold (M2n+1, g) is called an almost contact
manifold with structure (φ, ξ, η), where φ is a tensor field of type (1,1), ξ is a vector
field, η is a 1-form and a Riemannian metric g if

(10) φ2 (X) = −X + η (X) ξ, η (ξ) = 1, η (φX) = 0, φξ = 0,
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for any X, Y ∈ χ (M).
Let g be a conformable Riemannian metric with structure (φ, ξ, η, g), i.e.,

(11) g (φX, φY ) = g (X, Y )− η (X) η (Y ) , g (X, ξ) = η (X) , g (ξ, ξ) = 1.

Then M2n+1 becomes an almost contact metric manifold furnish with an almost con-
tact metric structure (φ, ξ, η, g), i.e.,

(12) g (X,φY ) = −g (φX, Y ) ,

for every X, Y ∈ χ (M).
An almost contact metric structure enhance a contact metric structure if

(13) dη (X, Y ) = g (X,φY ) ,

for every X, Y ∈ χ (M).
In a contact metric manifold M2n+1, we define the (1,1)-tensor field h by 2hX =
(£ξφ) (X), where £ξ denotes Lie differentiation in the direction of the vector field ξ.
The tensor h is symmetric, such that

(14) hξ = 0, hφ = −φh, tr(h) = 0, tr(φh) = 0,

(15) ∇Xξ = −φX − φhX.

(16) (∇Xη)Y = g(X,φY )− g(X,φhY ).

In a (k, µ)-contact metric manifold the following results hold [4, 5]:

(17) (∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),

(18) h2 = (k − 1)φ2

and

(19) rankφ = 2n.

Also in a (2n + 1)-dimensional (k, µ)-contact metric manifold, we have the following
relations hold from [4,8]

η (R(X, Y )Z) =k [g(Y, Z)η(X)− g(X,Z)η(Y )]

+ µ [g(hY, Z)η(X)− g(hX,Z)η(Y )] ,(20)

(21) S(φX, φY ) = S(X, Y )− 2nkη(X)η(Y )− 2(2n− 2 + µ)g(hX, Y ),

S(X, Y ) = (2n− 2− nµ) g(X, Y ) + (2− 2n+ 2nk + nµ) η(X)η(Y )

+ (2n− 2 + µ) g(hX, Y ),(22)

(23) S (X, ξ) = 2nkη(X),

(24) S (ξ, ξ) = 2nk,

(25) R (ξ,X)Y = k [g(X, Y )ξ − η(Y )X] + µ [g(hX, Y )ξ − η(Y )hX] ,

(26) R (ξ,X) ξ = k [η(X)ξ −X] + µ [η(hX)− hX] ,

(27) r = (2n− 2 + k − nµ),

(28) Qξ = 2nkξ.
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Now, we give the following definitions:

Definition 2.1. [20] A Riemannian manifold is said to have Ricci-recurrent if it
satisfies the following relation

(∇XS)(Y, Z) = B(X)S(Y, Z),

for all vector fields X, Y, Z ∈ χ (M), where B is a 1-form on M . If the 1-form B
is identically zero on M , then the Ricci-recurrent manifold is said to be a Ricci-
symmetric manifold, that is, the Ricci tensor is covariant constant.

Definition 2.2. The concircular curvature tensor in a (2n+1)-dimensional (k, µ)-
contact metric manifold is defined by [24]

(29) C(X, Y )Z = R(X, Y )Z − r

2n(2n+ 1)
[g(Y, Z)X − g(X,Z)Y ] ,

for each vector fieldsX, Y, Z ∈ χ (M) . The manifold (M2n+1, g) is called ξ-concircularly
flat if C(X, Y )ξ = 0 for each vector fields X, Y ∈ χ (M) .

Definition 2.3. A vector field V on a (2n+ 1)−dimensional (k, µ)-contact metric
manifold is said to be torse-forming vector field [25] if

(30) ∇Y V = fY + γ(Y )V,

where f is a smooth function and γ is a 1-form.

Definition 2.4. A (2n+ 1)-dimensional (k, µ)-contact metric manifold is said to
be an η-Einstein manifold if its Ricci tensor S is of the form

S (X, Y ) = ag (X, Y ) + bη (X) η (Y ) ,

for all X, Y ∈ χ (M) and smooth functions a, b on M . If b = 0, then the manifold is
said to be an Einstein manifold.

3. (2n + 1)−dimensional (k, µ)-contact metric manifold admitting an
η−Einstein Soliton

Here we consider (k, µ)-contact metric manifold (M2n+1, g) admitting an η−Einstein
soliton. In the first part, we try to characterize the nature of the soliton by calculating
the condition under which an η−Einstein soliton is shrinking, steady or expanding on
a (2n+ 1)−dimensional (k, µ)-contact metric manifold.

Now, we state the following theorem :

Theorem 3.1. If a (2n+1)-dimensional (k, µ)-contact metric manifold (M2n+1, g)
is Ricci symmetric (i.e., ∇S = 0) and admits an η-Einstein soliton (g, ξ, λ, µ), then
µ = 0 and the constant scalar curvature r = 2λ + 4kn. Furthermore, the soliton is
shrinking, steady and expanding for r < 4kn, r = 4kn and r > 4kn, respectively.

Proof. Let us consider a (k, µ)-contact metric manifold (M2n+1, g) admitting an
η-Einstein soliton (g, ξ, λ, µ). Then from the equation (9), we have

(31) (£ξg)(X, Y ) + 2S(X, Y ) + (2λ− r) g(X, Y ) + 2µη(X)η(Y ) = 0,

for all vector fields X, Y ∈ χ (M). From (31), we get

(32) 2S(X, Y ) = −(£ξg)(X, Y )− (2λ− r) g(X, Y )− 2µη(X)η(Y ).
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Now, with the help of (15), we have

(33) (£ξg)(X, Y ) = −2g(φhX, Y ).

From (32) and (33), we obtain

(34) S(X, Y ) =
(r

2
− λ
)
g(X, Y )− µη(X)η(Y ) + g(φhX, Y ).

Putting Y = ξ in (34), we get

(35) S(X, ξ) =
(r

2
− λ− µ

)
η(X).

Comparing the equations (35) and (23), we have

2knη(X) =
(r

2
− λ− µ

)
η(X).

Since η is a non-zero 1-form, it becomes

(36) r = 2λ+ 2µ+ 4kn.

It is well known that,

(37) (∇XS)(Y, Z) = X(S(Y, Z))− S(∇XY, Z)− S(Y,∇XZ),

for every vector fields X, Y, Z on M2n+1.
Using the equation (34) and (37), we achieve

(38) (∇XS)(Y, Z) = −µ[η(Z)(∇Xη)Y + η(Y )(∇Xη)Z],

for every vector fields X, Y, Z on M2n+1.
Using equation (16), the above equation becomes
(39)
(∇XS)(Y, Z) = −µ [η(Z) (g(X,φY )− g(X,φhY )) + η(Y ) (g(X,φZ)− g(X,φhZ))] .

If the manifold M2n+1 is Ricci symmetric, then ∇S = 0.
Therefore the equation (39) reduces to

(40) − µ [η(Z) (g(X,φY )− g(X,φhY )) + η(Y ) (g(X,φZ)− g(X,φhZ))] = 0,

for all vector fields X, Y, Z ∈ χ (M).
Putting Z = ξ in the equation (40), we have

(41) µ [g(X,φY )− g(X,φhY )] = 0,

for any X, Y ∈ χ (M). Then µ=0 as g(φX, Y ) 6= g(X,φhY ).
Equation (36) reduce to

(42) r = 2λ+ 4kn.

From (42), we can conclude the following :
(i) If λ < 0, then r < 4kn implies the soliton is shrinking.
(ii) If λ = 0, then r = 4kn implies the soliton is steady.
(iii) If λ > 0, then r > 4kn implies the soliton is expanding.
This completes the proof.

Theorem 3.2. If the metric of a (2n+1)-dimensional (k, µ)-contact metric manifold
is an η−Einstein soliton and the Ricci tensor is η−Recurrent (i.e. ∇S=η ⊗ S), then
the constant scalar curvature r = 2(λ+ µ)
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Proof. Let us have a look the Ricci tensor is η−Recurrent, then we get

(43) ∇S = η ⊗ S,
that is,

(44) (∇XS)(Y, Z) = η(X)S(Y, Z),

for all vector fields X, Y, Z on M .
From equations (39) and (44), we obtain

−µ [η(Z) (g(X,φY )− g(X,φhY )) + η(Y ) (g(X,φZ)− g(X,φhZ))] = η(X)S(Y, Z).
(45)

Putting Y = Z = ξ in the equation (45) and using the equation (35), we obtain

(46)
(r

2
− λ− µ

)
η(X) = 0.

Since η is 1-form, the above equation becomes

r = 2(λ+ µ).

This completes the proof.

Theorem 3.3. If a (2n+1)-dimensional (k, µ)- contact metric manifold (M2n+1, g)
admits an η-Einstein soliton (g, ν, λ, µ) such that the vector field ν is pointwise
collinear with ξ (i.e ν is a constant multiple of ξ), then the manifold (M2n+1, g)
becomes an η-Einstein manifold of constant scalar curvature r = 2λ+ 2µ+ 4kn.

Proof. Considering a (k, µ)- contact metric manifold (M2n+1, g) that admits an η-
Einstein soliton (g, ν, λ, µ) such that ν is parallel to ξ, that is, ν = cξ for some function
c, and using this in equation (9), it follows that

(£cξg)(X, Y ) + 2S(X, Y ) + (2λ− r)g(X, Y ) + 2µη(X)η(Y ) = 0,

which gives

cg(∇Xξ, Y ) + (Xc)η(Y ) + cg(∇Y ξ,X) + (Y c)η(X)

+ 2S(X, Y ) + (2λ− r)g(X, Y ) + 2µη(X)η(Y ) = 0.(47)

Using (15) in the equation (47), we get

− cg(φX, Y )− cg(φhX, Y ) + (Xc)η(Y )− cg(φY,X)− cg(φhY,X) + (Y c)η(X)

+ 2S(X, Y ) + (2λ− r)g(X, Y ) + 2µη(X)η(Y ) = 0.
(48)

Substituting Y = ξ in (48), we have

(49) (Xc) + (2λ− r + ξc+ 4kn+ 2µ)η(X) = 0.

If
(2λ− r + ξc+ 4kn+ 2µ) = 0,

then Xc = 0, that is, c is constant. This implies ξc = 0. From equation (49), we
obtain

(50) r = 2λ+ 2µ+ 4kn.

Since c is constant, equation (48) becomes
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(51) S(X, Y ) =
(r

2
− λ
)
g(X, Y )− µη(X)η(Y ),

for all X, Y ∈ χ (M).
Hence the result.

4. η-Einstein soliton on (2n+ 1)−dimensional (k, µ)-contact metric man-
ifold satisfying R(X, Y ).S = 0

In this section, first we consider a (k, µ)-contact metric manifold (M2n+1, g) that
admits an η-Einstein soliton (g, ξ, λ, µ) and the manifold satisfies the curvature con-
dition R(X, Y ).S = 0, then

(52) S(R(X, Y )Z,W ) + S(Z,R(X, Y )W ) = 0,

for all X, Y, Z,W ∈ χ (M).
we can state the following theorem:

Theorem 4.1. Let (2n + 1)-dimensional (k,µ)-contact metric manifold admits
an η-Einstein soliton (g, ξ, λ, µ). If the manifold satisfies the curvature condition
R(X, Y ).S = 0, then the manifold admit a constant scalar curvature r = 2λ + 4kn
and the soliton is shrinking, steady and expanding as
(i) r < 4kn,
(ii) r = 4kn,
(iii) r > 4kn.

Proof. Setting W = ξ in (52), we obtain

(53) S(R(X, Y )Z, ξ) + S(Z,R(X, Y )ξ) = 0,

for all X, Y, Z ∈ χ (M).
Using equations (1), (20) and (23) in (53), we get

2nk(k [g(Y, Z)η(X)− g(X,Z)η(Y )] + µ [g(hY, Z)η(X)− g(hX,Z)η(Y )])

+ S(Z, k {η(Y )X − η(X)Y }+ µ {η(Y )hX − η(X)hY }) = 0,(54)

which implies,

[2nk2g(Y, Z)− kS(Y, Z) + 2nkµg(hY, Z)− µS(hY, Z)]η(X)

+ [kS(X,Z)− 2nk2g(X,Z) + µS(Z, hX)− 2nkµg(hX,Z)]η(Y ) = 0.(55)

Taking X = ξ in the above equation, then it reduces to

(56) kS(Y, Z) + µS(hY, Z) = 2nk2g(Y, Z) + 2nkµg(hY, Z).

Now, X replace by hX in (22), we get

S(hX, Y ) = (2n− 2− nµ) g(hX, Y )− (k − 1) (2n− 2 + µ) g(X, Y )

+ (k − 1) (2n− 2 + µ) η(X)η(Y ).(57)
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From (56) and (57), we obtain

S(Y, Z) =

[
2kn+

k − 1

k
(2n− 2 + µ)µ

]
g(Y, Z) +

[
2nµ− 1

k
(2n− 2− nµ)µ

]
g(hY, Z)

−
(
k − 1

k

)
(2n− 2 + µ)µη(Y )η(Z).(58)

If

[
2nµ− 1

k
(2n− 2− nµ)µ

]
= 0,

that is, µ = 0 and

[
2n− 1

k
(2n− 2− nµ)

]
6= 0, then (58) becomes

(59) S(Y, Z) = 2kng(Y, Z),

for all Y, Z ∈ χ (M).
Let us assume that the Einstein semi-symmetric (2n+ 1)-dimensional (k, µ)- contact
metric manifold admits an η-Einstein soliton (g, ξ, λ, µ). Then equation (34) holds
and combining (34) with the equation (59), we obtain

(60) 2kn(2n+ 1) = (2n+ 1)
(r

2
− λ
)
,

that is,

(61) r = 2λ+ 4kn,

for any X ∈ χ(M). From (61), we can conclude the following :
(i) If λ < 0, then r < 4kn implies the soliton is shrinking.
(ii) If λ = 0, then r = 4kn implies the soliton is steady.
(iii) If λ > 0, then r > 4kn implies the soliton is expanding.
This completes the proof.

Theorem 4.2. Let (2n + 1)−dimensional (k,µ)-contact metric manifold admits
an η-Einstein soliton (g, ξ, λ, µ). If the manifold is Ricci semi-symmetric, then the
manifold is locally isometric to the Riemannian product En+1(0) × Sn(4) for n > 1
and flat for n = 1.

Proof. Again from (56) and (57), we obtain

k(2n− 2− nµ)g(Y, Z) + k(2− 2n+ 2nk + nµ)η(Y )η(Z) + k(2n− 2 + µ)g(hY, Z)

=
[
2k2n+ (k − 1)(2n− 2 + µ)µ

]
g(Y, Z) + [2knµ+ (2n− 2− nµ)µ] g(hY, Z)

− (k − 1)(2n− 2 + µ)µη(Y )η(Z).
(62)

Comparing the both sides, we get
µ = 0, k = 0.
Hence the manifold is locally isometric to the Riemannian product En+1(0) × Sn(4)
for n > 1 and flat for n = 1.
Hence the result.
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5. η-Einstein soliton on (2n+ 1)−dimensional (k, µ)-contact metric man-
ifold satisfying C(ξ,X).S = 0

In this section, we consider a (k, µ)-contact metric manifold (M2n+1, g) that admits
an η-Einstein soliton (g, ξ, λ, µ) and the manifold satisfies the curvature condition
C(ξ,X).S = 0, then

(63) S(C(ξ,X)Y, Z) + S(Y,C(ξ,X)Z) = 0.

Now we can state the following theorem.

Theorem 5.1. Let (2n + 1)-dimensional (k,µ)-contact metric manifold admits
an η-Einstein soliton (g, ξ, λ, µ). If the manifold satisfies the curvature condition
C(ξ,X).S = 0, then the manifold admit a constant scalar curvature r = 2λ+ 4kn.

Proof. From equation (29), we find

(64) C(ξ,X)Y = R(ξ,X)Y − r

2n(2n+ 1)
[g(X, Y )ξ − η(Y )X] .

Using (25) in (64), we have

(65) C(ξ,X)Y =

[
k − r

2n(2n+ 1)

]
[g(X, Y )ξ − η(Y )X]+µ [g(hX, Y )ξ − η(Y )hX] .

Similarly,

(66) C(ξ,X)Z =

[
k − r

2n(2n+ 1)

]
[g(X,Z)ξ − η(Z)X] + µ [g(hX,Z)ξ − η(Z)hX] .

Using equations (65), (66) in (63), we obtain[
k − r

2n(2n+ 1)

]
S([g(X, Y )ξ − η(Y )X] , Z) + S(µ [g(hX, Y )ξ − η(Y )hX] , Z)+

[
k − r

2n(2n+ 1)

]
S([g(X,Z)ξ − η(Z)X] , Y ) + S(µ [g(hX,Z)ξ − η(Z)hX] , Y ) = 0,

(67)

which implies[
k − r

2n(2n+ 1)

]
[2kng(X, Y )η(Z)− S(X,Z)η(Y ) + 2kng(X,Z)η(Y )− S(X, Y )η(Z)]

+ µ [2kng(hX, Y )η(Z)− S(hX,Z)η(Y ) + 2kng(hX,Z)η(Y )− S(hX, Y )η(Z)] = 0.
(68)

Setting Z = ξ in (68) and using (23), we get

(69)

[
k − r

2n(2n+ 1)

]
[2kng(X, Y )− S(X, Y )] + µ [2kng(hX, Y )− S(hX, Y )] = 0.

Using equation (57) in (69), we have[
k − r

2n(2n+ 1)

]
S(X,Y ) =

{
2kn

[
k − r

2n(2n+ 1)

]
+ (k − 1)(2n− 2 + µ)µ

}
g(X,Y )

+ (2kn− 2n+ 2 + nµ)µg(hX, Y )− (k − 1)(2n− 2 + µ)µη(X)η(Y ).(70)
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If [2kn− 2n+ 2 + nµ]µ = 0,
that is, µ = 0 and [2kn− 2n+ 2 + nµ)] 6= 0, then (70) becomes

(71) S(X, Y ) = 2kng(X, Y ),

for all X, Y ∈ χ (M).
Let us assume that the Einstein semi-symmetric (2n+1)−dimensional (k, µ)- contact
metric manifold admits an η−Einstein soliton (g, ξ, λ, µ). Then equation (34) holds
and combining (34) with the equation (70), we obtain

(72) 2kn(2n+ 1) = (2n+ 1)
(r

2
− λ
)
,

that is,

(73) r = 2λ+ 4kn.

This completes the proof.

6. η-Einstein soliton on (2n+ 1)−dimensional (k, µ)-contact metric man-
ifold with torse-forming vector field

In this section we prove the following theorem.

Theorem 6.1. Let (2n + 1)−dimensional (k,µ)-contact metric manifold admits
an η-Einstein soliton (g, ξ, λ, µ) with torse-forming vector field ξ, then the manifold
becomes an η−Einstein manifold.

Proof. Let us consider a (k, µ)-contact metric manifold (M2n+1, g) admitting an
η-Einstein soliton (g, ξ, λ, µ) and assume that Reeb vector field ξ of the manifold is a
torse-forming vector field. Then ξ being a torse-forming vector field, from equation
(30), we infer that

(74) ∇Y ξ = fY + γ(Y )ξ,

for each Y ∈ χ (M).
Using equation (15) and taking inner product with ξ, we obtain

(75) g(∇Y ξ, ξ) = −(φ+ φh)η(Y ).

Taking inner product in equation (74), with ξ we have

(76) g(∇Y ξ, ξ) = fη(Y ) + γ(Y ).

The equations (75) and (76), give us

(77) γ = −(φ+ φh+ f).

Thus for a torse-forming vector field ξ in (k, µ)-contact metric manifold, we obtain

(78) ∇Y ξ = f(Y − η(Y )ξ)− (φ+ φh)η(Y )ξ.

Since (g, ξ, λ, µ) is an η−Einstein soliton, from equation (9), we have

(79) g(∇Xξ, Y ) + g(∇Y ξ,X) + 2S(X, Y ) + (2λ− r)g(X, Y ) + 2µη(X)η(Y ) = 0,

for all vector fields X, Y ∈ χ (M).
Using (78) in the above equation, we obtain

(80) S(X, Y ) =
[r

2
− (λ+ f)

]
g(X, Y ) + (φ+ φh+ f − µ)η(X)η(Y ).



326 A. K. Mallick and A. Bhattacharyya

This means that the manifold is an η−Einstein manifold.

Now, we give an example of a (k, µ)-contact metric manifold:

7. Example of a (k, µ)-contact metric manifold admitting an η−Einstein
soliton

Let us consider M =
{

(x, y, z) ∈ R3, (x, y, z) 6= (0, 0, 0)
}

be a three-dimensional
manifold [17] admitting an η−Einstein soliton (g, ξ, λ, µ). The vector fields e1, e2, e3
are linearly independent in R3 so as

[e1, e2] = (1 + β)e3, [e3, e1] = (1− β)e2, [e2, e3] = 2e1,

where β = ±
√

1− k is a real number.
We define the Riemannian metric g by
g(e1, e2) = g(e2, e3) = g(e1, e3) = 0 and g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.
Let 1-form η defined by
η(X) = g(X, e1),
for each X ∈ χ(M). The (1,1) tensor field φ is defined as

φ(e1) = 0, φ(e2) = e3, φ(e3) = −e2.

Using the linearity of φ and g, we have

η(e1) = 1,

φ2(X) = −X + η(X)e1

and

g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for each X, Y ∈ χ(M). Furthermore
he1 = 0, he2 = βe2, and he3 = −βe3.
By using Koszul’s formula for the Riemannian metric g, we can calculate

∇e1e1 = 0,∇e1e2 = 0,∇e1e3 = 0,

∇e2e1 = −(1 + β)e3,∇e2e2 = 0,∇e2e3 = (1 + β)e1,

∇e3e1 = (1− β)e2,∇e3e2 = −(1− β)e1,∇e3e3 = 0.

Using these we can verify ∇Xξ = −φX − φhX for e1 = ξ . Hence the manifold is a
contact metric manifold with the contact structure (φ, ξ, η, g) .
Also from the relation of Riemmanian curvature tensor we can calculate the following
components

R(e1, e1)e1 = 0, R(e1, e2)e1 = −(1− β2)e2, R(e1, e2)e2 = (1− β2)e1,

R(e1, e2)e3 = 0, R(e2, e3)e1 = 0, R(e2, e3)e3 = −(1− β2)e2,

R(e1, e3)e1 = (1− β2)e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = (1− β2)e1,

R(e2, e1)e1 = −(1− β2)e2, R(e3, e1)e1 = (1− β2)e3, R(e2, e3)e2 = (1− β2)e3.
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From these curvature tensors, we can calculate the components of Ricci tensors as
follows:

S(e1, e1) = 2(1− β2), S(e2, e2) = 0, S(e3, e3) = 0.

From equation (59), we can obtain

S(e3, e3) = 2kng(e3, e3) = 2kn.

By equating both the values of S(e3, e3), we get

k = 0.

Hence the manifold (R3, g) is locally isometric to the product E2(0)× S1(4).
Again, we can calculate equation(34)

S(e3, e3) =
[r

2
− (λ+ µ)

]
.

Therefore, [r
2
− (λ+ µ)

]
= 0,

which implies that,
r = 2(λ+ µ).

Since k = 0, equation(36) reduces to

r = 2(λ+ µ).

Hence the constants λ and µ satisfies equation (36) and so g defines an η−Einstein
soliton on (k, µ)-contact manifold M .
Further, putting k = 0 in (42), we can calculate

λ =
r

2
.

Thus the soliton (g, ξ, λ) on (k, µ)-contact manifold is shrinking, steady and expand-
ing as r < 0, r = 0 and r > 0, respectively.
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