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A NOTE ON SIMPSON 3/8 RULE FOR FUNCTION WHOSE
MODULUS OF FIRST DERIVATIVES ARE s-CONVEX FUNCTION
WITH APPLICATION

ARSLAN MUNIR, HUSEYIN BUDAK, HASAN KARA*,
Laxmi RATHOUR, AND IRZA FAI1Z

ABSTRACT. Researchers continue to explore and introduce new operators, methods,
and applications related to fractional integrals and inequalities. In recent years, frac-
tional integrals and inequalities have gained a lot of attention. In this paper, firstly
we established the new identity for the case of differentiable function through the
fractional operator (Caputo-Fabrizio). By utilizing this novel identity, the obtained
results are improved for Simpson second formula-type inequality. Based on this iden-
tity the Simpson second formula-type inequality is proved for the s-convex functions.
Furthermore, we also include the applications to special means.

1. Introduction

Inequalities provide a versatile tool for dealing with uncertain or variable quanti-
ties and are integral to many branches of mathematics and their applications. They
allow mathematicians, scientists, and engineers to reason about relationships, make in-
formed decisions, and solve a wide range of problems. Overall, estimation is a powerful
tool that complements exact calculations and enhances your problem-solving toolkit,
enabling you to make informed decisions and solve mathematical problems efficiently.
Inequalities have useful and legitimate applications in the fields of probability theory,
functional inequalities, interpolation spaces, sobolev spaces, and information theory.

Fractional calculus continues to be an active area of research, with ongoing studies
exploring its theoretical foundations, computational methods, and diverse applica-
tions. The concept of fractional calculus dates back to the work of mathematicians
like Leibniz and Liouville, but it gained renewed interest and formalization in the
20th century. Notable researchers who contributed to the field include Riemann, Li-
ouville, Griinwald, Letnikov, and Caputo. Indeed, over the past two decades, the use
of fractional calculus has experienced a notable increase in both pure and applied
disciplines of science and engineering. In fractional calculus, there exist many differ-
ent kinds of integral operators. These operators have applications for applied crucial
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and theory of integral inequalities. In recent years mathematicians have become more
interested in fractional integral operators to developed new inequalities (see these ar-
ticle [1-4]). Numerous novel fractional integral inequalities, such as the Simpson’s
inequality, have been developed in recent years, view these paper [5,6] for more de-
tails in this regard. Furthermore, Budak et al. [7] examined several modifications of
Simpson-type inequalities within the structure of differentiable convex functions by
employing generalized fractional integrals. For more on Simpson-type inequalities and
other characteristics of Riemann-Liouville fractional integrals, readers see [8,9] and
its reference. The following inequality is known as Simpson’s inequality the original
version is defined as.

THEOREM 1.1. [13] Let A : [m,9] — R be a four times continuously differentiable
mapping on (m,9) and [|AW|| = SUD ¢ (r.0) |A®| < oo, then following inequalities
holds:

‘{A(ﬂ)gA(0)+§)\<w;ﬁ>} _ﬁiﬂ/j)\(g;)dx

In all of this years, Thomas Simpson established fundamental methods for numeri-
cal integration and estimate of definite integrals that are now known as Simpson’s law.
(1710-1761). But J. Kepler utilized an identical approximation over a century before,
which is because it is often referred to as Kepler’s law. Estimates based just on a
three-step quadratic kernel are often referred to as Newton-type results as Simpson’s
method utilizes the three-point Newton-Cotes quadrature rule. Notably, the work [10]
delves into fractional Newton type inequalities for functions with bounded variation,
while also establishing similar inequalities for differentiable convex functions through
the application of Riemann-Liouville fractional integrals. Further expanding this
field, Sitthiwirattham et.al in [11] contributed additional fractional Newton- type in-
equalities, again focusing on bounded variation. Moreover, in the study by Gao and
Shi in [12] new Newton type inequalities were formulated based on convexity prin-
ciple, particulary for specific scenarios involving real functions, thereby underscoring
potential applications in this domain. For those seeking a more comprehensive under
standing of Newton-type inequalities, especially in the context of convex differentiable
functions, the works cite in [13,14] are invaluable resources. We delineate two primary
formulations as follows.

Simpson quadrature formula (Simpson's 1/3) is followed as:
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Simpson second formula or Newton-Cotes quadrature formula (Simpson's 3/8) is
followed as:
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In recently Noor et. al [15] obtained the Simpson’s 3/8 type inequalities for differ-
entiable function.
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In 2020 Erden et al. established the error bounds of Simpson’s second formula for
differentiable function [16].

THEOREM 1.2. Let A : [r,9] — R be a differentiable mapping whose derivative is
continuously on (m,9) . Then for all x € [r, 9], then following inequality holds:

0 0(22) 3 () 412 e 2

s
288

The concept of convexity has a strong history in ancient times. The theory of
convexity has found extensive use and significance in a wide range of modern math-
ematical disciplines, including real analysis, functional analysis, linear algebra, and
optimization. Theory of inequalities, where the idea of convexity is crucial for en-
hancing the estimation bounds of various kinds of integral inequalities [17,18]. The
well-known definition of convexity is followed as:

Al -

DEFINITION 1.3. [19] If A : I — R is called convex on I for all (7,9) € I, and
IT € [0, 1], then following inequality holds:

(3) A7+ (1 =10 9) <TX (7)) + (1 =) A (9).
The mapping A is concave on [ the inequality (3) holds in reversed direction for all
(m,9) € I, and IT € [0,1].

DEFINITION 1.4. [20] The function A : I € R — Ry := [0,00) is said to be
s-convex, if
AT 4 (1 — ) 9) < TEA (1) + (1 — I1)° A (9)
for all m,¢ € I, and II € [0, 1].

DEFINITION 1.5. [21] Suppose A € L[m,9J]. The left and right-sided Riemann-
Liouville fractional integrals of order A > 0 defined by:

BA(z) = ﬁ/m(:@—n)ﬁ—u(n)dn,xw
() — ﬁ/ﬁ(ﬂ—x)A_l/\(H)dH,x<z9,

where T'(.) is the gamma function and 1%, X (IT) = I9_\ (II) = A (II).
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DEFINITION 1.6. [22] Let A € H' (7,9), m < 9, for all A € [0, 1], where 5 (A) >0
is a normalizer satisfying §(0) = (1) = 1, then the fractional integrals are defined
as:

CF A = —1_A xr —A ’ X X
Y = S+ g [ 2@
CF 14 = —1_A x —A ’ xr X
CTIEN @) = FaP )+ | A

Motivated by the ongoing research, the main goal in this paper is to establish a new
integral identity using the fractional operator. By using the new identity to proved
the error bounds of Simpson second formula type inequalities for bounded function.
Based on this identity we developed the Simpson second formula for the s-convex
functions. We also include the applications to special means, and Simpson formula,
taking many special cases of the main findings is discuses in literature.

2. Simpson's 3/8 Formula-Type Inequalities for Differentiable Function

In this section, we present a new identity by the mean of a fractional operator.
This identity is required to prove our main results.

LEMMA 2.1. Suppose A : I C R — R be a differentiable mapping on I° where
7,0 € I° with m < 9 and N € L'[r,9], then the following fractional equality is
proved:

where 5 (A) > 0 is a normalizer function.

1
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By using the integration by parts, we have
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Similarly, we have
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Adding the equalities (4), (5) and (6), we get
L+ 1+ I3
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(7) +8(192i - (7”;219) - (ﬁ_gﬂ)g /j)\(u)du.

Multiplying the equality (7) with (19%9”) and subtracting 2(61(—;?))\ (k), we have
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The proof of Lemma 2.1 is completed. n

3

3. Simpson’'s 3/8 Formula-Type Inequalities for s-convex Function

In this section, we prove the error bounds of Simpson’s second formula type in-
equalities for s-convex function.

THEOREM 3.1. Let A : [0,00) — R, m,9 € RY, 7 <. If |N| is s-convex on [, V],
then the following fractional inequality is established:

HA(W)+3A (%M) N <w+219> +)\(19)]

8 '8 3 8 3 8
_A/fﬁ)ﬂ) [(STIAN) (k) + (CTI2N) (k)] + 2<51(_A)A)A (’@’
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parte g2 (a1 g2y )] (X )]+ Y @)

Proof. By using the Lemma 2.1, since || is s-convex, we have

HMjL%A (27r+19) —|—§)\(7T+219) +A(q9)}

[(3%F5 — 7 x 81%5 — 335 5 81F5 1 12275 — 17 x 161

8 8 3 8 3 8

B(A> F 1A FrA 2(1_A)
NG [(EFI2N) (k) + (FIpN) (k)]+—/\(k)‘
n_§'

< @Ml - X((l—H)WvLHZW;ﬁ)'dH

! 21 + 0 20
+/ X((l—H) ”; +H7H;)) >‘dH
0

-
2




Simpson 3/8 Formula Inequalities 371

+/01 H—g' A’((l—H)W+2ﬁ+Hﬁ>'dH]
S S (5 )

Lt
+/0 H—g' X(l Tt 2+H19>‘d1'[]

_ @W-n {

it
("

'Z( ) K@i+ () W) an
) e+ (558 o) an
) X' (m)] + (%) N (M) dn}

7) (49 % 21+3s % 32+s — 13 x 25+7s % 773 o 33+s

1
o
0
(Y —m)
9 6415 x (s +1) (s + 2) 3
XAPHP ) T — 5 x 2MTS x T705 4 3710 x 770 x 8175 ) [N ()|
32+s + 81+s 5 % 22+3s , 21+288 + 32+s _ 258 _ 22+s _ 22+25
A
i e N I Gy <o
22+s + 22+23 _ 32+s + 258 _ 21+2ss 32+s + 81+s + 5 < 22+3SS
- Eravr e MOl Ry T g | (7))
(s+1)(s+2) x2+s x 3 (s+1)(s+2)253s x 3
1 7\’
o 49 21+3S 32+5 —13 25+7s
T X 5+ 1) (54 2) ((3) (49 x 2% x 8
XT7% = 330 5 42735 5 775 — 5 x 2870 x T7%6 + 377 x 777 x 814%%5) ) [N ()]
< ¥ )
T 9x3 X (s+1)(s+2) x 27573
—17 x 16"F 4 21275 — 22438 5 (215 — 1 — 3205 §)] (N ()| + [N (9)]) -
The proof of Theorem 3.1, is completed. O

A ()]

[(32+8 . 7 % 81+8 . 33+S % 81+5 _|_ 122+8

COROLLARY 3.2. If we choose s = 1 in Theorem 3.1, then we get

P (=50 () 2]

B(A) CF 1A CF 1A 2<1_A)
N [(§F12N) (k) + (TIFN) (k)]+—5(A) A(k)‘
25(29_77-) / /

< S (W@ N @)

COROLLARY 3.3. If we choose |\ (z)| < M = ||N||, in Theorem 3.1, then we get
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_M CF 1A CF A 2(1-A)
A L PN )+ (L) ()] + =55 A )
25 (i) — )
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REMARK 3.4. If we put A = 1 and 5 (0) = (1) = 1in Corollary 3.3, we emphasise
the fact that our obtained Corollary 3.3 improved the error bound given by Erden et.
al [16, Corollary 4].

THEOREM 3.5. Let A : [0,00) = R, m,9 € RY, 7 < . If |N|? is s-convex on [, V]
and g > 1, then the following fractional inequality is proved:
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Proof. By using the Lemma 2.1, with the help of Holder inequality and s-convexity
of |N]9, we have
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The proof of Theorem 3.5, is finished. ]

COROLLARY 3.6. If we choose s = 1 in Theorem 3.5, then we get
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THEOREM 3.7. Let A : [0,00) = R, m,9 € RY, 7 < 9. If |N|? is s-convex on [, V]
and q > 1, then the following fractional inequality is constructed:
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Proof. By using the Lemma 2.1, with the help of power-mean inequality and s-
convexity of |\'|?, we have
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This completes the proof. O

COROLLARY 3.8. If we choose s = 1 in Theorem 3.7, then we get
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REMARK 3.9. If we put A = 1 and 5(0) = (1) = 1, in Corollary 3.8, then
Corollary 3.8 reduces to [15, Corollary 3.3].

4. Simpson’ s 3/8 Formula-Type Inequalities For Bounded Function

In this section, we introduce the Simpson’s 3/8 formula type inequalities for the
differentiable Bounded function.

THEOREM 4.1. Let A : [0,00) — R, m,9 € RT, m# < . If there exits constants
m < XN (z) < M for all z € [r,1)], then the following fractional inequality holds:
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similarly, we get

(5 ()2

Using the inequalities (10)-(12) in (9), we have
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This completes the proof. n

5. Application to special means

(a) The Arithmetic mean:

Y
A=A(m ) := %, m, 9 €R;

(b) The Logarithmic mean:
U=
 Ind—1Inn’

(c¢) The Generalized Logarithmic-mean:

L=1L(n09): T, €R, ™ #£ v,
§r+1___ﬂr+1
(r+1)(@—m)
PROPOSITION 5.1. Let m,9 € R with 0 < m < 1}, we have
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- 576
Proof. The assertion follows from Corollary 3.2 A (z) = 2", A = 1, and 5 (0)
p1)=1

PROPOSITION 5.2. Let m,9 € R with 0 < m < 19, we have
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< A (7%, 9%) = G* (m,9) A(m,0)) .
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Proof. The assertion follows from Theorem 4.1 A (x) = 23, A = 1, and 3(0)
1) =1,
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6. Conclusion

Fractional calculus developing efficient and accurate numerical methods for solv-
ing integral inequalities. In this article, we have established the new identity for the
Caputo-Fabrizio fractional integral operator. Employing this new identity of Simp-
son’s second formula type inequalities for s-convex functions are obtained. By using
this novel identity, the present error bounds of Simpson’s second formula type inequal-
ities are improved. Moreover, we also include the applications to special means. In
the future, scholars may expand this work with modified Caputo-Fabrizio fractional
operators and modified A-B fractional operators.
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