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A NEW STUDY ON SIMPSON’S TYPE INEQUALITIES VIA
GENERALIZED CONVEXITY WITH APPLICATION

MAIMOONA KARIM, ALIYA FAHMI, ATHER QAYYUM*, AND SITI SUZLIN SUPADI

ABSTRACT. Convexity plays a crucial role in the development of fractional integral
inequalities. A large number of fractional integral inequalities are obtained by use of
convexity methods and attributes. In this paper, we use generalize convex functions
to derive new Simpson’s type inequalities. Additionally, several novel connected
findings of Simpson’s inequality for concave functions are generated. Also, some
new applications to specific means are given.

1. Introduction

Research on Simpson’s type inequalities and their variants for various convexities
has been conducted in the last few years. Convexity is useful in many different areas
of study such as data science, machine learning, and coding theory. The theory of
mathematical inequality relies heavily on convex mapping because to its extensive use
in fields as diverse as mechanics [1], statistics [2], pure and applied mathematics, [3],
and economics [4]. Effective and powerful techniques for solving the various issues
that emerge in many fields of pure and practical mathematics are provided by convex
analysis. For example, in [5] Dragomir demonstrated several inequalities of the Simp-
son type and provided their applications using quadrature rules. Many authors have
used convex functions to prove various kinds of Newton’s and Simpson’s inequalities
due to their extensive applicability. Also for s-convex functions Alomari et al. proved
inequalities of the Simpson type in [6]. In subsequent work, Sarikaya et al. demon-
strated a convexity-based variant of Simpson’s type inequality in [7]. A large number
of mathematicians have conducted research in mathematical analysis [8]- [11].

DEFINITION 1.1. A function £ : & # I C R — R is convex on [, then the following
inequality holds:

EXXAT+ (1 —x)A2) < xE(A1) + (1 —x)E(Ag), for all Ay, Ay eI, x €]0,1].

DEFINITION 1.2. [12] A function £ : [0,d] = R, d > 0 is called (s, m)-convex
functions, where (s, m) € [0, 1]2, if for every Ay, Ay € [0,00] and x € [0, 1], then:

§ XAz +m (1= x)A1) < X°€(A2) +m (1= X)E(Ay),

Received February 26, 2024. Revised September 13, 2024. Accepted October 23, 2024.

2010 Mathematics Subject Classification: 26D07, 26D10, 26D151.

Key words and phrases: Simpson’s inequality, (s, m)-convex function, Power-mean inequality.

x Corresponding author.

(© The Kangwon-Kyungki Mathematical Society, 2024.

This is an Open Access article distributed under the terms of the Creative commons Attribu-
tion Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits un-
restricted non-commercial use, distribution and reproduction in any medium, provided the original
work is properly cited.




648 M. Karim, A. Fahmi, A. Qayyum, and S. S. Supadi

denote by z3,. (d) the class of all (s, m)-convex functions on [0, d] for which £ (0) < 0.
Simpson’s inequality stated that if £ exist and is bounded on (A, Ay) as [6]:

:Q clwau~ 220 | Dean 4 gecan 12 (S5

< Cog el

(1)

THEOREM 1.3. [5] Let & : [Ay,Ay] — R is a differentiable mapping whose de-
rivative is continuous on (A1, Ay) and £ € L1[Aq, Ay], then the following inequality

holds:
A (Ay — Ay) [1 1 A+ A
) [ cwau— C2 22 Sean + Jean 2 (2522
< B Bilyg

Bound of (2) for L-Lipschitzian was given in [7] by o (As — Ay).

THEOREM 1.4. Suppose & : [A1, Ay] — R is an absolutely continuous mapping on
[Ay, As] whose derivative belongs to L, [Ay, Ay, then the following inequality holds:

1 [M + ¢ <A1 +A2>] - A21A1A7125(“)du

3 2 2

q+1
Sl [2 +1

i [5an) @ s0t e,

THEOREM 1.5. [13] Let £ : I C R — R be a differentiable function on I°, where
Ay, Ay € T with Ay < A,. If the mapping || is convex on [A1, As], then the following
inequality holds:

Ag
soa [ Ca—g (S22 < SR o] + [ o).
Ay

2 8

In [14], Dragomir et. al presented a result which is given below:

THEOREM 1.6. Consider the function & : [0,00) — [0,00) is convex in the 2nd-
sense, with s € (0,1) and let Ay, Ay € [0,00), Ay < Ay and m € (0,1). If ¢ €
L1 [mAy, Ay], then the following inequality holds:

Ao
s—1, [ MAL+ Ao 1 §(mAy) +£(A2)
2 1€< 2 >SmA2—A1/§(x)d{ES s+1 .
mA1

In [15], Sarikaya presented the following inequality as follows.

THEOREM 1.7. Let I C R be an open interval, Ay, Ay € I with A7 < A, and
€ : [A1, As] — R be a differentiable function such that £ is integrable and 0 <s< 1 on
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(A1, Ag) with Ay < Ay If |€'] is s-convex on [Ay, Ay], then the following inequality
holds:

Ao
5@ (B35 ren)] - 1 [
A
B) < (Bgmay 2O HCT 202 )

6:+2(s+ 1) (5 + 2)

THEOREM 1.8. Let f : I C [0,00) — R be a differentiable mapping on I° such
that £ € L1 [Ay, Ay] where Ay, Ay € I with Ay < Ay, If |7 is s-convex on [Aq, As],
for some fixed s € (0,1] and g > 1, then the following inequality holds:

Ao

1 [g(Al) 4 4¢ (AlgAQ) +§(A2)} - ﬁ/f(x)dx

6

1

1-1/q
< (A —Ay) (5
36

| 1/a
26 e eI s psrnmn
X {( 3% (6 (s+1) (s +2) uy [€'(Az)] +3><(6)S+1 (8+1>(S+2)u2 1€ (A1) )

ug [€'(Ag)|* +

< 2+ (25 + 1) 35!

25s+2 s —4)65+! _ (25 1+ 7)3s+! / , 1/q
3 (6) (s +1)(s+2) T 2+ 1) u4|£<A1>|) }

3x (6" (s+1) (s +2)

where
2(5)°T% 4+ (s —4) 65F1 — (25 + 7) 3511

e 3% (60 (s+1)(s+2) ’
vy — 2+ (25 +1)35t!
3x (6 (s+1)(s+2)
vy — 2+ (25 +1)35*!
3x (6 (s4+1)(s+2)
wr — 2(5)s+2 + (s —4) Ggst1 _ (28—|— 7) 3s+1.

3% (6)* T (s+1)(s+2)
For some inequalities related to Simpson’s type are given in ( [16]- [20] and [21]-

24]).

The main purpose of this article is to develop new inequalities of Simpson’s type
for (s,m)-convexity. Some new refined results related to concave functions are also

derived.

2. Main Results

In order to prove our main results, we need the following Lemma.

LEMMA 2.1. Let £ : [0,00) — R be differentiable mapping on I° such that &' €
Lqi[Ay, Ag] where Ay, Ay € I with Ay < Ay and 25,21 € R, then we have following
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equality:

gman + (1 - 263 + (- 20 (B2 - e [ eya

2 AQ — mAl mA;

1/2
— (A~ mAy) / (x — 7)€ (xAa +m(1 — x)A1)dx

T / O € (1 - x>A1>dx] .

Proof. By using an integration by parts and changing the variables, we can obtain
our required result. O

THEOREM 2.2. Under the assumption of Lemma 2.1 holds. If the mapping |¢'| is
(s,m)-convex on [Ay, Ag] for some (s, m) € [0, 1]2, then we have following inequality:

gm0 + (- (B - L [P ear
q

< (A —mAy) [v1 [€] (Az) +muy [€'AL]],

where
s —sm 428427 (s — (s 4+ 2) (22 21) + 1) — 220+ 22§77 + 1
oo (s+D)(s+2)
vy — 421(221 — 1) + 422(220 — 3) + 6

8
(s — 520 +22"2 4277 s — (s +2)(21 + 22) + 1) + 220°"2 — 225 + 1)
(s+1)(s+2) '

Proof. Taking modulus of Lemma 2.1, and by using (s, m) convexity we get

Ao
E(mAy) 1—zQ>s<A2>+<zQ—zl>s(%)]—m NG

1/2
< (Mg —mAy) / X = 21 €A + m(l — Ay
0

1

(A —mA) / =€ m(L )My
1/2

< (Ay—mAy) / X = 2| ¢ [€(A)] +m(1L — x°) [€/(An)]] d

1

+(Ay —mdy) /1/2 X = 22| X [€'(A2)] +m(1 = x*) [€'(A1) [ dx

By simple calculations, we have

1/2 1
/ |X_ZI|XSdX+/ Ix — 22| X*dx
0

s—8zm+228T 427 (s — (s +2) (22 +21) + 1) — 220 + 22512 4 1
(s+1)(s+2) ’
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and
1/2 1
/ X = 21| (1= x*)dx + / X = 22| (1 = x")dx
0 1/2
. 4Zl<221 — 1) + 422(222 — 3) + 6
B 8
s—8zm+225T + 275 (s — (s +2) (22 + 21) + 1) — 229 + 22572 + 1
(s+1)(s+2) '
Hence proved. O

COROLLARY 2.3. Under the assumption of inequality (4), Putting zo = 5/6 and
21 =1/6, we get

[ eo s s (3-5)s (342 )] -2 [ s
(A

< Ay) [v3 €] (Az) +mug [§AL]],

where

67 + (5)°267" — 9(2)~* + 3s — 12
18(s + 1) (s + 2) ’

5
V== -
4 36 U3

REMARK 2.4. Putting s = m = 1, in the above Corollary 2.3, we obtain

[rean+a-Dewa+ (3-1) (22| - o5 [ o

< X022 20 e () + e (A).

V3 =

REMARK 2.5. Which is proved in [15]. Hence Sarikaya’s result [15] is the special
case of Theorem 2.2.

COROLLARY 2.6. If we taking £(mA;) = & (825281) = £ (b) in inequality (4), then
we have

1 /AQ £(e)ds — € (%) ' < (Ag — mAy) [us €] (Ag) + muy €] (A1)

‘ Az — mA1 mA;y

REMARK 2.7. If we consider s = m = 1, in the above Corollary 2.6, which has
proved by Kiramic [25].

THEOREM 2.8. Under the assumption of Lemma 2.1 holds. If the mapping |£'|? is
(s,m)-convex on [Ay, Ay] for some fixed (s,m) € [0,1]° and ¢ > 1 with st =1
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then we have following inequality:

rgtman) + (- 00 + (- (B0 - L [ ey

< wamman () (47 (522 s fle () e eaar)

®)
44M_mAa@ilf(u_@yﬂ+(%g”)”jpx{e(&”fAﬁq+W@gﬁ.

Proof. Using Holders inequality and Lemma 2.1, we get

gman + (1 - 263+ (- 20 (B2 | - e [ e

mAq

1/2 v 1/2 i
< (Ag —mAy) </0 [(x — 21)[” dX) (/0 1€ (xA2 +m(1 - x) A1|qd><>

+ (B —my) (/ I(X—Zz)lpdx); (/ IS’(XAz+m(1—X)A1qux>;-

/2 /2

Also the (s, m)-convexity of [£'|?, implies that

Q=

Ay +mhy
— )

1/2 1
[t m-vsirac < ()

¢

{ Hig@or

! 1\ (], Ay +mh |
[ Jetema—mara < () {fe@F] ce@ar].

Therefore, by using above results, we get our required inequality. O

COROLLARY 2.9. Using inequality (5) putting 2z, = 5/6 and z; = 1/6 and s =
m = 1, then we have

e+ - Deda+ (5 - e - ooy [ ng@)czx
< 2T (Ay— AY) (;j(—]fill)y | |
X Oémﬁﬂ+S(é%#¥>3q+(€<é%¥¥)3uﬂamﬁ1.
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THEOREM 2.10. Let & be defined as in Theorem 2.8. If |¢'|? is (s, m)-convex on
(A1, Ay, for some fixed (s,m) € |0, 1]2 and q > 1, then we have following inequality:

rttman + (1 -0 + (-2 (B - L e

Q=

< (Ao~ mA)) (4Z1 2a -1+ 1) (s [E (AL + ms €A

8
©) |
+ (A — mA) (422 (220 — 3) + 5> 4 (U7 |§/(A2)|q + vgm |£/(A1)‘q) 7

Qe

8
where
B 22512 5o (s +1) — 221 (s + 2)]
BT G (s+2) (s+1)(s+2) ’
Ve = 3 — Us,
o 22512 s (s+1) =22 (s+2)] [(s+1) =2 (s+2)]
T s+ 1)(s+2) (s+1)(s +2) (s+1)(s+2)
422 (222 — 3) + 5
vg — 3 — U7

Proof. By Lemma 2.1 and using power mean inequality, we get

reman) + (1 - et + - e (25| - e ™ e

m

1/2 - 1/2
< (A3 —mAy) </0 \(X—zl)\dx> </0 (x — 21) |§/ (XAQ—i—m(l—X)Al‘qu)

1 o %
+ (Ay — mAy) (/1/2|(><22)|dx> (/1/2(XZ2)\€’(XA2+m(1X)Allqu>

The (s, m)-convexity of ¢'|, gives that

1/2
/0 1 — 2011/ (xAa + m(L = )AL dy < vs 1€/(Aa)[7 + mug [E(AD]?,

1
/1/2 O = 2)[ 1 (xA2 + m(L = x) A dx < 07 [€(A2)]" + mus [§'(A1)]".

By combining above inequalities, we get required inequality.
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COROLLARY 2.11. Let £ be defined as in inequality (4) and z, = 5/6 and z; = 1/6
and s = m = 1, then for convex functions:

[rean+a-Deaa+ (3-1) (B2 - o5 [ o

5\ 7
< (Ay—Ay) (ﬁ)
61 61 29 )q

29
(T% € (A9)|" + 1296 €' (AN)]* + 1296 1€ (A)]" + 296 1€ (A)|?

THEOREM 2.12. Let ¢ : I C 0,00) — R be a differentiable function on I°, Ay, Ay €
I with mapping |£'| which is concave on [A1, As], then we have following inequality:

gm0 + (= (B - L [P e

1—321+82:3 2—921 424212823
5/ ( 24 Ay + 24 Ay

4z (22171)4»1
8

< By —miy) x {{421 (27518— 1) + 1}

(7)

4z (229 —3) +5 , WA2 + 6*21224’221222*8223 A,

* X |8 422(222—3)+5 :
8

8

Proof. By concavity of |£'|, we have

€' (xA1 + (1= X) Ao 2 x [ (AD)]+ (1= x) [€'(As)]

According to Jensens inequality, we have

1/2
/0 (= 201 € 1002 + (1 — )2 dx

1/2 V2 =z Qs+ (1= x) Ayl d
S(/ \x—21|dx> 5,(0 = a1l A + (1= ) A x)
0

T2 1 = 2] dA

3 . 4z (221 — 1) +1 , %Az + 2—9Z1+224:12—8z13A1
( ) B 8 § 4z1(2z1—1)+1 )
8
and
1
// [(x — 22)| € (xAz2 + (1 — x)A1)dx
1/2
' fl IX — 22| [xA2 + (1 — x) Ay|dx
1/2
S(/ |X—22|dx) 5'( / T
1/2 f1/2|X—22|dX
9 4% (220 -3)+5] |, 9—15/2224+BZQ3 Ay + 6—21zz+§iz22—8223 A,
©) B 8 3 422(222—-3)+5 .
8
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By combining the above equalities (8) and (9), we have

{zlamm) (1= )6 + (22— 2) € (ﬂ)] e " e (a)de

2 — mA1 mAq
< (Ay —mAy)
421(22171)+1

y {[4z1 (2218— 1) + 1} 8

n 429 (229 —3) + 5 « e %Ag + 6*21Z2+22i22278223 A
8 422(222—3)+5 :
CRE

1—3214+821° 2—9214+24212—823
5/ ( 24 Ay + 24 Ay

This completes the proof. n

COROLLARY 2.13. By putting zo = 5/6, z; = 1/6 and m = 1, in inequality (7), then
we have:

00 |[prev+a-drea+ (3-1) (B2 - sis [

5(A2 — Al) [ 5, (29A1 + 61A2) ‘ n fl (61A1 + 29A2> H
90 )

72 90
Inequality (10) is a generalization of obtained inequality as in [6, Theorem 8] .

<

3. Application to Some Special Means

Now using the inequalities of section 2, some new results are designed for the
Arithmetic, Generalized-logarithmic, and Logarithmic means.
Consider

5:[A17A2]—>R, (0<A1<A2),§($):$S,S€(O,1],

then
1 A2
N n ), S@dr=Li(An ),
6 A +€ A S S
SIS aanay,
A+ A
g(%) = A* (A1, A,).

Under the assumption of Corollary 2.3, we have

1 2
‘gA (AL, AY) + gAs (A1, Ag) — L3 (A, Ay)

< s(Agy —mAy) [legs_l) + mnggs_l)} ,
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where
§— 520+ 225+ 275 (s — (s +2) (20 +21) + 1) — 225 + 22572+ 1
’U =
! (s+1)(s+2)
421(221 — 1) + 422(229 — 3) + 6
Vg =

8
(s — 829 + 221572 + 275 s — (s + 2) (21 + 20) + 1) + 225572 — 225 + 1)
(s+1)(s+2)

If 20 =5/6 and z; = 1/6, s = m = 1, then we have

5
A (A1, 80) = L(A1, 80)] < o2 (B0 = Ay).

Under the assumption of Corollary 2.9, we have

1 2
A1 8 4 34 (31,80 - L3 (A1, 80)

L 14207 N7 [ o g ¥
<27 080 () ({7 e a0

+{ab ™4 (A, Az)]“‘l)C’}"} ,

where p > 1 and % + % = 1. For instance, if s = 1 then we have

1 4 2p+l %
)

|A (A1, Ag) = L(A, Ag)| <2(Ay — Ay) (6p+1(p+ 1

(2) Let f:[a,b] C[0,00) > R, (0<a<b), f(z)=21ec K2 se(0,1]. Then,

1 Az
A [ @) =LA ).
£(Ay) ; $) _ 4 (a5,
: (#) = A7(ArL D).

Under the assumption of Corollary 2.3, we have

2
A (AT, AF°) + gA_s (A1, Ag) — LT3 (A1, Ag)

1
3
< s(Ay —mAy) [leé_s_l) + mngg_S_l)] ,
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where
 s—szm+ 22512 4275 s — (s + 2) (2 + 21) + 1) — 220 + 22572 + 1
U= (s+1)(s+2)
e — 421221 — 1) + 429(220 — 3) + 6
y =

8
(s — 820+ 22152 + 2757 (s — (s + 2)(21 + 22) + 1) + 225572 — 225 + 1)
(s+1)(s+2) '

If 20 =5/6 and z; = 1/6, s = m = 1, then we have

1 2 5
A (AT AT 24T (AL Ag) = LT (A1 ) < o2 (80 = A A (AT A1)

4. Conclusion

As convexity becomes more important in contemporary science and engineering, the
study of convexity becomes an increasingly fruitful and dynamic field of study. This
work presented new Simpson’s inequalities that are derived from generalized convex
functions. Additionally, several novel connected findings of Simpson’s inequality for
concave functions are generated. There are also some novel uses for exceptional real
numbers that are covered. The authors might use the novel methods and practical
concepts of convexity presented in this study for various fractional integral operators
in their future works. Furthermore, numerical integration, optimization, and related
fields may find special use for our results.
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