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EXPANSIVE TYPE MAPPINGS IN DISLOCATED QUASI-METRIC

SPACE WITH SOME FIXED POINT RESULTS AND

APPLICATION

Haripada Das and Nilakshi Goswami∗

Abstract. In this paper, we prove some new fixed point results for expansive type
mappings in complete dislocated quasi-metric space. A common fixed point result
is also established considering such mappings. Suitable examples are provided to
demonstrate our results. The solution to a system of Fredholm integral equations is
also established to show the applicability of our results.

1. Introduction

Metric fixed point theory is regarded as a cornerstone in analysis. The Banach
contraction principle [3] applied to complete metric space marks as crucial and note-
worthy advancement in the fixed point theory. Following this breakthrough, numerous
researchers have contributed to the field of fixed point theory by establishing various
theorems in their respective works [1, 6–8,12,13,18].

In 1986, Matthews [14] introduced some concepts of metric domains in the context
of domain theory, where the idea of dislocated metric space first appeared. Later
in 2000, Hitzler and Seda [10] introduced the concept of dislocated metric space, in
which the self-distance of a point is not necessarily zero. They also generalized the
Banach contraction principle in this space. Dislocated metric space has a crucial
role in topology, logical programming, electronic engineering and computer science
etc. Zeyada et al. [24] presented the complete dislocated quasi-metric space and
generalized the result of Hitzler [10] in dislocated quasi-metric space.

In the year 1984, Wang et al. [22] introduced the groundbreaking concept of ex-
pansive mapping, conducting a thorough exploration and unveiling intricate fixed
point results within the realm of complete metric space. Expansive mappings have
applications in dynamical system theory, chaos theory and nonlinear analysis. Fol-
lowing this, a number of researchers have done rigorous investigations, systematically
expanding and elaborating fixed point theoretical outcomes in this particular do-
main [2, 5, 9, 16,17,19–21,23].
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Motivated by this, in this paper, we derive some new fixed point results in the
setting of dislocated quasi-metric space, pertaining to both single and paired self-
mappings. Our results extend some existing results. The significance of our study is
that the results are achieved without imposing the continuity requirement. Examples
are provided and an application is given to illustrate practical implication of our
findings.

2. Preliminaries

Hitzler et al. [10] presented the notion of dislocated metric space in the following
manner.

Definition 2.1. [10] Let X be a nonempty set and d : X × X −→ [0,∞) be a
distance function satisfying the following conditions:

(i) d(x, y) = d(y, x) = 0 =⇒ x = y ∀x, y ∈ X,
(ii) d(x, y) = d(y, x) ∀x, y ∈ X,

(iii) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.

Then d is called a dislocated metric (d-metric) onX. If d satisfies (i) and (iii), then d is
called dislocated quasi-metric (dq-metric) on X and the pair (X, d) is called dislocated
quasi-metric space with dq-metric d. Every d-metric space is always dq-metric space,
but converse is not true.

Example 2.2. Let X = R and d : X ×X −→ [0,∞) be defined by

d(x, y) = max {|x|, |y|} ∀ x, y ∈ X.
Then X is a d-metric space and also a dq-metric space.
But if d : X ×X −→ [0,∞) is defined by

d(x, y) = |x| ∀ x, y ∈ X,
then X is a dq-metric space, but not a d-metric space.

Definition 2.3. [24] A sequence {xn} in a dq-metric space (X, d) is called a
Cauchy sequence if for every ε > 0, there is n0 ∈ N such that

d(xm, xn) < ε ∀ m,n ≥ n0.

{xn} is said to be dq-convergent to x if

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

Here, x is called a dq-limit of {xn}.
(X, d) is called complete if every Cauchy sequence in X is dq-convergent.

Definition 2.4. [24] Let (X, d1) and (X, d2) be two dq-metric spaces. Then the
function f : X −→ Y is said to be continuous if for each sequence {xn}, which is
d1q-convergent to x0 in X, the sequence {f(xn)} is d2q-convergent to f(x0) in Y .

Lemma 2.5. [24] Every subsequence of dq-convergent sequence to a point x0 is
dq-convergent to x0.

Lemma 2.6. [24] dq-limits in a dq-metric space are unique.

Lemma 2.7. [15] If x is a limit of some sequence {xn} in a dq-metric space (X, d),
then d(x, x) = 0.
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3. Main results

In this section, we formulate some fixed point results for onto expansive type map-
ping in a complete dq-metric space.

Theorem 3.1. Let (X, d) be a complete dq-metric space and T be an onto self-
mapping on X such that

(1) d(Tx, Ty) ≥ λ min

 α1d(x, y), β1
d(Tx,x)d(Ty,y)

d(x,y)
+ β2d(x, y),

γ1d(Tx, x) + γ2d(Ty, y) + γ3d(x, y),
δ1d(Tx, y) + δ2d(Ty, x) + δ3d(x, y),

 ,

for all x, y ∈ X with d(x, y) 6= 0, λ > 1, nonnegative real numbers α1, βi, γj, δi for
i = 1, 2; j = 1, 2, 3 and

1

λ
< min {α1, β2, γ3, δ1 + δ3, λδ2(δ1 + δ2) + δ3, } , δ3 > 0.

Then T has a unique fixed point in X.

Proof. We take

τ(x, y) = min

 α1d(x, y), β1
d(Tx,x)d(Ty,y)

d(x,y)
+ β2d(x, y),

γ1d(Tx, x) + γ2d(Ty, y) + γ3d(x, y),
δ1d(Tx, y) + δ2d(Ty, x) + δ3d(x, y),

 .

Let x0 ∈ X. Since T is onto, there exists x1 ∈ X such that x0 = Tx1. Continuing in
this way, we define a sequence {xn} in X with xn−1 = Txn, n ∈ N.

The following cases will arise.
Case 1. If τ(x, y) = α1d(x, y), then

(2) d(Tx, Ty) ≥ λα1d(x, y) ∀ x, y ∈ X.
Now, using (2), we get

d(xn−1, xn) = d(Txn, Txn+1) ≥ λα1d(xn, xn+1),

i.e., d(xn, xn+1) ≤
1

λα1

d(xn−1, xn).

Let h = 1
λα1

. Then the above inequality becomes

d(xn, xn+1) ≤ h d(xn−1, xn).

Also,

d(xn+1, xn+2) ≤ h d(xn, xn+1) ≤ h2 d(xn−1, xn).

From this, we get

d(xn, xn+1) ≤ hn d(x0, x1), n ∈ N.
For m > n,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ (hn + hn+1 + · · ·+ hm−1)d(x0, x1)

≤ hn

1− h
d(x0, x1).
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Since h = 1
λα1
∈ [0, 1) for α1 >

1
λ
, {xn} is a Cauchy sequence in X and there exists

u ∈ X such that limn→∞ xn = u.
Since T is onto, we can find p ∈ X such that Tp = u. Now for all n ∈ N,

d(u, xn) = d(Tp, Txn+1) ≥ λα1d(p, xn+1).

Since d(u, .), d(p, .) : X −→ R are continuous,

d(u, u) = lim
n→∞

d(u, xn) ≥ λα1 lim
n→∞

d(p, xn+1),

i.e., λα1d(p, u) ≤ d(u, u).

Using Lemma 2.7, since α1 >
1
λ
, we get d(p, u) = 0 and similarly, d(u, p) = 0. Thus

d(p, u) = d(u, p) = 0. So u = p.
To show the uniqueness, let u and v be two different fixed points of T in X. Then

d(Tu, Tv) ≥ λα1d(u, v),

i.e., (λα1 − 1)d(u, v) ≤ 0,

which gives d(u, v) = 0. Similarly, d(v, u) = 0, and thus u = v.

Case 2: If τ(x, y) = β1
d(Tx,x)d(Ty,y)

d(x,y)
+ β2d(x, y), then

(3) d(Tx, Ty) ≥ λ

(
β1
d(Tx, x)d(Ty, y)

d(x, y)
+ β2d(x, y)

)
.

Using (3), we get

d(xn−1, xn) = d(Txn, Txn+1)

≥ λβ1
d(Txn, xn)d(Txn+1, xn+1)

d(xn, xn+1)
+ λβ2 d(xn, xn+1)

= λβ1
d(xn−1, xn)d(xn, xn+1)

d(xn, xn+1)
+ λβ2 d(xn, xn+1)

= λβ1 d(xn−1, xn) + λβ2 d(xn, xn+1)

≥ λβ2 d(xn, xn+1).

This implies that

d(xn, xn+1) ≤ h d(xn−1, xn), where h =
1

λβ2
∈ [0, 1).

Similar to the previous case, {xn} is a Cauchy sequence in X, which converges to
some u ∈ X, which can be shown to be the unique fixed point of T .

Case 3: If τ(x, y) = γ1 d(Tx, x) + γ2 d(Ty, y) + γ3 d(x, y), then

(4) d(Tx, Ty) ≥ λ [γ1 d(Tx, x) + γ2 d(Ty, y) + γ3 d(x, y)] ∀ x, y ∈ X,
and using (4), we have

d(xn−1, xn) ≥ λγ1 d(xn−1, xn) + λγ2 d(xn, xn+1) + λγ3 d(xn, xn+1)

≥ λ(γ2 + γ3)d(xn, xn+1),

i.e., d(xn, xn+1) ≤ h d(xn−1, xn), where h =
1

λ(γ2 + γ3)
∈ [0, 1).
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So {xn} is a Cauchy sequence in X, converging to some u ∈ X, which is the unique
fixed point of T .

Case 4: If τ(x, y) = δ1 d(Tx, y) + δ2 d(Ty, x) + δ3 d(x, y), then

(5) d(Tx, Ty) ≥ λ [δ1 d(Tx, y) + δ2 d(Ty, x) + δ3 d(x, y)] ∀ x, y ∈ X.
Now,

d(xn−1, xn) ≥ λδ1 d(Txn, xn+1) + λδ2 d(Txn+1, xn) + λδ3 d(xn, xn+1)

= λδ1 d(xn−1, xn+1) + λδ2 d(xn, xn) + λδ3 d(xn, xn+1)

≥ λδ2 d(xn, xn) + λδ3 d(xn, xn+1).(6)

Also,

d(xn, xn) = d(Txn+1, Txn+1)

≥ λδ1 d(Txn+1, xn+1) + λδ2 d(Txn+1, xn+1) + λδ3 d(xn+1, xn+1)

≥ λ(δ1 + δ2)d(xn, xn+1).(7)

Using (7) in (6), we get

d(xn−1, xn) ≥ λ2δ2(δ1 + δ2)d(xn, xn+1) + λδ3 d(xn, xn+1),

i.e., d(xn, xn+1) ≤ h d(xn−1, xn), where h =
1

λ2δ2(δ1 + δ2) + λδ3
∈ [0, 1).

Thus {xn} is a Cauchy sequence in X and limn→∞ xn = u, for some u ∈ X. Then u
is the unique fixed point of T .

Now, we demonstrate Theorem 3.1 by an example as follows:

Example 3.2. Consider X = R and define a complete dq-metric d : X × X −→
[0,∞) by d(x, y) = |y| ∀ x, y ∈ X.
We define an onto self-mapping T on X by

(8) Tx =

{
3x, x ≤ 3
2x, x > 3.

Suppose that, λ = 3
2
, β1 = γ1 = δ1 = δ2 = 0, γ2 = 1

2
, α1 = β2 = γ3 = δ3 = 1.

Figure 1.
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The Figure 1 illustrates the condition (1) of Theorem 3.1, with blue surface rep-
resenting the left part of the condition and green surface representing the right part
of the condition. Thus all the conditions of Theorem 3.1 are satisfied. So T has a
unique fixed point, which is clearly 0 here.

Corollary 3.3. Let (X, d) be a complete dq-metric space and T be an onto self-
mapping on X such that

d(Tx, Ty) ≥ λ d(x, y),

for all x, y ∈ X with λ > 1. Then T has a unique fixed point in X.

Proof. Putting β1 = γ1 = γ2 = δ1 = δ2 = 0 and α1 = β2 = γ3 = δ3 = 1 in Theorem
3.1, we get this result.

Remark 3.4. Corollary 3.3 extends the result of [22] in the framework of dq-metric
space.

Corollary 3.5. Let (X, d) be a complete dq-metric space and T be an onto self-
mapping on X such that

d(Tx, Ty) ≥ λ min

 d(x, y), d(Tx,x)d(Ty,y)
d(x,y)

+ d(x, y),

d(Tx, x) + d(Ty, y) + d(x, y),
d(Tx, y) + d(Ty, x) + d(x, y),

 ,

for all x, y ∈ X with d(x, y) 6= 0, λ > 1. Then T has a unique fixed point in X.

Proof. By taking α1 = β1 = β2 = γ1 = γ2 = γ3 = δ1 = δ2 = δ3 = 1 in Theorem 3.1,
the result follows easily.

We apply Corollary 3.5 to prove the next result.

Theorem 3.6. Let (X, d) be a complete dq-metric space and T be an onto self-
mapping on X such that

d(Tx, Ty) ≥ a1d(x, y) + a2

[
d(Tx, x)d(Ty, y)

d(x, y)
+ d(x, y)

]
+ a3 [d(Tx, x) + d(Ty, y) + d(x, y)] + a4 [d(Tx, y) + d(Ty, x) + d(x, y)] ,(9)

for all x, y ∈ X with d(x, y) 6= 0, where a1, a2, a3, a4 are non-negative real numbers
satisfying a1 + a2 + a3 + a4 > 1. Then the self-mapping T has a unique fixed point in
X.

Proof. Let

(10) τ(x, y) = min

 d(x, y), d(Tx,x)d(Ty,y)
d(x,y)

+ d(x, y),

d(Tx, x) + d(Ty, y) + d(x, y),
d(Tx, y) + d(Ty, x) + d(x, y),

 .

Using (9), we get

d(Tx, Ty) ≥ a1 τ(x, y) + a2 τ(x, y) + a3 τ(x, y) + a4 τ(x, y)

≥ (a1 + a2 + a3 + a4) τ(x, y).

Let λ = a1 + a2 + a3 + a4. Then the above inequality becomes

d(Tx, Ty) ≥ λ τ(x, y) with λ > 1.

Hence Corollary 3.5 concludes the proof.
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In the following, we deduce a common fixed point theorem to a pair of onto expan-
sive type self-mappings.

Theorem 3.7. Let (X, d) be a complete dq-metric space and S, T be two onto
self-mappings on X such that

(11) d(Sx, Ty) ≥ λ min

 α1 d(x, y), β1
d(Sx,x)d(Ty,y)

d(x,y)
+ β2 d(x, y),

γ1 d(Sx, x) + γ2 d(Ty, y) + γ3 d(x, y),
δ1 d(Sx, y) + δ2 d(Ty, x) + δ3 d(x, y),

 ,

for all x, y ∈ X with d(x, y) 6= 0, λ > 1, nonnegative real numbers α1, βi, γj, δi, for
i = 1, 2; j = 1, 2, 3 and

1

λ
< min {α1, β2, γ3, δ3} .

Then S and T have a unique common fixed point in X.

Proof. Let

τ(x, y) = min

 α1 d(x, y), β1
d(Sx,x)d(Ty,y)

d(x,y)
+ β2 d(x, y),

γ1 d(Sx, x) + γ2 d(Ty, y) + γ3 d(x, y),
δ1 d(Sx, y) + δ2 d(Ty, x) + δ3 d(x, y),

 .

For x0 ∈ X, since S, T are onto, there exist x1, x2 ∈ X such that x0 = Sx1, x1 = Tx2.
Continuing this process, we define a sequence {xn} by

Sx1 = x0, . . . , Sx2n−1 = x2n−2,

Tx2 = x1, . . . , Tx2n = x2n−1, n ∈ N.(12)

We consider the following cases:
Case 1: If τ(x, y) = α1 d(x, y), then

(13) d(Sx, Ty) ≥ λα1 d(x, y) ∀ x, y ∈ X.
Using (12) and (13), we get

d(x2n, x2n+1) = d(Sx2n+1, Tx2n+2) ≥ λα1d(x2n+1, x2n+2),

i.e., d(x2n+1, x2n+2) ≤
1

λα1

d(x2n, x2n+1)

= h d(x2n, x2n+1), where h =
1

λα1

.

Also,
d(x2n, x2n+1) ≤ h d(x2n−1, x2n).

So
d(x2n+1, x2n+2) ≤ h2 d(x2n−1, x2n).

Thus we get
d(xn, xn+1) ≤ hn d(x0, x1), n ∈ N.

For m > n,

d(xn, xm) ≤ hn

1− h
d(x0, x1).

Since h = 1
λα1
∈ [0, 1), {xn} is a Cauchy sequence in X and there exists u ∈ X such

that limn→∞ xn = u.
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Since S, T are onto mappings, we can find p, q ∈ X such that Sp = Tq = u.
For all n ∈ N,

d(x2n, u) = d(Sx2n+1, T q) ≥ λα1 d(x2n+1, q).

Using continuity of d(., u), d(., q) : X −→ R and Lemma 2.7, we get d(u, q) = 0.
Similarly d(q, u) = 0. Thus d(u, q) = d(q, u) = 0, which implies that u = q. Similarly,
u = p.

For the uniqueness, let u and v be two different fixed points of S and T in X. Using
(13), we have

d(u, v) = d(Su, Tv) ≥ λα1 d(u, v),

i.e., (λα1 − 1)d(u, v) ≤ 0,

which shows that u = v.

Case 2: If τ(x, y) = β1
d(Sx,x)d(Ty,y)

d(x,y)
+ β2 d(x, y), then

(14) d(Sx, Ty) ≥ λ

(
β1

d(Sx, x)d(Ty, y)

d(x, y)
+ β2 d(x, y)

)
∀ x, y ∈ X.

Using (12) and (14), we get

d(x2n+1, x2n+2) ≤ h d(x2n, x2n+1), where h =
1

λβ2
∈ [0, 1).

Similar to the previous case, it can be shown that {xn} is a Cauchy sequence in X,
which converges to some u ∈ X. Clearly u is the unique common fixed point of S and
T .

Case 3: If τ(x, y) = γ1 d(Sx, x) + γ2 d(Ty, y) + γ3 d(x, y), then

(15) d(Sx, Ty) ≥ λ [γ1 d(Sx, x) + γ2 d(Ty, y) + γ3 d(x, y)] ∀ x, y ∈ X.

Using (12) and (15), we get

d(x2n+1, x2n+2) ≤ h d(x2n, x2n+1), where h =
1

λ(γ2 + γ3)
∈ [0, 1).

So {xn} is a Cauchy sequence in X, converging to some u ∈ X. It can be easily shown
that u is the unique common fixed point of S and T .

Case 4: If τ(x, y) = δ1 d(Sx, y) + δ2 d(Ty, x) + δ3 d(x, y), then

(16) d(Sx, Ty) ≥ λ [δ1 d(Sx, y) + δ2 d(Ty, x) + δ3 d(x, y)] ∀ x, y ∈ X.

Using (12) and (16), we get

d(x2n+1, x2n+2) ≤ h d(x2n, x2n+1), where h =
1

λδ3
∈ [0, 1).

So {xn} is a Cauchy sequence in X, which converges to some u ∈ X. Then u is the
unique common fixed point of S and T .

Putting β1 = γ1 = γ2 = δ1 = δ2 = 0 and α1 = β2 = γ3 = δ3 = 1 in Theorem 3.7,
we get the following result.
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Corollary 3.8. Let (X, d) be a complete dq-metric space and S, T be two onto
self-mappings on X such that

d(Sx, Ty) ≥ λ d(x, y),

for all x, y ∈ X with λ > 1. Then S and T have a unique common fixed point in X.

The following example exhibits Theorem 3.7

Example 3.9. Consider X = R and define a complete dq-metric d : X × X −→
[0,∞) such that

d(x, y) = |y| ∀ x, y ∈ X.
We define two onto self-mappings S and T on X by

(17) Sx =

 6x, x ∈ X − {2, 3}
18, x = 2
12, x = 3

, Tx =

{
5x, x ≤ 2
4x, x > 2

.

Consider λ = 3
2
, α1 = β1 = β2 = γ1 = γ2 = γ3 = δ1 = δ2 = δ3 = 1.

Figure 2.

The Figure 2 depicts the condition (11) of Theorem 3.7, with red surface denoting
the left part of the condition and green surface denoting the right part of the condition.
Clearly, all the conditions of Theorem 3.7 are satisfied and 0 is the unique common
fixed point of S and T here.

In [11], Hu established a proof outlining the characterization of completeness of
metric spaces using contraction mapping. Cobzas [4] investigated the characterization
of completeness of uniformly Lipschitz connected metric spaces. Here, we provide
a result concerning expansive type mappings in the context of characterizing the
completeness of dislocated quasi-metric space.

Theorem 3.10. Let (X, d) be a dq-metric space such that for some 0 < η < 1, d
satisfies

(18) d(x, x) ≥ η max {d(x, y), d(y, x)} ∀ x, y ∈ X.
If for every closed subset Y of X, every onto expansive self-mapping T on Y satisfying

d(Tx, Ty) ≥ λ d(x, y) ∀ x, y ∈ X with x 6= y,
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for some λ > 1, has a fixed point, then X is complete.

Proof. Let {xn} be an arbitrary Cauchy sequence in (X, d). If we can establish the
existence of convergent subsequence, then we are done. Let us assume that {xn} does
not have any convergent subsequence. Following [11], we consider

β(xn) = min [inf {d(xn, xm),m > n} , inf {d(xm, xn),m > n}] > 0, for all n ∈ N.

For a real number c > 1
η2

, we construct inductively a subsequence {xnk
} such that

d(xi, xj) <
1
c
β(xnk−1

) ∀ i, j ≥ nk, k ∈ N. Then Y = {xnk
: k ∈ N ∪ {0}} is a closed

subset of X.
Define T : Y −→ Y by Txn0 = xn1 , Txnk

= xnk−1
∀ k ∈ N. Clearly T is fixed point

free.

Let x, y ∈ Y. Then the following cases will arise:
Case 1: Let x = xn0 , y = xn1 . Then

d(Tx, Ty) = d(Txn0 , Txn1) = d(xn1 , xn0) ≥ β(xn0) > c d(xn1 , xn1)

≥ cη d(xn0 , xn1) (by condition (18))

> cη2 d(xn0 , xn1) = λ d(x, y), where λ = cη2.

Case 2: For x = xn0 , y = xn2 ,

d(Tx, Ty) = d(Txn0 , Txn2) = d(xn1 , xn1) ≥ η d(xn0 , xn1) ≥ η β(xn0)

> ηc d(xn2 , xn2) ≥ cη2 d(xn0 , xn2) (by condition (18))

= λ d(x, y).

Case 3: For x = xn0 , y = xnk
, k > 2,

d(Tx, Ty) = d(Txn0 , Txnk
) = d(xn1 , xnk−1

) ≥ β(xn1) > c d(xnk
, xnk

)

≥ cη d(xn0 , xnk
) (by condition (18))

> cη2 d(xn0 , xnk
) = λ d(x, y).

Case 4: For x = xnk
, y = xnk+i

for k, i ∈ N,

d(Tx, Ty) = d(Txnk
, Txnk+i

) = d(xnk−1
, xnk+i−1

) ≥ β(xnk−1
) > c d(xnk+i

, xnk+i
)

≥ cη d(xnk
, xnk+i

) (by condition (18))

> cη2 d(xnk
, xnk+i

) = λ d(x, y).

The cases when y = xn0 , x = xnk
, k ∈ N and y = xnk

, x = xnk+i
, k, i ∈ N can be shown

similarly.
Thus T is an onto expansive mapping satisfying the given condition having no fixed
point on the closed subset Y of X. This is a contradiction.
Hence (X, d) is complete.
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4. Application to Fredholm integral equation

We solve a system of Fredholm integral equations as an application of our derived
result. Consider the following system of integral equations:

x(t) =

∫ b

a

k1(t, r, x(r))dr + f(t),

y(t) =

∫ b

a

k2(t, r, y(r))dr + g(t),

(19)

where x, y, f, g ∈ C[a, b], which is the space of all continuous real valued functions on
[a, b] ⊂ R, t, r ∈ [a, b] and k1, k2 : [a, b] × [a, b] × R −→ R are continuous functions.
We consider x, y as onto mappings.
We take X = C[a, b] with d : X ×X −→ R defined by

d(x, y) = sup
t∈[a,b]

{|x(t)− y(t)|+ |y(t)|} ∀ x, y ∈ X.

Then (X, d) is a complete dq-metric space.

Theorem 4.1. If there exists λ > 1 such that for all x, y ∈ X

(20)
∣∣ ∫ b

a

k1(t, r, x(r))dr
∣∣ ≥ λ |x(t)− y(t)|+ λ |y(t)| ∀ t ∈ [a, b],

then the system of integral equations (19) has a unique solution.

Proof. For x, y ∈ X, we take

Fx(t) =

∫ b

a

k1(t, r, x(r))dr,

Gy(t) =

∫ b

a

k2(t, r, y(r))dr,

and define

Sx(t) = Fx(t) + f(t)

Ty(t) = Gy(t) + g(t) ∀ t ∈ [a, b].

Then S and T are two onto self-mappings on X. Then the existence of solution to
(19) is equivalent to the existence of common fixed point of S and T . Now,

d(Sx, Ty) = sup
t∈[a,b]

{|Sx(t)− Ty(t)|+ |Ty(t)|}

= sup
t∈[a,b]

{|Fx(t) + f(t)−Gy(t)− g(t)|+ |Gy(t) + g(t)|}

≥ sup
t∈[a,b]

{|Fx(t) + f(t)−Gy(t)− g(t) +Gy(t) + g(t)|}

= sup
t∈[a,b]

{|Fx(t) + f(t)|}

≥ sup
t∈[a,b]

|Fx(t)|

≥ sup
t∈[a,b]

λ {|x(t)− y(t)|+ |y(t)|} (by condition (20))

= λ d(x, y).
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Therefore, all the conditions of Corollary 3.8 are satisfied. Hence the system of integral
equations (19) has a unique solution.

5. Conclusion

In this paper, we have extended and refined some fixed point results of [15] for single
expansive type mapping in the framework of dq-metric space. Also, we established
a common fixed point theorem considering such mappings. A characterization of
completeness of dq-metric space is derived using expansive mappings. Furthermore, we
have demonstrated the practical implications of our findings through their application
in solving system of Fredholm integral equations. The study of the concept of coupled
fixed point and proximity point for expansive type mappings in dq-metric space is a
scope for further discussion. Additionally, the convergence of iteration schemes may
be explored considering such mappings in convex dq-metric space.
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[4] S. Cobzaş, Fixed points and completeness in metric and generalized metric spaces, J. Math. Sci.
250 (2020), 475–535.
https://doi.org/10.1007/s10958-020-05027-1

[5] R. Daheriya, R. Jain and M. Ughade, Some fixed point theorem for expansive type mapping in
dislocated metric space, ISRN Math. Anal. 2012 (2012), Article ID 376832.

[6] B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational ex-
pression, Indian J. Pure Appl. Math. 6 (12) (1975), 1455–1458.
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