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REGULAR CONVERGENCE SPACES

Jin Won Park

Abstract. In this paper, I introduce the notion of regular conver-
gence space and give some properties of this space. And I give some
conditions for the regularity of continuous convergence structure.

1. Introduction

Many researchers have been tried to obtain convenient categories in
which the exponential law exists. In this point of view, convergence
spaces are considered as good spaces with the exponential laws. Since
the concept of convergence spaces was introduced, many studies about
this space have been performed. In this paper, I introduce the notion of
regular convergence space and investigate some properties of this space.
And, for convergence spaces X and Y , I give some conditions for the reg-
ularity of continuous convergence structure on function spaces C(X, Y )
using the cartesian closedness.

2. Preliminaries

In this section, we collect some basic definitions and known results on
convergence spaces [1].
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For any set X, we denote by F (X) the set of all filters on X, and by
P (F (X)) the power set of F (X).

Definition 2.1. Let X be a set. A map c : X → P (F (X)) is said to
be a convergence structure if the following properties hold for any point
x ∈ X :

(1) ẋ ∈ c(x);
(2) if F ∈ c(x) and F ⊆ G, then G ∈ c(x);
(3) if F ,G ∈ c(x), then F ∩ G ∈ c(x).
Here ẋ stands for the ultrafilter on X generated by {x} and the pair

(X, c) is called a convergence space. If F ∈ c(x), we say that F converges
to x.

If f : X → Y is a map and F ∈ F (X) then f(F) is a filter base.
In general, f(F) is not a filter but the filter generated by f(F) is also
denoted by f(F).

Definition 2.2. Let (X, c) and (Y, c′) be convergence spaces and
f : X → Y a function. Then f is said to be continuous at x ∈ X if for
any F ∈ c(x), f(F) ∈ c′(f(x)). And f is said to be continuous if f is
continuous at each point x ∈ X.

Proposition 2.3. Let X be a set and {(Xi, pi)}i∈I be a family of
convergence spaces. For a family of functions {fi : Xi → X}i∈I , define
a filter F on X converges to x in X if and only if for each i ∈ I, fi(F)
converges to fi(x) in Xi. Then X is a convergence space.

The convergence structure on X is called the initial structure with
respect to {fi : X → Xi}i∈I .

Proposition 2.4. Let X be a set and {(Xi, pi)}i∈I be a family of
convergence spaces. For a family of functions {fi : Xi → X}i∈I , define
a filter F on X converges to x in X if and only if either F = ẋ or there
are i1, · · · , in ∈ I and a filter Gik on Xik which converges to y such that
fik(y) = x and

⋂n
k=1 fik(Gik) ⊆ F . Then X is a convergence space.

The convergence structure on X is called the final structure with
respect to {fi : Xi → X}i∈I .

Proposition 2.5. Let {(Xi, pi)}i∈I be a family of convergence spaces
and

∏
Xi be the product endowed with the convergence structure in

Proposition 2.3. with respect to {πi :
∏
Xi → Xi}i∈I . Then

∏
Xi is

the product of {(Xi, pi)}i∈I .
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3. Regular convergence spaces

We introduce a notion of Hausdorff convergence spaces and regular
convergence spaces and investigate some properties of these spaces.

Definition 3.1. [1] Let A be a subset of a convergence space X. A
point p is a point of adherence of A if there is a filter F converging to p
such that F ∩A 6= ∅ for all F ∈ F . The set of all adherence points of A
is denoted by A. We say that A is closed if A = A.

The following is easily proved.

Proposition 3.2. Let f : (X, c)→ (Y, c′) be continuous and A ⊆ X.

Then f(A) ⊆ f(A).

As in the topological space, a subset of a convergence space is said to
be open if Ac is closed. Note that U is open if and only if U belongs to
every filter which converges to a point of U [1].

Let (X, T ) be a topological space. Define cT : X → P (F (X)) by
cT (x) = {F ∈ F (X) | Nx ⊆ F , where Nx is the neighborhood filter at x.
Then (X, cT ) is a convergence space. Moreover, if f : (X, T ) → (Y, T ′)
is continuous, then f : (X, cT )→ (Y, cT ′) is continuous.

Conversely, for a convergence space (X, c), define Tc = {U ⊆ X |U
belongs to every filter which converges to a point in U}. Then (X, Tc) is
a topological space. Moreover, if f : (X, c)→ (Y, c′) is continuous, then
f : (X, Tc)→ (Y, Tc′) is continuous.

By these definitions, we have the following propositions.

Proposition 3.3. (1) Let K be a closed subset of a convergence space
(X, c). Then K is closed in (X, Tc).

(2) Let K be a closed subset of a topological space (X, T ). Then K is
closed in (X, cT ).

Definition 3.4. [1] convergence space X is Hausdorff if a filter on
X converges to at most one point.

Definition 3.5. A convergence space X is said to be weak regular
if for each point x ∈ X and each filter F which converges to x, the
filter F = {F |F ∈ F} converges to x. A convergence space which is
hausdorff and weak regular is called a regular convergence space.

Proposition 3.6. Let K be a closed subset of a convergence space
X and p is a point with p /∈ K. Let F be a filter converging to p. If X
is regular, there is an open set U containing K such that U /∈ F .
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Proof. Note that Kc is open and p ∈ Kc. Since X is regular, F
converges to p and so Kc ∈ F . Hence F ⊆ Kc for some F ∈ F . Let
(F )c = U . Then U is an open set containing K with U /∈ F .

Proposition 3.7. Let (X, T ) be a topological space. Let p ∈ X and
and K be a closed subset of (X, cT ) with p /∈ K. Suppose that for any
filter F converging to p, there is an open set U containing K such that
U /∈ F . Then (X, cT ) is regular.

Proof. Let F converge to p. Then Np ⊆ F . Let U be an open set in
Np, then p /∈ U c. By assumption, there is an open set V containing U c

such that V /∈ F . Note that V c ⊆ U ∈ F . Hence V /∈ F and therefore
F does not converge to p.

Proposition 3.8. Let (X, T ) be a topological space. If (X, cT ) is
regular, then (X, T ) is regular.

Proof. Suppose (X, T ) is not regular. Then there is a point p and
closed set K with p /∈ K such that for any open sets U and V with
p ∈ U , K ⊆ V , U ∩ V 6= ∅. Let F be a filter generated by {U ∩ V |U :
open set with p ∈ U , V : open set with K ⊆ V }. The F converges to p
and contains all open sets containing K. This means that (X, cT ) is not
regular by above proposition. Hence (X, T ) is regular.

Proposition 3.9. Let X and Y be convergence spaces and f : X →
Y be an initial map.

(1) If Y is Hausdorff and f is 1− 1, then X is Hausdorff.
(2) If Y is regular, then X is regular.
(3) If X is weak regular and f is a surjection, then Y is weak regular.

Proof. (1) Let F converges to a and b in X. Since f is an initial map,
f(F) converges to f(a) and f(b) in Y . Since Y is Hausdorff and f is
1− 1, a = b.

(2) By (1), X is Hausdorff. Let F converge to x in X. Since f
is an initial map, f(F) converges to y = f(x). Since Y is regular,

{f(F ) |F ∈ F} converges to y. Since F ⊆ f−1(f(F )), F ⊆ f−1(f(F )).
Hence

f(F ) ⊆ f(f−1(f(F ))) ⊆ f(f−1(f(F ))) ⊆ f(F )

Hence {f(F ) |F ∈ F} ⊆ {f(F ) |F ∈ F} and so {f(F ) |F ∈ F} con-
verges to y. Since f is an initial map, {F |F ∈ F} converges to x and
hence X is regular.
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(3) Let F converge to y in Y . Since f is initial and a surjection,
f−1(F) converges to some point x ∈ f−1(y). Let p ∈ f−1(F ), then
f(p) ∈ F . So there exists an ultrafilter U containing F which converges
to f(p). Let V be an ultrafilter containing f−1(U). Then V converges

to p in X and contains f−1(F ). Thus p ∈ f−1(F ), and hence f−1(F ) ⊂
f−1(F ). Since X is weak regular, {f−1(F ) |F ∈ F} converges to x.

Moreover, since f is continuous, {f(f−1(F )) |F ∈ F} converges to y.
Note that

F = f(f−1(F )) ⊆ f(f−1(F )),

and hence
{f(f−1(F )) |F ∈ F} ⊆ {F |F ∈ F}.

Therefore {F |F ∈ F} converges to y. In all, Y is weak regular.

Corollary 3.10. A subspace of a Hausdorff convergence space is
Hausdorff and a subspace of a regular convergence spaces is regular.

Proposition 3.11. Let {Xi | i ∈ I} be a family of convergence spaces.
(1) If Xi is Hausdorff, then

∏
Xi is Hausdorff.

(2) If Xi is regular, then
∏
Xi is regular.

Proof. (1) Let F converge to a and b in
∏
Xi. By Proposition 2.5,

πi(F) converges to πi(a) and πi(b) for each i ∈ I. Since each Xi is
Hausdorff, πi(a) = πi(b) for each i ∈ I. Hence a = b.

(2) By (1),
∏
Xi is Hausdorff. Let F converge to x in

∏
Xi. Then

πi(F) converges to πi(x) for each i ∈ I. Since each Xi is regular,

{πi(F ) |F ∈ F} converges to πi(x) in Xi.

Since F ⊆
∏
πi(F ), F ⊆

∏
πi(F ) =

∏
πi(F ) and hence

{
∏
πi(F ) | F ∈ F} ⊆ {F | F ∈ F}.

Thus {F | F ∈ F} converges to x. Hence
∏
Xi is weak regular.

Proposition 3.12. Let X and Y be convergence spaces and f : X →
Y be a final map. If Y is weak regular and f is 1−1, X is weak regular.

Proof. Let F converge to x in X. Then f(F) converges to f(x) in Y .

Since Y is weak regular, {f(F ) |F ∈ F} converges to f(x) in Y . Since
f is final and 1 − 1, there exists a filter G on X converging to x such
that f(G) ⊂ {f(F ) |F ∈ F}. So, for each G ∈ G there exists an F ∈ F
such that f(F ) ⊆ f(G). Thus

F = f−1(f(F )) ⊆ f−1(f(F )) ⊆ f−1(f(G)) = G.
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Hence G ⊆ {F |F ∈ F}. Since G converges to x, {F |F ∈ F}
converges to x in X. Therefore X is weak regular.

4. Function spaces

In this section, I introduce the continuous convergence structure on
C(X, Y ) and obtain a condition for the fibrewise regularity of the func-
tion space C(X, Y ).

Let X and Y be convergence spaces and C(X, Y ) be the set of all
continuous functions from X to Y . Define a filter F converges to f
in C(X, Y ) if and only if for any filter A in X which converges to x,
F(A) converges to f(x) in Y . Then it is well known that C(X, Y ) with
this structure is a convergence space and this structure is called the
continuous convergence structure on C(X, Y ) [1].

Proposition 4.1. Let X and Y be convergence spaces. If Y is Haus-
dorff, then C(X, Y ) is Hausdorff.

Proof. Let F converge to f and g in C(X, Y ) and A converge to x in
X. Then F(A) converges to f(x) and g(x) in Y . Since Y is Hausdorff,
f(x) = g(x) and so f = g in C(X, Y ). Hence C(X, Y ) is Hausdorff.

It is well known that the category consisting of convergence spaces
and continuous maps between them is catesian closed [4]. Then for any
convergence space Z and a function f : Z → C(X, Y ), f is continuous
if and only if ev ◦ (1X × f) : X × Z → Y is continuous, where ev : X ×
C(X, Y )→ Y is an evaluation map which is defined by ev(x, f) = f(x).

Proposition 4.2. Let X and Y be convergence spaces and let K =
{f ∈ C(X, Y ) | f : constant map}. Then K is homeomorphic to Y .

Proof. Define φ : Y → C(X, Y ) by, for y ∈ Y , φ(y) = cy, where cy is
the constant map from X to Y with value y. Clearly, φ is well-defined
and injective. Note that φ(Y ) = K. Let ψ : Y → K be the corestriction
of φ. Consider the following diagram
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X × C(X, Y )
ev

Y

X × Y

idX × φ

Note that π2 = ev ◦ (idX×φ), since π2(x, y) = y = cy(x) = ev(x, cy).
Since π2 is continuous, ev ◦ (idX×φ) is continuous. Hence φ is continu-
ous, by the cartesian closedness of the category of convergence spaces.
Therefore, ψ : Y → K is continuous. Now, pick an x in X. Then we
know that

--ψ−1 : K
j ev

YX × Y

where j(f) = (x, f) for f ∈ K. Since j and ev are continuous, ψ−1 is
continuous. In all, K is homeomorphic to Y .

Proposition 4.3. Let X and Y be convergence spaces. If C(X, Y )
is Hausdorff, then Y is Hausdorff.

Proof. The proof is easy by Corollary 3.10 and Proposition 4.2.

Proposition 4.4. Let X and Y be convergence spaces. If Y is regu-
lar, then C(X, Y ) is regular.

Proof. By Proposition 4.1, C(X, Y ) is Hausdorff. Suppose F con-
verges to f in C(X, Y ). Then we have to show that G = {F | F ∈ F}
converges to f in C(X, Y ). Let A converge to x in X, then it is enough
to show that G(A) converges to f(x) in Y . Since F converges to f in

C(X, Y ), F(A) converges to f(x) in Y . Hence f(x) ∈ F (A) for all

F ∈ F and A ∈ A. Since Y is regular, {F (A) | F ∈ F , A ∈ A} con-

verges to f(x). Note that F (A) ⊆ F (A) ⊆ F (A). In fact, if y ∈ F (A),
then y = f(x) for some f ∈ F and x ∈ A. Then there is a filter U in
C(X, Y ) converging to f such that U∩F 6= ∅ for all U ∈ U and a filter V
in X converging to x such that V ∩A 6= ∅ for all V ∈ V . Hence the filter
U(V) is a filter in Y converging to y such that U(V )∩F (A)∩F (A) 6= ∅
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for all U ∈ U and V ∈ V and so y ∈ F (A). Therefore,

{F (A) |F ∈ F , A ∈ A} ⊆ {F (A) |F ∈ F , A ∈ A}
Hence the filter {F (A) |F ∈ F , A ∈ A} converges to y and this means
that {F |F ∈ F} converges to f in C(X, Y ). Hence C(X, Y ) is regular.

By corollary 3.10 and proposition 4.2, we have the following proposi-
tion.

Proposition 4.5. Let X and Y be convergence spaces. If C(X, Y )
is regular, then Y is regular.
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