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A CANONICAL CHRISTOFFEL TRANSFORMATION OF THE

STRICT THIRD DEGREE CLASSICAL LINEAR FORMS

Mohamed Khalfallah

Abstract. The aim of this paper is to study several characterizations of a large
family of semiclassical linear forms of class one, which are of strict third degree
and are not included in either the family of symmetric forms or the quasi-symmetric
family. In fact, using the Stieltjes function and the moments, we describe a canonical
Christoffel transformation w of the strict third degree classical linear form Vk,l

q :=

J (k+ q/3, l− q/3), k+ l ≥ −1, k, l ∈ Z, q ∈ {1, 2}, meaning w = (x− c)Vk,l
q , |c| > 1.

1. Introduction

The present paper concerns the theory of semiclassical orthogonal polynomials
(OPs). Since the seminal paper on semiclassical orthogonal polynomials ( [22]), many
authors have dealt with this subject (see [1–8, 11–17, 19, 20, 22]). They arise as a
natural extension of the well-known classical OPs of Hermite, Laguerre, Jacobi and
Bessel, having been the focus of great research activity since the 1980’s. Specifically,
this theory has been developed from an algebraic aspect and a distributional one by
P. Maroni and extensively studied during the last three decades (see [19] for a nice
survey on this topic, as well as [11] with the applications in the framework of Sobolev
inner products).

The study of the semiclassical forms of classes greater than or equal to one is a hard
problem. Taking into account the difficulties of solving the Laguerre-Freud equations,
it is more important to use other tools for the construction and characterizations of
some semiclassical forms ( [2–5]) based either on the moments, the corresponding
Stieltjes function or their integral representation. For instance, the study of the
third degree regular forms (TDRFs, in short) aims to provide a detailed description
and characterization of specific semiclassical forms [1–8, 12–17] based either on the
moments, the corresponding Stieltjes function. These forms are characterized by the
fact that their formal Stieltjes function S(w)(z) := −

∑
n≥0 〈w, xn〉/zn+1 satisfies a

cubic equation with polynomial coefficients

AS3(w) +BS2(w) + CS(w) +D = 0.
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A regular form w is called a strict third degree form (STDRF, in short) if it is a
TDRF and not a second degree regular form (i.e., does not fulfill an analogous rela-
tion of second order [21]). Some TDRF properties are given in [4, 9]. In [3, 4], the
authors determine all classical forms which are TDRFs. It is worth mentioning that
the unique classical strict third degree forms are the Jacobi forms J (k+ q/3, l− q/3),
where q ∈ {1, 2} and k, l are integers with k + l ≥ −1 (see [4]).

In general, STDRF is a Laguerre-Hahn form (see [4]). Taking into account that
rational spectral transformations of STDRF preserve such a family [7] as well as ac-
cording to [23], the linear spectral transformations are generated by Christoffel and
Geronimus transformations which yield linear forms v, w, defined by v = p(x)u, and
p(x)w = u, respectively, where p(x) is a polynomial and u is a linear form.

This paper focuses on the analysis of semiclassical forms of class s = 1 which are
STDRFs. In particular, the utmost interest of this paper is the description, using
the third degree character, of a large family of forms obtained through a canonical
Christoffel transformation of the strict third degree classical linear forms, i.e., the lin-
ear forms (x−c)J (k+q/3, l−q/3), where q ∈ {1, 2}, k, l are integers with k+ l ≥ −1,
and c is a complex number such that |c| > 1. Our main tool is the representation
of the corresponding Stieltjes functions and, as a consequence, the moments of the
forms are deduced in a straightforward way.

A brief description of the paper organization is given as follows. In Section 2 we
review some basic notations, definitions and results used in the forthcoming sections.
In Section 3, we first recall the definitions as well as the main proprieties of third
degree forms. Second, we give some results concerning strict third degree classical
forms, denoted by Vk,lq := J (k+ q/3, l− q/3), k+ l ≥ −1, k, l ∈ Z, q ∈ {1, 2}, which
are needed in the sequel. In Section 4, we state our main result. Through the third
degree forms, and by using a canonical Christoffel transformation of classical linear
forms of strict third degree, we provide an identification for a large family of strict
third degree linear forms which are semiclassical of class one and, as a consequence,
do not belong to either the family of symmetric forms or the quasi-symmetric family.

2. Notation and basic background

In this section, we present some basic definitions, notation, and results which are
used throughout this paper. Let P be the vector space of polynomials of one real
variable and with complex coefficients and let P ′ be its algebraic dual. The elements
of P ′ will be called linear forms (linear functionals). By 〈·, ·〉, we denote the duality
bracket between P and P ′.
Given a form w ∈ P ′. The sequence of complex numbers (w)n, n ≥ 0, denotes the
moments of w with respect to the sequence {xn}n≥0, namely, the moment of order
n for the form w is denoted by (w)n =: 〈w, xn〉. Thus, the form w is completely
determined by its moments.
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We define the following operations on P ′. For any a ∈ C− {0}, b, c ∈ C, p, q ∈ P ,
and w ∈ P ′

〈pw, q〉 = 〈w, pq〉, 〈w′, p〉 = −〈w, p′〉,
〈haw, p〉 = 〈w, hap〉 = 〈w, p(ax)〉, 〈τbw, p〉 = 〈w, τ−bp〉 = 〈w, p(x+ b)〉,

〈(x− c)−1w, p〉 = 〈w, θcp〉 =

〈
w,
p(x)− p(c)
x− c

〉
.

For p ∈ P and w ∈ P ′, the product wp is the polynomial (wp)(x) :=
〈
w, xp(x)−ζp(ζ)

x−ζ

〉
[19]. This allows us to define the Cauchy product of two linear forms

〈vw, p〉 := 〈v, wp〉, v, w ∈ P ′, p ∈ P .

The above product is commutative, associative and distributive with respect to the
sum of forms.

The linear form w ∈ P ′ is said to be a rational perturbation of v ∈ P ′, if there
exist polynomials p and q, such that

q(x)w = p(x)v.

In particular, we say that v is a Christoffel transformation of w if p(x) = 1. On the
other hand, we say that v is a Geronimus transformation of w if q(x) = 1.

We will also use the so-called formal Stieltjes function associated with w ∈ P ′ that
is defined as ( [10, 19])

S(w)(z) = −
∑
n≥0

(w)n
zn+1

.

Remark 2.1. For any p ∈ P and w ∈ P ′, S(w)(z) = p(z) if and only if w = 0 and
p = 0.

For any p ∈ P and w ∈ P ′, the following property holds ( [19])

S(pw)(z) = p(z)S(w)(z) + (wθ0p)(z). (2.1)

Let us recall that a form w is called regular (quasi-definite) if there exists a monic
polynomial sequence {Wn}n≥0 with degWn = n such that [10]

〈w,WnWm〉 = rnδn,m, n,m ≥ 0,

where {rn}n≥0 is a sequence of nonzero complex numbers and δn,m is the Kronecker
symbol.
{Wn}n≥0 is called a monic orthogonal polynomial sequence (MOPS, in short) with
respect to the form w. It is characterized by the following three-term recurrence rela-
tion

W0(x) = 1, W1(x) = x− β0,
Wn+2(x) = (x− βn+1)Wn+1(x)− γn+1Wn(x), n ≥ 0.

(2.2)

Here {βn}n≥0 and {γn+1}n≥0 are sequences of complex numbers such that γn+1 6= 0
for all n. This is the so called Favard’s theorem (see [10, 19, 20]). The form w is said
to be normalized if (w)0 = 1. In the sequel, we only consider normalized forms.
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A form w is called semiclassical when it is regular and there exist non zero poly-
nomials φ and ψ, φ monic, deg φ ≥ 0, degψ ≥ 1, such that w satisfies a Pearson’s
equation

(φw)′ + ψw = 0. (2.3)

Equivalently, the formal Stieltjes function of w satisfies a nonhomogeneous first order
linear differential equation with polynomial coefficients

A0(z)S ′(w)(z) = C0(z)S(w)(z) +D0(z), (2.4)

where
A0 = φ, C0 = −φ′ − ψ, D0 = −(wθ0φ)′ − (wθ0ψ). (2.5)

Furthermore, if the polynomials A0, C0, and D0 appearing in (2.5) are coprime, then
the class of w is defined by

s = max{degC0 − 1, degD0}.
If {Wn}n≥0 is an OPS with respect to a semiclassical form w of class s, then {Wn}n≥0
is called a semiclassical OPS of class s. In particular, when s = 0 (so that deg φ ≤ 2
and deg ψ = 1) one obtains, up to an affine change of the variable, the four well-known
families of classical forms Hermite, H; Laguerre, L(α); Jacobi, J (α, β) and Bessel,
B(α) (see [20]). Taking into account Jacobi linear forms J (α, β) will be used in the
sequel, we point out that φ(x) = x2− 1, ψ(x) = −(α+β+ 2)x+ (α−β). Let us recall
that a Jacobi form J (α, β) has the following integral representation for <(α+ 1) > 0
and <(β + 1) > 0

〈J (α, β), f〉 = Cα,β

∫ +1

−1
(1 + x)α(1− x)βf(x)dx, f ∈ P ,

with

Cα,β =
1

2α+β+1

Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
.

3. Third degree semiclassical linear forms

3.1. Third degree form. In this subsection, we briefly review the definitions and
list some basic properties of the third degree regular forms. Afterwards, we will give
some results concerning strict third degree classical forms which are needed later on
in this paper.

Definition 3.1. A form w is called a third degree regular form (TDRF, in short)
if it is regular and if there exist three polynomials A (monic), B and C such that

A(z)S3(w)(z) +B(z)S2(w)(z) + C(z)S(w)(z) +D(z) = 0, (3.1)

where polynomial D depends on A,B,C and w.

Remark 3.1. 1. The polynomial D is explicitly given by D(z) =
(
w3θ30A

)
(z)−(

w2θ20B
)
(z) +

(
wθ0C

)
(z).

2. A regular form w is called a second degree form if the corresponding Stieltjes
function satisfies a quadratic equation with polynomial coefficients ( [21])

B(z)S2(w)(z) + C(z)S(w)(z) +D(z) = 0, (3.2)

where B,C,D satisfy B 6= 0, C2 − 4BD 6= 0, D 6= 0 due to regularity of w.
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3. When the form w is a TDRF and not a second degree form, we shall call it a
strict third degree regular form (STDRF, in short) ( [4]).

Remark 3.2. Among the most well-known forms which are STDRFs, we can find
the Jacobi form V := J (−2

3
,−1

3
) ( [4]). Thus, its formal Stieltjes function is

S(V)(z) = −(z + 1)−2/3(z − 1)−1/3, (3.3)

and satisfies the cubic equation

(z + 1)2(z − 1)S3(V)(z) + 1 = 0. (3.4)

Elementary transformations like association, perturbation, shift, multiplication and
division by a polynomial, inversion, among others preserve the family of linear forms
of third degree ( [4, 7, 18]). Furthermore, the class of third degree forms is closed
under rational spectral transformations of the form ( [7]). In particual, we have the
following result.

Lemma 3.1. [4] Let u and v be two regular linear forms satisfying M(x)u = N(x)v,
where M(x) and N(x) are two polynomials. If one of the linear forms u and v is a
third degree form then so is the other one. If u is a third degree linear form satisfying
(3.1) then v is also a third degree linear form satisfying

AvS
3(v) +BvS

2(v) + CvS(v) +Dv = 0,

with

Av = AN3,

Bv = N2
{
BM + 3A

(
(vθ0N)− (uθ0M)

)}
,

Cv = N
{
CM2 + 2BM

(
(vθ0N)− (uθ0M)

)
+ 3A

(
(vθ0N)− (uθ0M)

)2}
,

Dv = DM3 + CM2
(
(vθ0N)− (uθ0M)

)
+BM

(
(vθ0N)− (uθ0M)

)2
+A

(
(vθ0N)− (uθ0M)

)3
.

3.2. Strict third degree classical forms. As mentioned in the introduction, all
the classical forms which are of strict third degree are determined, see [4]. More
precisely, Hermite, Laguerre, and Bessel forms are not STDRFs, only Jacobi forms
which satisfy a certain condition possess this property. Indeed,

Theorem 3.1. [4] Among the classical linear forms, only the Jacobi forms J (k+
q/3, l − q/3) are STDRFs, provided k + l ≥ −1, k, l ∈ Z, q ∈ {1, 2}.

Remark 3.3. Throughout this paper, we make use of the following notation:
Vk,lq := J (k + q/3, l − q/3), with k + l ≥ −1, k, l ∈ Z, q ∈ {1, 2}.

The next lemma gives us a fundamental relation to be used in the sequel. Precisely,
the following lemma clarifies that the strict third degree classical linear forms Vk,lq are
rational perturbations of h(−1)q−1V .

Lemma 3.2. [14] Let q ∈ {1, 2} and k, l ∈ Z with k + l ≥ −1. The forms Vk,lq and
V are related by

fk,lq Vk,lq = gk,lq h(−1)q−1V , (3.5)

where fk,lq and gk,lq are polynomials defined by

fk,lq (x) :=
〈
h(−1)q−1V , (x+ 1)

|k+1|+k+1
2 (x− 1)

|l|+l
2

〉
(x+ 1)

|k+1|−(k+1)
2 (x− 1)

|l|−l
2 , (3.6)
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and

gk,lq (x) :=
〈
Vk,lq , (x+ 1)

|k+1|−(k+1)
2 (x− 1)

|l|−l
2

〉
(x+ 1)

|k+1|+k+1
2 (x− 1)

|l|+l
2 . (3.7)

4. A new family of strict third degree semiclassical linear forms of class
one

In this section we establish several characterizations of the semiclassical forms of
class one which are of strict third degree such that w is obtained through a canonical
Christoffel transformation of the strict third degree classical linear forms.

Theorem 4.1. Let w be a regular form. The following statements are equivalent.

(a) w is a canonical Christoffel transformation of the strict third degree classical
linear forms, i.e., there exist c ∈ C with |c| > 1 and q ∈ {1, 2}, (k, l) ∈ Z2 with
k + l ≥ −1, such that

w = (x− c)Vk,lq . (4.1)

(b) There exist c ∈ C with |c| > 1 and q ∈ {1, 2}, (k, l) ∈ Z2 with k + l ≥ −1, such
that

S(w)(z) = (z − c)S
(
Vk,lq
)
(z) + 1. (4.2)

(c) There exist c ∈ C with |c| > 1 and q ∈ {1, 2}, (k, l) ∈ Z2 with k + l ≥ −1, such
that

fk,lq (x)w = (x− c)gk,lq (x)(h(−1)q−1V), (4.3)

and (
wθ0f

k,l
q

)
(z) =− (z − c)

((
(h(−1)q−1V)θ0g

k,l
q

)
−
(
Vk,lq θ0f

k,l
q

))
(z)

+
(
(h(−1)q−1V)θ0((x− c)gk,lq (x))

)
(z)− fk,lq (z), (4.4)

where fk,lq and gk,lq are polynomials defined by (3.6) and (3.7), respectively.

(d) There exist c ∈ C with |c| > 1 and q ∈ {1, 2}, (k, l) ∈ Z2 with k + l ≥ −1, such
that

(w)n =
n+1∑
ν=0

(
n+ 1

ν

)
2ν−1

Γ(k + l + 2)

Γ(ν + k + l + 2)
Fn+1,ν

(
k + q

3
, l − q

3

)
− c

n∑
ν=0

(
n

ν

)
2ν−1

Γ(k + l + 2)

Γ(ν + k + l + 2)
Fn,ν

(
k + q

3
, l − q

3

)
, n ≥ 0,

where Fn,ν
(
k + q

3
, l − q

3

)
is defined by

Fn,ν
(
k + q

3
, l − q

3

)
= (−1)n−ν

Γ(ν + k + q
3

+ 1)

Γ(k + q
3

+ 1)
+ (−1)ν

Γ(ν + l − q
3

+ 1)

Γ(l − q
3

+ 1)
. (4.5)

(e) There exist c ∈ C with |c| > 1 and q ∈ {1, 2}, (k, l) ∈ Z2 with k + l ≥ −1, such
that the form w is a strict third degree semiclassical form of class one satisfying

φw(z)S ′(w)(z) = Cw(z)S(w)(z) +Dw(z),
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with

φw(z) = (z − c)(z2 − 1),

Cw(z) = (k + l + 1)z2 +
(
l − k − 2q

3
− c(k + l)

)
z − c

(
l − k − 2q

3

)
− 1,

Dw(z) = −
(
3l + k + 2− 2q

3
− c(k + l)

)
z + c

(
l − k − 2q

3
+ c(k + l + 1)

)
,

where (w)0 = 3k−3l+2q
3(k+l+2)

− c and (w)1 = 2 (3k+3+q)(3k+6+q)+(3l+3−q)(3l+6−q)
3(k+l+2)(k+l+3)

− 1 −
c3k−3l+2q
3(k+l+2)

.

For the proof we need the following lemma:

Lemma 4.1. [12] Let $1 and $2 be two semiclassical linear forms satisfying (2.3)
with deg φ = degψ + 1 = t. If ($1)i = ($2)i, 0 ≤ i ≤ t− 2, then $1 = $2.

Proof of Theorem 4.1. (a)⇒ (b) Applying the operator S to (4.1) and taking into
account (2.1) we obtain the desired relation.
(b)⇒ (c) Multiplying both sides of (4.2) by fk,lq (z), from (2.1) we deduce

fk,lq (z)S(w)(z) = (z − c)S
(
fk,lq Vk,lq

)
(z)− (z − c)

(
Vk,lq θ0f

k,l
q

)
(z) + fk,lq (z)

by (3.5)
= (z − c)S

(
gk,lq h(−1)q−1V

)
(z)− (z − c)

(
Vk,lq θ0f

k,l
q

)
(z) + fk,lq (z)

by (2.1)
= (z − c)gk,lq (z)S(h(−1)q−1V)(z)

+ (z − c)
((

(h(−1)q−1V)θ0g
k,l
q

)
−
(
Vk,lq θ0f

k,l
q

))
(z) + fk,lq (z),

which readily gives

S
(
fk,lq (x)w

)
(z) = S

(
(x− c)gk,lq (x)(h(−1)q−1V)

)
(z) +Q(z),

with

Q(z) =(z − c)
((

(h(−1)q−1V)θ0g
k,l
q

)
−
(
Vk,lq θ0f

k,l
q

))
(z)

+
(
wθ0f

k,l
q (x)

)
(z)−

(
(h(−1)q−1V)θ0((x− c)gk,lq (x))

)
(z) + fk,lq (z),

or equivalently,

S
(
fk,lq (x)w − (x− c)gk,lq (x)(h(−1)q−1V)

)
(z) = Q(z) ∈ P .

We may now invoke Remark 2.1 to deduce that

fk,lq (x)w − (x− c)gk,lq (x)(h(−1)q−1V) = 0 in P ′,

and

Q(z) = 0.

Thus the result follows.
(c)⇒ (d) Applying the operator S to (4.3) and taking into account (2.1) we get

fk,lq (z)S(w)(z) =(z − c)gk,lq (z)S
(
h(−1)q−1V

)
(z)−

(
wθ0f

k,l
q

)
(z)

+
(
(h(−1)q−1V)θ0((x− c)gk,lq (x))

)
(z).
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Then, one has

fk,lq (z)S(w)(z)
by (2.1)−(3.5)

= (z − c)S
(
fk,lq Vk,lq

)
(z)−

(
wθ0f

k,l
q

)
(z)

+
(
(h(−1)q−1V)θ0((x− c)gk,lq (x))

)
(z)

− (z − c)
(
(h(−1)q−1V)θ0g

k,l
q

)
(z)

by (2.1)
= (z − c)fk,lq (z)S

(
Vk,lq
)
(z)−

(
wθ0f

k,l
q

)
(z)

+
(
(h(−1)q−1V)θ0((x− c)gk,lq (z))

)
(z)

− (z − c)
((

(h(−1)q−1V)θ0g
k,l
q

)
−
(
Vk,lq θ0f

k,l
q

))
(z).

Therefore, using (4.4), the last equation becomes

fk,lq (z)S(w)(z) = (z − c)fk,lq (z)S
(
Vk,lq
)
(z) + fk,lq (z).

This clearly implies that

S(w)(z) = (z − c)S
(
Vk,lq
)
(z) + 1.

Then, using (2.1) and by Remark 2.1, we get

w = (x− c)Vk,lq ,

so,

(w)n =
(
Vk,lq
)
n+1
− c
(
Vk,lq
)
n
, n ≥ 0.

Hence, using (4.6) we have the desired relation.
(d)⇒ (e) Let us recall that the moments of the Jacobi form Vk,lq with k+l ≥ −1, k, l ∈
Z, q ∈ {1, 2}, are given by ( [20])(

Vk,lq
)
n

=
n∑
ν=0

(
n

ν

)
2ν−1

Γ(k + l + 2)

Γ(ν + k + l + 2)
Fn,ν

(
k + q

3
, l − q

3

)
, n ≥ 0, (4.6)

where Fn,ν
(
k + q

3
, l − q

3

)
is defined in (4.5), and Γ is the gamma function [20].

By hypothesis we have

(w)n =
(
Vk,lq
)
n+1
− c
(
Vk,lq
)
n

=
(
(x− c)Vk,lq

)
n
, n ≥ 0.

Then,

w = (x− c)Vk,lq . (4.7)

Using Lemma 3.1 we conclude that w is an STDRF.
Then, the relation (4.7) becomes

S(w)(z) = (z − c)S
(
(h(−1)q−1V)

)
(z) + 1. (4.8)

Taking formal derivatives in the last equation we get

S ′(w)(z) = (z − c)S ′
(
Vk,lq
)
(z) + S

(
Vk,lq
)
(z).

After combining the latter two expressions we obtain

S ′(Vk,lq ) (z) =
(z − c)S ′(w)(z)− S(w)(z) + 1

(z − c)2
. (4.9)
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On the other hand, using the first order linear differential equation satisfied by the
Stieltjes function of the Jacobi form ( [19]), it is a straightforward exercise to prove
that S

(
Vk,lq
)
(z) satisfies

Φ(z)S ′
(
Vk,lq
)
(z) = Ck,l

0,q(z)S
(
Vk,lq
)
(z) +Dk,l

0,q(z), (4.10)

with Φ, Ck,l
0,q, and Dk,l

0,q given by

Φ(z) = z2 − 1,

Ck,l
0,q(z) = (k + l)z + l − k − 2q

3
, (4.11)

Dk,l
0,q(z) = k + l + 1.

Replacing (4.8) and (4.9) in (4.10), and multiplying both sides of the resulting equation
by (z − c)2, one obtains

φw(z)S ′(w)(z) = Cw(z)S(w)(z) +Dw(z), (4.12)

where the polynomials φw, Cw and Dw are

φw(z) = (z − c)Φ(z),

Cw(z) = Φ(z) + (z − c)Ck,l
0,q(z),

Dw(z) = −Φ(z)− (z − c)Ck,l
0,q(z) + (z − c)2Dk,l

0,q(z).

Therefore, it follows from (4.11) that S(w)(z) satisfies (4.12) with

φw(z) = (z − c)(z2 − 1),

Cw(z) = (k + l + 1)z2 +
(
l − k − 2q

3
− c(k + l)

)
z − c

(
l − k − 2q

3

)
− 1,

Dw(z) = −
(
3l + k + 2− 2q

3
− c(k + l)

)
z + c

(
l − k − 2q

3
+ c(k + l + 1)

)
.

Further, we see that conditions

Φ(c) = c2 − 1 6= 0,

Cw(1) = 2(1− c)(l − q
3
) 6= 0,

Cw(−1) = 2(1 + c)(k + q
3
) 6= 0,

hold. Then φw, Cw, and Dw are coprime. Since degDw ≤ 1 and degCw = 2 the class
of the linear form w is one.
(e) ⇒ (a) It is easy to verify that the form (x − c)Vk,lq satisfies the same functional
equation as w with deg φw = degψw + 1 = 3, as well as(

(x− c)Vk,lq
)
0

=
3k − 3l + 2q

3(k + l + 2)
− c = (w)0

and(
(x−c)Vk,lq

)
1

= 2
(3k + 3 + q)(3k + 6 + q) + (3l + 3− q)(3l + 6− q)

3(k + l + 2)(k + l + 3)
−1−c3k − 3l + 2q

3(k + l + 2)
= (w)1.

As a consequence, using Lemma 4.1 we conclude that w = (x − c)Vk,lq . Thus, the
proof of Theorem 4.1 is completed.

Corollary 4.1. Let w be a linear form such that w is a canonical Christoffel
transformation of the strict third degree classical linear forms. Then, there exist
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c ∈ C with |c| > 1 and (k, l) ∈ Z2 with k + l ≥ −1, q ∈ {1, 2}, such that its Stieltjes
function S(w)(z) satisfies the cubic equation

Aw(z)S3(w)(z) +Bw(z)S2(w)(z) + Cw(z)S(w)(z) +Dw(z) = 0,

with

Aw(z) =(z2 − 1)
(
z + (−1)q−1

)
(fk,lq )3(z),

Bw(z) =3(x− c)(z2 − 1)
(
z + (−1)q−1

) (
Vk,lq θ0f

k,l
q

)
(z)− 3(z2 − 1)

(
z + (−1)q−1

)
(fk,lq )3(z),

Cw(z) =3(x− c)2(z2 − 1)
(
z + (−1)q−1

) ((
Vk,lq θ0f

k,l
q

)
(z)−

(
(h(−1)q−1V)θ0g

k,l
q

)
(z)
)2
fk,lq (z)

− 6(x− c)(z2 − 1)
(
z + (−1)q−1

) (
Vk,lq θ0f

k,l
q

)
(z) + 3(z2 − 1)

(
z + (−1)q−1

)
(fk,lq )3(z),

Dw(z) =(x− c)3
[
(gk,lq )3(z) + (z2 − 1)

(
z + (−1)q−1

) ((
Vk,lq θ0f

k,l
q

)
(z)−

(
(h(−1)q−1V)θ0g

k,l
q

)
(z)
)3

(z)
]

− 3(x− c)2(z2 − 1)
(
z + (−1)q−1

) ((
Vk,lq θ0f

k,l
q

)
(z)−

(
(h(−1)q−1V)θ0g

k,l
q

)
(z)
)2
fk,lq (z)

+ 3(x− c)(z2 − 1)
(
z + (−1)q−1

)
(
(
Vk,lq θ0f

k,l
q

)
(z)− (z2 − 1)

(
z + (−1)q−1

)
(fk,lq )3(z).

where fk,lq and gk,lq are polynomials given in (3.6) and (3.7), respectively.

Proof. Based on relations (3.4) and (3.5) and Lemma 3.1, the form Vk,lq is an STDRF

and its Stieltjes function S
(
Vk,lq
)
(z) satisfies the cubic equation

Ak,lq (z)S3
(
Vk,lq
)
(z) +Bk,l

q (z)S2
(
Vk,lq
)
(z) + Ck,l

q (z)S
(
Vk,lq
)
(z) +Dk,l

q (z) = 0, (4.13)

with

Ak,lq (z) = (z2 − 1)
(
z + (−1)q−1

)
(fk,lq )3(z),

Bk,l
q (z) = 3(z2 − 1)

(
z + (−1)q−1

) ((
Vk,lq θ0f

k,l
q

)
(z)−

(
(h(−1)q−1V)θ0g

k,l
q

)
(z)
)

(fk,lq )2(z),

Ck,lq (z) = 3(z2 − 1)
(
z + (−1)q−1

) ((
Vk,lq θ0f

k,l
q

)
(z)−

(
(h(−1)q−1V)θ0g

k,l
q

)
(z)
)2
fk,lq (z),

Dk,l
q (z) = (gk,lq )3(z) + (z2 − 1)

(
z + (−1)q−1

) ((
Vk,lq θ0f

k,l
q

)
(z)−

(
(h(−1)q−1V)θ0g

k,l
q

)
(z)
)3

(z).

(4.14)

On the other hand, according to Lemma 3.2 with v = w, u = Vk,lq , N(z) = 1 and
M(z) = z − c, we obtain

Aw(z) = Ak,lq (z),

Bw(z) = (x− c)Bk,l
q (z)− 3Ak,lq (z),

Cw(z) = (x− c)2Ck,l
q (z)− 2(x− c)Bk,l

q (z) + 3Ak,lq (z),

Dw(z) = (x− c)3Dk,l
q (z)− (x− c)2Ck,l

q (z) + (x− c)Bk,l
q (z)− Ak,lq (z).

Thus, the desired relation holds.

Concluding remarks

In this work we have analyzed an example of strict third degree linear forms which
are also semiclassical of class one. An interesting question is to describe all strict third
degree semiclassical linear forms of class one.
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The preservation of such a family is ensured by rational spectral transformations
of third degree linear forms, as highlighted in [7]. It is important to note, as outlined
in [23], that these transformations encompass Christoffel, Geronimus, association, and
anti-association transformations. Describing the transformations of linear forms that
maintain the third degree character poses an interesting problem.
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