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ON GENERALIZED SHEN’S SQUARE METRIC

Amr Soleiman and Salah Gomaa Elgendi∗

Abstract. In this paper, following the pullback approach to global Finsler geom-
etry, we investigate a coordinate-free study of Shen square metric in a more general
manner. Precisely, for a Finsler metric (M,L) admitting a concurrent π-vector field,

we study some geometric objects associated with L̃(x, y) = (L+B)2

L in terms of the
objects of L, where B is the associated 1-form. For example, we find the geodesic

spray, Barthel connection and Berwald connection of L̃(x, y). Moreover, we calculate

the curvature of the Barthel connection of L̃. We characterize the non-degeneracy

of the metric tensor of L̃(x, y).

1. Introduction

For a Finsler manifold (M,L) and a 1-form β on M , there is a very rich class
of special Finsler spaces called the (α, β)-metrics. Numerous research articles and
applications on these spaces can bound in the literatire, for example, we refer to

[7,10,11,14]. One of these spaces or metrics is the Shen square metric L(x, y) = (α+β)2

α

which plays an important role in Finsler geometry (see [2, 13, 14]).
Generally, the theory of special Finsler spaces is a rich area of research and has

many applications, for example, in Physics and Biology. The π-tensor fields (torsions
and curvatures) related to the Cartan connection satisfy special forms, which is the
source of many special Finsler spaces in Finsler geometry. Several researchers have
studied special Finsler spaces locally, that is, using local coordinates. For instance,
M. Masumoto [1,8,9,18] and others. On the other hand, to the best or our knowledge,
there are few intrinsic investigations of such spaces. A. Tamim, L. Youssef, and others
who made some contributions in this direction (see [15–17,21,24]).

In the study of the (α, β)-metrics, we used to use the notation β for the 1-form giv-
ing on the manifold M . But since in the pullback approach to coordinate-free Finsler
geometry, we use the notation β in the settings of the geometry of that approach, so
in this work we have use another notation for the 1-form. In this paper, we investigate
an intrinsic study of Shen square metric which is a specific (α, β)-metric with replcing
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the Riemannian metric with a Fineslerian one and we call it a generalized Shen square
metric.

In this paper, following the pullback formalism to Finsler geoemtry, we provide a
coordinate-free study of generalized Shen square metric with special one π-form. First,
by the concept of generalized Shen square metric we mean the deformation of a Finsler

metric L (not necessarily Riemannian) by a one form B, that is, L̃ = (L+B)2

L
and L

is Finslerian. Now, in this work, we consider a Finsler space (M,L) that admits a
concurrent π-vector field p, and then we compute the corresponding π-form B := ip g,
where g is the metric tensor of L, and hence the attached one form B(x, y) := B(η).
Then, we we consider the generalized Shen square deformation

(1) L̃(x, y) =
(L(x, y) + B(x, y))2

L(x, y)
.

Within the generalized Shen square metric (1), we calculate intrinsically some

geometric objects attached to L̃. Namely, the supporting form ˜̀, the angular metric

tensors ~̃, the Finsler metric g̃, and the Cartan torsion T̃. Hence, we characterize the
non-degenerate property of the metric tensor g̃, that is, g̃ is non-degenerate if and
only if

L2(1 + 2p2)− 3B2 6= 0,

where p2 := g(p, p).
On the other hand, we obtsin the relationship that relates the two associated

Barthel connections Γ and Γ̃, as well as the corresponding canonical sprays to this

change. Moreover, the curvature tensor for the Barthel connection Γ̃ is investigated.

Also, the associated canonical sprays G and G̃ are related by

G̃ = G− 2L2(2B− L)

L2(1 + 2p2)− 3B2
C +

2L4

L2(1 + 2p2)− 3B2
γp,

where, C is the Liouville vector field.
As an example of a Finsler metric (M,L) that admits a concurrent vector field, let

M = {(x1, x2, x3) ∈ R3 : x2 6= 0} and L be a conic Finsler metric given by

L =

√
x22

(√
y21 + x21y

2
3 + y3

)2

+ y22.

Moreover, the components of the corresponding π-form B are given by B1 =
0, B2 = x2, B3 = 0, and hence the associated one form B(x, y) becomes B(x, y) =
x2y2. Therefore, we have

L̃(x, y) =
(L(x, y) + B(x, y))2

L(x, y)
=

{√
x22

(√
y21 + x21y

2
3 + y3

)2
+ y22 + x2y2

}2

√
x22

(√
y21 + x21y

2
3 + y3

)2
+ y22

,

which defines a special generalized Shen square metric over M = R3.
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2. Notations and Preliminaries

Let M be an n-dimensional differentiable manifold. Assume that the tangent bun-
dle (TM, π,M) and its differential (TTM, dπ, TM). The vertical bundle V (TM) of
TM is denoted by ker(dπ), and the pullback bundle of the tangent bundle is denoted
by π−1(TM). The short exact sequence of vector bundle morphisms is given by [4] as
follows

0 −→ π−1(TM)
γ−→ TTM

ρ−→ π−1(TM) −→ 0,

where TM is the slit tangent bundle, γ is the natural injection and ρ := (πTM , dπ).
The tangent structure J of TM or the vertical endomorphism defined by J =

γ ◦ ρ. Moreover, C∞(TM) denotes the algebra of C∞ functions on TM and X(π(M))
denotes the C∞(TM)-module of smooth sections of the pullback bundle π−1(TM).
The elements of X(π(M)) will referred as π-vector fields and marked by barred letters
X.
The Liouville vector field C is given by C := γ η, where η(u) = (u, u), for all u in the
slit tangent bundle TM := TM\ {0}, and called the fundamental π-vector field .

We recall some basics and facts about the Klein-Grifone formalism to coordinate-
free Finsler geometry. We refer to [4–6], for further information.

A nonlinear connection Γ on a manifold M is a vector 1-form on TM , C∞ on TM ,
and C0 on TM , wherein

JΓ = J, ΓJ = −J.
In this case, the horizontal projector h and the vertical projector v of Γ are defined,
receptively, by

h :=
1

2
(I + Γ), v :=

1

2
(I − Γ).

Also, the torsion t and the curvature R of the connection Γ are given, respectively, by

t :=
1

2
[J,Γ], R := −1

2
[h, h].

Now, for a linear connection D on π−1(TM), the attached connection map K is
given by K : TTM −→ π−1(TM) : X 7−→ DXη. In addition, the horizontal space
Hu(TM) to M at u is Hu(TM) := {X ∈ Tu(TM) : K(X) = 0}. The connection D is
referred to be regular if

Tu(TM) = Vu(TM)⊕Hu(TM) ∀u ∈ TM.

Let D be a regular connection on M , then the maps ρ|H(TM) and K|V (TM) are
vector bundle isomorphisms. In this case, the map β := (ρ|H(TM))

−1 is called the
horizontal map of D.

Let D be a regular connection with the horizontal map β and the attached classical
torsion (resp. curvature) tensor field T (resp. K). Then, the associated covariant
derivatives as well as the torsion and curvature tensors are defined or given as follows:

1. For a π-tensor field A of type (0, p), the h- and v-covariant derivatives
h

D and
v

D
are defined, respectively, by:

(
h

D A)(X,X1, ..., Xp) := (DβXA)(X1, ..., Xp).

(
v

D A)(X,X1, ..., Xp) := (DγXA)(X1, ..., Xp).
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2. The (h)h-torsionQ(X,Y ) := T(βX, βY ), the (h)hv-torsion T (X,Y ) := T(γX, βY ),
and the (h)v-torsion V (X,Y ) := T(γX, γY ).

3. The horizontal curvatureR(X,Y )Z := K(βX, βY )Z, the mixed curvatureR(X,Y )Z :=
K(βX, βY )Z, and the vertical curvature S(X,Y )Z := K(γX, γY )Z.

4. The (v)h-torsion R̂(X,Y ) := R(X,Y )η, the (v)hv-torsion P̂ (X,Y ) := P (X,Y )η,

and the (v)v-torsion Ŝ(X,Y ) := S(X,Y )η.

We define a Finsler manifold as follows.

Definition 2.1. A Finsler manifold (or, Finsler space ) of dimension n is a pair
(M,L), where M is a n-dimensional smooth manifold and L is a map

L : TM −→ R,
such that the following conditions hold:

(a): L(u) > 0 for all u ∈ TM and L(0) = 0,
(b): L is C∞ on TM , C0 on TM ,
(c): L is homogenous of degree 1 in the directional variable y: LCL = L,
(d): The exterior 2-form Ω := ddJE has maximal rank (non-degenerate), where
E := L2/2. The Finsler metric g attached to L on π−1(TM) is defined as
follows

(2) g(ρX, ρY ) := Ω(JX, Y ), ∀X, Y ∈ X(TM).

L is called the Finsler structure and E is the energy function corresponding with L.
We will use the notation (M,L) for a Finsler manifold.

Remark 2.2. When L is defined on a conic subset U of TM (that is, if p ∈ U and
λ > 0, then λp ∈ U), then (M,L) is called conic Finsler manifold.

A semi-spray is a vector field G on TM that is C∞ on TM , and C1 on TM , as
well as JG = C. A spray is a homogeneous semispray G of degree 2 in the directional
argument ([C, G] = G).

Proposition 2.3. [5, 6] For a Finsler space (M,L), we associated

(a): The canonical spray G: iG ddJE = −dE.
(b): The Barthel connection Γ: Γ = [J,G].
Now, we present the following theorem that provides the existence and uniqueness

of Cartan connection.

Theorem 2.4. [22] Let (M,L) be a Finsler space with the attached metric tensor
g to the Finsler function L. Then, (M,L) admits a unique regular connection ∇ with
the properties:

(i): ∇g = 0, that is, ∇ is metrical.
(ii): The (h)h-torsion of ∇ vanishes, that is, Q = 0,
(iii): g(T (X,Y ), Z) = g(T (X,Z), Y ), where the (h)hv-torsion T of ∇.

The connection∇ is referred as the Cartan connection attached to the Finsler space
(M,L).

Let’s provide the following lemma which is required for subsequent use.

Lemma 2.5. [22] Let (M,L) be a Finsler space and β be the horizontal map of the
Cartan connection ∇. Then, the metricity of the Cartan and Berwald connections is
characterized by:
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(a) (D◦
γX
g)(Y , Z) = 2T(X,Y , Z), ∇γX g = 0.

(b) (D◦
βX
g)(Y , Z) = −2P̂(X,Y , Z), ∇βX g = 0.

Where P̂ is the (v)hv-torsion of type (0, 3) defined by P̂(X,Y , Z) := g(P̂ (X,Y ), Z)

and P̂ is the (v)hv-torsion tensor of Cartan connection.

For more details about pullback formalism to coordinate-free Finsler geometry, we
refer for example, to [12,15,19,25,26].

3. Generalized Shen square metric

In this section, we introduce an intrinsic study of Shen square metric in a more
general settings. The study of such kind of Finsler metric in coordinate-free fashion
and to avoid the complications of the coordinate-free formalae, we restrict ourselves
to a special 1-form. Precisely, we present the following definition.

Definition 3.1. Assume that the Finsler space (M,L) provides a concurrent π-
vector field p(x) with the associated π-form B. Consider the following deformation

(3) L̃(x, y) =
(L(x, y) + B(x, y))2

L(x, y)
,

with B(x, y) := g(p, η) =: B(η), and g is the metric tensor attached to L. Assuming

that L̃ is Finsler structure on M ,then it will be called a generalized Shen square
metric.

In [23], Nabil et al. investigated the concept of a concurrent π-vector field, intrinsi-
cally, in Finsler geometry. Furthermore, some geometric consequences and properties
of concurrent π-vector fields are established. We review the definitions and features
of the concurrent π-vector field and its corresponding π-form.

Definition 3.2 ( [23]). Assume (M,L) is a Finsler space. A concurrent π-vector
field is a π-vector field p ∈ X(π(M)) such that

(4) ∇βX p = −X = D◦
βX

p, ∇γX p = 0 = D◦
γX
p.

Moreover, if B is the π-form attached to p obtained by the metric tensor g: B = ip g,
then the π-form B satisfies the properties

(∇βXB)(Y ) = −g(X,Y ) = (D◦
βX

B)(Y ), (∇γXB)(Y ) = 0 = (D◦
γX

B)(Y ).

Definition 3.3 ( [23]). Assume that (M,L) is a Finsler space with the Berwald
connection D◦ on π−1(TM). Then, a π vector field Y does not dependent on the
directional variable y if and only if D◦

γX
Y = 0 for all X ∈ X(π(M)). Furthermore,

a scalar ( vector) π-form ω does not dependent on the directional variable y if, and
only if, D◦

γX
ω = 0 for all X ∈ X(π(M)).

Theorem 3.4 ( [23]). The concurrent π-vector field p and the attached π-form B
do not depend on the direction y.
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3.1. The metric and Cartan tensors of L̃. In this subsection, we calculate some

geometric objects associated to L̃(x, y) in terms of the objects attached to the Finsler
structure L. We need the following lemma.

Lemma 3.5. Under every change L 7→ L̃, the vertical counterpart for Berwald

connection D◦
γX
Y is invariant. i.e. D̃◦

γX
Y = D◦

γX
Y .

Proof. Under every change L 7→ L̃, the difference between the horizontal maps β̃

and β is vertical, that is β̃ = β + γµ, for some π-vector field µ. Hence, the proof
follows from the facts that [22]

D◦
γX
Y = ρ[γX, βY ],

together with the fact that ρ◦γ vanishes identically and that the vertical distribution
is integrable.
In more details

D̃◦
γX
Y = ρ[γX, β̃Y ] = ρ[γX, βY ] + ρ[γX, γµ] = ρ[γX, βY ] = D◦

γX
Y .

Hence, the result follows.

Lemma 3.6. Let (M,L) be a Finsler space providing a concurrent π-vector field
p(x) with the associated π-form B. Then, we have

(a): dJB(γX) = 0, D◦
γX

B = dB(γX) = dJB(βX) = B(X).

(b): dJ L(γX) = 0, D◦
γX
L = dL(γX) = dJ L(βX) = `(X).

(c): dhB(βX) = D◦
βX

B = dB(βX) = −L `(X), dB(G) = −L2

(d): dh L(βX) = D◦
βX

L = dL(βX) = 0.

(e): (D◦
γX
`)(Y ) = (∇γX `)(Y ) = L−1~(X,Y ).

(f): ddJE(γX, βY ) = g(X,Y ).

Where g is the Finser metric defined by the Finsler structure L, and ` is the normalized
supporting element defined by ` := L−1iη g .

Proof. We prove only the items (a) and (c) as follows: According to the facts that

ρ ◦ γ and K ◦ β vanish identically, ρ ◦ β = idX(π(M)), iηT = 0 = iηP̂, taking into
account Definition 3.2 and Lemma 2.5, we obtain

(a)

dJB(γX) = (J ◦ γX) ·B = γ (ρ ◦ γ)X ·B = 0.

dJB(βX) = J (βX ·B) = γ (ρ ◦ β)X ·B = γX ·B
= γX · g(p, η) = (D◦

γX
g)(p, η) + g(D◦

γX
p, η) + g(p,D◦

γX
η)

= 2T(X, p, η) + 0 + g(P ,X)

= B(X).
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(c)

dhB(βX) = (β ◦ ρ ◦ βX) ·B = βX ·B = dB(βX)

= βX · g(p, η) = (D◦
βX

g)(p, η) + g(D◦
βX

p, η) + g(p,D◦
βX
η)

= −2P̂(X, p, η)− g(X, η) + 0

= −L `(X).

dB(G) = −L `(η) = −L2.

This completes the proof.

Calculating the change of the normalized supporting element ` as well as the change
of the angular metric tensor ~, under the (3), we obtain the following formulas.

Proposition 3.7. Under the generalized Shen square metric (3), we have

1. The supporting element ˜̀has the formula

(5) ˜̀(X) = (1− B2

L2
) `(X) +

2(L+ B)

L
B(X).

2. The angular metric tensors ~̃ is determined by

~̃(X,Y ) =
(L−B)(L+ B)3

L4
~(X,Y ) +

2(L+ B)2

L2
B(X)B(Y )

+
2B2(L+ B)2

L3
`(X) `(Y )

−2B(L+ B)2

L3

{
B(X) `(Y ) + B(Y ) `(X)

}
.(6)

Proof. Under the generalized Shen square metric (3), and taking into account
Lemma 3.6, we have

1). Using the facts that ρ ◦ γ = 0 and that ρ ◦ β = ρ ◦ β̃ = idX(π(M)), we get

˜̀(X) = dJ L̃(β̃X) = dJ L̃(βX)

=
∂L̃

∂L
dJL(βX) +

∂L̃

∂B
dJB(βX)

= (1− B2

L2
) `(X) +

2(L+ B)

L
B(X).

2). In view of item 1.) above, Lemma 3.6(e), together with Lemma 3.5, and Definition
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3.2, one obtain

~̃(X,Y ) = L̃(D̃◦
γX
˜̀)(Y ) = L̃(D◦

γX
˜̀)(Y )

= L̃D◦
γY

{
(1− B2

L2
) `(Y ) +

2(L+ B)

L
B(Y )

}
= L̃

{
(D◦

γX
(1− B2

L2
)) `(Y ) + (D◦

γX

2(L+ B)

L
)B(Y )

}
+L̃

{
(1− B2

L2
) (D◦

γX
`)(Y ) +

2(L+ B)

L
(D◦

γX
B)(Y )

}
=

(L+ B)2

L
{(2B2

L3
`(X)− 2B

L2
B(X)) `(Y )

+(−2B

L2
`(X) +

2

L
B(X))B(Y )}

+
(L+ B)2

L

{
(1− B2

L2
) (L−1 ~(X,Y ) + 0

}
.

Hence, the result follows.

Now, we provide the relationship between the metric tensors g and g̃ attached to

the Finsler structures L and L̃, respectively.

Proposition 3.8. The Finsler metric g̃ associated with the special generalized
Shen square metric (3) is given by the following relation:

g̃(X,Y ) =
(L−B)(L+ B)3

L4
g(X,Y ) +

6(L+ B)2

L2
B(X)B(Y )

+
2B(2B− L)(L+ B)2

L4
`(X) `(Y ) +

6(L+ B)2

L2

{
B(X) `(Y ) + B(Y ) `(X)

}
.

Consequently, the Cartan torsion T̃ of the special generalized Shen square metric has
the form

2T̃(X,Y , Z) = 2
(L−B)(L+ B)3

L4
T (X,Y , Z)

+
2B(2B− L)(L+ B)2

L5
{~(X,Z) `(Y ) + ~(Y , Z) `(X)}

+
6(L+ B)2

L3

{
B(X) ~(Y , Z) + B(Y ) ~(X,Z)

}
+

(
D◦
γZ

(L−B)(L+ B)3

L4

)
g(X,Y ) + (D◦

γZ

6(L+ B)2

L2
)B(X)B(Y )

+

(
D◦
γZ

2B(2B− L)(L+ B)2

L4

)
`(X) `(Y )

+

(
D◦
γZ

6(L+ B)2

L2

){
B(X) `(Y ) + B(Y ) `(X)

}
.

where D◦
γX
f(L,B) = dJf(βX) = ∂f

∂L
`(X) + ∂f

∂B
B(X) and T is the (h)hv-torsion of

the attached Cartan connection to the metric L.
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Proof. In view of the generalized Shen square metric (3), and using Proposition
3.7, we obtain

˜̀(X) = (1− B2

L2
) `(X) +

2(L+ B)

L
B(X).

~̃(X,Y ) =
(L−B)(L+ B)3

L4
~(X,Y ) +

2(L+ B)2

L2
B(X)B(Y )

+
2B2(L+ B)2

L3
`(X) `(Y )− 2B(L+ B)2

L3

{
B(X) `(Y ) + B(Y ) `(X)

}
.

Hence, using the definition of the angular metric tensor ~̃ := g̃ − ˜̀⊗ ˜̀, we have

g̃(X,Y ) =
(L−B)(L+ B)3

L4
~(X,Y ) +

2(L+ B)2

L2
B(X)B(Y )

+
2B2(L+ B)2

L3
`(X) `(Y )− 2B(L+ B)2

L3

{
B(X) `(Y ) + B(Y ) `(X)

}
+

{
(1− B2

L2
) `(X) +

2(L+ B)

L
B(X)

}{
(1− B2

L2
) `(Y ) +

2(L+ B)

L
B(Y )

}
=

(L−B)(L+ B)3

L4
g(X,Y ) +

6(L+ B)2

L2
B(X)B(Y )

+
2B(2B− L)(L+ B)2

L4
`(X) `(Y ) +

6(L+ B)2

L2

{
B(X) `(Y ) + B(Y ) `(X)

}
.

Consequently, using the expression of the metric g̃, taking into account Lemma 2.5

(a), it follows the expression of the Cartan torsion T̃ of the generalized Shen square
metric.

Theorem 3.9. The metric tensor g̃ of L̃ is non-degenerate if and only if

(7) L2(1 + 2p2)− 3B2 6= 0.

That is, the generalized Shen square metric is a Finsler structure (or, conic Finsler
structure) if and only if the condition (7) is satisfied.

Proof. Assume that the Finsler metric g̃ associated with the generalized Shen
square metric, defined by (3), is non-degenerate. Now, let g̃(X,Y ) = 0 for all
X ∈ X(π(M)). By using Proposition 3.8, we obtain

0 =
(L−B)(L+ B)3

L4
g(X,Y ) +

6(L+ B)2

L2
B(X)B(Y )

+
2B(2B− L)(L+ B)2

L4
`(X) `(Y ) +

6(L+ B)2

L2

{
B(X) `(Y ) + B(Y ) `(X)

}
.

From which, by substituting X = p, noting that `(p) = B
L

and B(p) = g(p, p) =: p2,
one can show that

(8) A1 `(Y ) +B1B(Y ) = 0,

where

A1 :=
2(2B− L)(B + L)2(B− Lp)(B + Lp)

L5

B1 :=
(B + L)2 (−5B2 + 2BL+ L2 (6p2 + 1))

L4
.
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Similarly, by substituting X = η, taking the facts that `(η) = L and B(η) = B into
account, we obtain

(9) A2 `(Y ) +B2B(Y ) = 0,

with

A2 := −(B− L)(B + L)3

L3
,

B2 :=
2(B + L)3

L2
.

Now, the system of the algebraic equations (8) and (9) has non-trivial solution if
and only if

(B + L)6 (L2(1 + 2p2)− 3B2)

L7
= 0.

Hence, as L̃ 6= 0 over TM , then we conclude that L2(1 + 2p2)− 3B2 = 0.
Consequently,

Y 6= 0 ⇐⇒ L2(1 + 2p2)− 3B2 = 0.

Therefore, Y = 0 if and only if the Finsler structure L and the π-form B satisfy the
condition

L2(1 + 2p2)− 3B2 6= 0.

This means that the generalized Shen square metric tensor g̃ is non-degenerate if and
only if the condition (7) is satisfied. Hence, the proof is completed.

Form now on, we consider that the generalized Shen square metric L̃ satisfies the
condition (7).

4. Geodesic spray and Berwald connection

In this section, we find the relationship between the canonical (geodesic) spray G̃

of L̃ in terms of the geodesic spray G of L. Precisely, we have one of the main results
in this work.

Theorem 4.1. The canonical spray G̃ associated with the generalized Shen square
metric (3) is given by

G̃ = G− 2L2(2B− L)

L2(1 + 2p2)− 3B2
C +

2L4

L2(1 + 2p2)− 3B2
γp,

where, C is the Liouville vector field defined by C := γ η and p2 := B(p) = g(p, p).

Proof. Due to the generalized Shen square metric (3), taking into account the

expression of the exterior π-form Ω̃ := 1
2
ddJ L̃

2, the fact that the difference between

two sprays is vertical (i.e. G̃ = G+γµ, for some π-vector field µ) and using Proposition
2.3, one can show that

(10)
−dẼ(X) = iG̃ Ω̃(X) = iG+γµ (1

2
ddJ L̃

2)(X)

= 1
2
iG ddJ L̃

2(X) + 1
2
iγµ ddJ L̃

2(X).
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Therefore, after some computation and using the fact that βη = G and X = hX +
vX = βρX + γKX, together with Lemma 3.6, we have

dẼ(X) =
1

2
dL̃2(X) = L̃ dL̃(X)

=
(L+ B)2

L

{
(1− B2

L2
) dL(X) +

2(L+ B)

L
dB(X)

}
=

(L+ B)2(L2 −B2)

L3
dL(X) +

2(L+ B)3

L2
dB(X),

1

2
iG ddJ L̃

2(X) =
1

2
{ddJ L̃2(βη,X)}

=
1

2

{
G · dJ L̃2(X)−X · dJ L̃2(G)− dJ L̃2[G,X]

}
(11)

=
1

2

{
G · (2L̃˜̀(ρX))−X · (2L̃˜̀(η))− 2L̃`(ρ[G,X])

}
= ((G · L̃) ˜̀(ρX) + L̃ G · ˜̀(ρX))− (X · L̃2)− L̃ `(ρ[G,X]).

Moreover, we have

G · L̃ = dL̃(G) = (1− B2

L2
) dL(G) +

2(L+ B)

L
dB(G) = −2L(L+ B)

X · L̃ = dL̃(X) = (1− B2

L2
) dL(X) +

2(L+ B)

L
dB(X)

˜̀(X) = (1− B2

L2
) `(X) +

2(L+ B)

L
B(X),

ρ[G,X] = ρ[G, hX + vX] = D◦GρX −KX,
(D◦GB)(X) = −g(X, η) = −L `(X),

(D◦G `)(X) = (∇G `)(X) = 0,

dB(X) = B(KX)− L`(ρX),

dL(X) = dL(γKX) = `(KX),

Now, using the above facts and Lemma 3.6, (11) reduces to

1

2
iG ddJ L̃

2(X) = −2L(L+ B) (1− (
B2

L2
) `(ρX) +

2(L+ B)

L
B(ρX))

+
(L+ B)2

L
G ·
(

(L2 −B2)

L2
`(ρX) +

2(L+ B)

L
B(ρX)

)
−2

(L+ B)2

L

(
(L2 −B2)

L2
dL(X) +

2(L+ B)

L
dB(X)

)
−(L+ B)2

L

(
(L2 −B2)

L2
`(ρ[G,X]) +

2(L+ B)

L
B(ρ[G,X])

)
= 2(2B− L)(L+ B)2`(ρX)− 6(L+ B)2B(ρX)

−(L+ B)2

L

(
(L2 −B2)

L2
dL(X) +

2(L+ B)

L
dB(X)

)
.
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On the other hand, using Proposition 3.8, we have

1

2
iγµ ddJ L̃

2(X) = g̃(µ, ρX)

=
(L−B)(L+ B)3

L4
g(X,Y ) +

6(L+ B)2

L2
B(X)B(Y )

+
2B(2B− L)(L+ B)2

L4
`(X) `(Y ) +

6(L+ B)2

L2

{
B(X) `(Y ) + B(Y ) `(X)

}
.

Plugging the last two relations into Equation (10), after some calculation, it follows
that

−(L+ B)2

L

{
(L2 −B2)

L2
dL(X) +

2(L+ B)

L
dB(X)

}
= 2(2B− L)(L+ B)2`(ρX)− 6(L+ B)2B(ρX)

−(L+ B)2

L

(
(L2 −B2)

L2
dL(X) +

2(L+ B)

L
dB(X)

)
+

(L−B)(L+ B)3

L4
g(X,Y ) +

6(L+ B)2

L2
B(X)B(Y )

+
2B(2B− L)(L+ B)2

L4
`(X) `(Y ) +

6(L+ B)2

L2

{
B(X) `(Y ) + B(Y ) `(X)

}
Using the non-degeneracy of the Finsler metric g, the above relation takes the form

(L−B)(L+ B)3

L4
µ = {2(L− 2B)(L+ B)2

L
− 2(L− 2B)(L+ B)2

L3
B(µ)

+
2B(L− 2B)(L+ B)2

L5
`(µ)}η + {6(L+ B)2 − 6(L+ B)2

L2
B(µ)

+
2(2B− L)(L+ B)2

L2
`(µ)}p.(12)

where `(µ) and B(µ) are geometric quantities determined by the following two equa-
tions

(L−B)(L+ B)3

L4
`(µ) +

2(L+ B)3

L3
B(µ) =

2(L+ B)3

L
,

2(2B− L)(L+ B)2(B2 − L2 p2)

L5
`(µ) +

(L+ B)2(−5B2 + 2BL+ L2(1 + 6p2))

L4
B(µ)

=
2(L+ B)2(B(L− 2B) + 3L2 p2)

L2
,(13)

where p2 := B(p). Solving the above system, we get

`(µ) =
2L3(B− L)

3B2 − L2 (2p2 + 1)
,

B(µ) =
2L2 (−2B2 + BL+ L2p2)

L2 (2p2 + 1)− 3B2
.

Consequently, in view of Equation (12) taking the fact that G̃ = G+γµ into account,

it follows that the canonical sprays G and G̃, are related by

G̃ = G− 2L2(2B− L)

L2(1 + 2p2)− 3B2
C +

2L4

L2(1 + 2p2)− 3B2
γp.
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Hence, the proof is completed.

Now, we are in aposition to find the relationship that relates the two attached

Barthel connections Γ and Γ̃. That is, we have the following theorem.

Theorem 4.2. The Barthel connection Γ̃ associated with the generalized Shen
square metric (3) is given by

Γ̃ = Γ− λ1 J − dJλ1 ⊗ γη + dJλ2 ⊗ γp,

where

λ1 :=
2L2(2B− L)

L2(1 + 2p2)− 3B2
,

λ2 : =
2L4

L2(1 + 2p2)− 3B2
.

Consequently, the horizontal map β̃ associated with the generalized Shen square
metric has the form

β̃X = βX − 1

2

{
λ1 γX + dJλ1(βX) γη − dJλ2(βX) γp

}
.

Proof. From Theorem 4.1 and the fact that

[fX, J ] = f [X, J ] + df ∧ iXJ − dJf ⊗X,

one can show that

Γ̃ = [J, G̃] = [J,G− λ1 γη + λ2γp] = [J,G] + [λ1 γη − λ2γp, J ]

= [J,G] + λ1[γη, J ] + dλ1 ∧ iγη J − dJλ1 ⊗ γη
−λ2[γp, J ]− dλ2 ∧ iγp J + dJλ2 ⊗ γp.

On the other hand, we obtain

dJp
2 = 0

iγη J = 0 = iγp J, (as J ◦ γ = 0),

whereas

[γp, J ]X = [γp, JX]− J [γp,X]

= γ{∇γp ρX −∇JX p} − γ{∇γp ρX − T (p, ρX)} = 0.

[γη, J ]X = −JX.
Therefore,

Γ̃ = Γ− λ1 J − dJλ1 ⊗ γη + dJλ2 ⊗ γp.
Consequently, using the fact that Γ = 2β ◦ ρ − I, the horizontal map β̃ associated
with the special generalized Shen square metric has the form

β̃X = βX − 1

2

{
λ1 γX + dJλ1(βX) γη − dJλ2(βX) γp

}
.

This completes the proof.
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Theorem 4.3. The Barthel curvature tensor <̃ associated with the generalized
Shen square metric (3) is determined by

<̃ = <− [h,L]−NL,

where NL := 1
2
[L,L] is the Nijenhuis torsion of a vector 1-form L defined by

(14) L := −1

2
{λ1 J + dJλ1 ⊗ γη − dJλ2 ⊗ γp} .

Proof. By using Theorem 4.2, we conclude that the horizontal projection h̃ and
vertical projection ṽ associated with the special generalized Shen square metric has
the form

h̃ = h+ L, ṽ = v − L,

where L is defined by (14). Hence, the Nijenhuis torsion [3] of a vector 1-form L is
given by

NL :=
1

2
[L,L](X, Y ) = [LX,LY ] + L2[X, Y ]− L[LX, Y ]− L[X,LY ].

Now, the proof is attained by the fact that <̃ = −1
2
[h̃, h̃], and taking into account the

properties of the Frölicher-Nijenhuis bracket.

The Berwald vertical counterpart is given by Lemma 3.5 and the Berwald horizontal
counterpart is given by the following proposition.

Proposition 4.4. For the generalized Shen square metric (3), the Berwald hori-
zontal counterpart is given by

D̃◦β̃X Y = D◦βXY −
1

2
{λ1D◦γX Y + dJλ1(βX)D◦γη Y

−dJλ1(βX)Y − dJλ1(βY )X − dJλ2(βX)D◦γp Y }

+
1

2

{
ddJλ1(γY , βX) η − ddJλ2(γY , βX)) p

}
.

Proof. The proof can obtained by using the fact that v := γ ◦ K, h := β ◦ ρ,
γD◦hX Y := v[hX, JY ] and D◦γX ρY := ρ[γX, βY ] ( [22, Proposition 4.4]), taking

into account Theorem 4.3, and the facts that the map γ : π−1(TM) → V TM is an

isomorphism, the Berwlad (v)v-curvature S̃◦ = 0 , [JX, JY ] = J [X, JY ] + J [JX, Y ],
vJ = J and Jv = 0.
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In more details.

γD̃◦hX ρY = ṽ[hX, JY ] = (v − L)[hX + LX, JY ]

= v[hX, JY ] + v[LX, JY ]− L[hX, JY ]− L[LX, JY ]

= γD◦hXY −
γ

2
{λ1K[ JX, JY ] + dJλ1(X)K[ γη, JY ]− dJλ2(X)K[ γp, JY ]}

+
γ

2
{(JY · λ1) ρX + (JY · dJλ1(X)) η − (JY · dJλ2(X)) p}

+
γ

2
{λ1 ρ([hX, JY ]) + dJλ1([hX, JY ]) η − dJλ2([hX, JY ]) p}

= γD◦hXρY −
γ

2
{λ1D◦JX ρY + dJλ1(X)D◦γη ρY

−dJλ1(X) ρY − dJλ1(Y ) ρX − dJλ2(X)D◦γp ρY }

+
γ

2
{ddJλ1(JY,X) η − ddJλ2(JY,X)) p} .

Consequently,

D̃◦β̃X Y = D◦βXY −
1

2
{λ1D◦γX Y + dJλ1(βX)D◦γη Y

−dJλ1(βX)Y − dJλ1(βY )X − dJλ2(βX)D◦γp Y }

+
1

2

{
ddJλ1(γY , βX) η − ddJλ2(γY , βX)) p

}
.

This ends the proof.

We end our work by giving an example of a Finsler space that providing a con-
current π-vector field, and computing the π-form that corresponds and it should be
remarked that the presence of a concurrent vector field on Finsler spaces has been
established first by Tachibana [20]. Also, a generalization of a concurrent vector field,
called a semi-concurrent vector field, has been introduced in [28].

Example 4.5. Let M = {(x1, x2, x3) ∈ R3 : x2 6= 0} and L be given by

L =

√
x22

(√
y21 + x21y

2
3 + y3

)2

+ y22.

The corresponding components gij of the metric tensor are given by

g11 =
x22 (x21 y

3
3 +

√
y21 + x21 y

2
3 (x21 y

2
3 + y21))

(y21 + x21 y
2
3)3/2

,

g22 = 1, g13 =
x22 y

3
1

(y21 + x21 y
2
3)3/2

,

g33 =
x22 ( 2x41 y

3
3 + 3x21y

2
1y3 +

√
y21 + x21 y

2
3 (x41 y

2
3 + x21y

2
1 + x21y

2
3 + y21))

(y21 + x21 y
2
3)3/2

.

Also, the corresponding components Cijk of the Cartan tensor are calculated as follows

C111 = −3

2

x21 x
2
2 y1 y

3
3

(y21 + x21 y
2
3)5/2

, C113 =
3

2

x21 x
2
2 y

2
1 y

2
3

(y21 + x21 y
2
3)5/2

C133 = −3

2

x21 x
2
2 y

3
1 y3

(y21 + x21 y
2
3)5/2

, C333 =
3

2

x21 x
2
2 y

4
1

(y21 + x21 y
2
3)5/2

.
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The components gij of the inverse metric tensor are given as follows

g11 =
x61y

4
3 + 2x41y

2
1y

2
3 + x21y

4
1 + x41y

4
3 + 2x1y

2
1y

2
3 + y41 +

√
y21 + x21y

2
3(2x41y

3
3 + 3x21y

2
1y3)

x22x
2
1(
√
y21 + x21y

2
3(3x21y

3
3 + 3y21y3 + y33) + x41y

4
3 + 2x21y

2
1y

2
3 + 3x21y

4
3 + y41 + 3y21y

2
3)
,

g13 =
−y31

√
y21 + x21y

2
3

x22x
2
1(
√
y21 + x21y

2
3(3x21y

3
3 + 3y21y3 + y33) + x41y

4
3 + 2x21y

2
1y

2
3 + 3x21y

4
3 + y41 + 3y21y

2
3)
,

g33 =
x41y

4
3 + 2x21y

2
1y

2
3 + y41 + x21y

3
3

√
y21 + x21y

2
2

x22x
2
1(
√
y21 + x21y

2
3(3x21y

3
3 + 3y21y3 + y33) + x41y

4
3 + 2x21y

2
1y

2
3 + 3x21y

4
3 + y41 + 3y21y

2
3)
,

g22 = 1.

Straightforward calculations by using the Finsler package [27] and to avoid compli-
cated or big formulas, we list the required coefficients of Cartan connection, precisely:

Γ1
12 =

1

x2
, Γ3

23 =
1

x2
, Γ2

22 = 0.

Since we have piCijk = 0 and

p1|1 = δ1p
1 + p1Γ1

11 + p2Γ1
12 + p3Γ1

13 = 1,

similarly, p2|2 = 1, p3|3 = 1 and all other components of pi|j vanish, then we conclude

that this metric provides a concurrent π-vector field given by p = pi∂i, where ∂i are
the basis of fibers of π−1(TM), p1(x) = 0, p2(x) = x2, p

3(x) = 0.
Now, the components of the corresponding π-form B are given by B1 = 0, B2 =
x2, B

3 = 0, and hence the associated one form B becomes B(x, y) = x2y2. Therefore,
we have

L̃(x, y) =
(L(x, y) + B(x, y))2

L(x, y)
=

{√
x22

(√
y21 + x21y

2
3 + y3

)2
+ y22 + x2y2

}2

√
x22

(√
y21 + x21y

2
3 + y3

)2
+ y22

,

which defines a generalized Shen square metric over M = R3.

Concluding remark
It is worth mentioning that the Shen square metric has many applications, and in
the near future, as a continuation of this work, we will investigate intrinsically some
geometric consequences for this metric related to some applications.
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