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A NOTE ON FOUR DIMENSIONAL SUMMABILITY METHODS

Medine Yeşilkayagil Savaşcı

Abstract. Ishiguro studied some two dimensional summability methods in [7]. In
this paper, we define the four dimensional Zweier matrix and extend the results given
by Ishiguro [7] to four dimensional summability methods. We prove that an Abel
summable double sequence is also summable the product of Abel and Zweier meth-
ods to the same limit. Besides this, we show the four dimensional Riesz and Zweier
methods don’t imply each other. In addition, we emphasize the four dimensional
Zweier method implies the four dimensional Borel method.

1. Introduction

We denote the set of all complex valued double sequences by Ω which is a vector
space with coordinatewise addition and scalar multiplication. Any vector subspace of
Ω is called as a double sequence space. Consider the sequence z = (zkl) ∈ Ω. If for
every ε > 0 there exists n0 = n0(ε) ∈ N and α ∈ C such that |zkl − α| < ε for all
k, l > n0, then we call that the double sequence z is convergent in the Pringsheim’s
sense (or p−convergent) to the limit α and write p− lim

k,l→∞
zkl = α; where C denotes

the complex field, [13]. The sequence z is called p−null whenever the limit α is zero.
Also, we denote the space of p−null sequences by Cp0.

Let (qk), (tl) be two sequences of non-negative numbers which are not all zero and

Qm =
m∑
k=0

qk, q0 > 0, Tn =
n∑
l=0

tl, t0 > 0. Then, the sequence {(Rqta)mn} given by

(Rqta)mn =
1

QmTn

m∑
k=0

n∑
l=0

qktlakl for all m,n ∈ N(1)

is called the Riesz transform of a double sequence a = (akl). The Riesz mean Rqt

with respect to the sequences q = (qk) and t = (tl) is RH-regular if and only if
lim
m→∞

Qm = ∞ and lim
n→∞

Tn = ∞, [19]. If p − lim(Rqta)mn = α, α ∈ C, then the

sequence a = (akl) is said to be Riesz convergent to α, [1]. Note that in the case
qk = 1 for all k ∈ N and tl = 1 for all l ∈ N, the Riesz mean Rqt reduces to the four
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dimensional Cesàro mean C(1, 1) = (cmnkl) of orders 1 and 1 defined as follows;

cmnkl =

{
1

(m+1)(n+1)
, 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0 , otherwise

for all m,n, k, l ∈ N, [11].
The four dimensional Borel method B is given by the matrix

bmnkl =
e−(m+n)mknl

k!l!

for all m,n, k, l ∈ N, (see [12]).
Now, we define the four dimensional Zweier method Z given by the matrix Z =

(zmnkl) as follows;

zmnkl =

{
1/4 , m− 1 ≤ k ≤ m, n− 1 ≤ l ≤ n,
0 , otherwise

for all m,n, k, l ∈ N.
If we take the sequences (qk) and (tl) as

qk =

{
1 , m− 1 ≤ k ≤ m,
0 , otherwise

and tl =

{
1 , n− 1 ≤ l ≤ n,
0 , otherwise

for all m,n, k, l ∈ N in the relation (1), we obtain the method Z.
Let D = (dmnkl) be a four dimensional matrix and z = (zkl) ∈ Ω. Then, the double

sequence Dz = {(Dz)mn} is called the D−transform of the sequence z, where

(Dz)mn =
∑
k,l

dmnklzkl

such that the series on the right side converges for each m,n ∈ N. We say that a
double sequence z is D summable to the limit α if the D−transform Dz exists for
each m,n ∈ N and is convergent in the Pringsheim’s sense, that is,

p− lim
r,s→∞

r∑
k=0

s∑
l=0

dmnklzkl = (Dz)mn and p− lim
m,n→∞

(Dz)mn = α.(2)

Taking the matrices Rqt, C(1, 1), B and Z instead of the matrix D in the relation (2),
respectively, we have Rqt summable, C(1, 1) summable, B summable and Z summable.

Karaev and Zeltser [8] gave the definition of Abel summability of a double se-
quence as: A double sequence (akl) is Abel summable (shortly A summable) to α if∑∞

i,j=0 aijx
iyj converges for all x, y ∈ (0, 1) and

lim
(x,y)→(1−,1−)

(1− x)(1− y)
∑
i,j

aijx
iyj = α.

Following Karaev and Zeltser [8], we easily say that a double sequence (akl) is A.Z
summable to α if the series

∑∞
i,j=0 aijx

iyj converges for all x, y ∈ (0, 1) and

lim
(x,y)→(1−,1−)

(1− x2)(1− y2)
4

∞∑
i,j=0

aijx
iyj = α.

A four dimensional matrix D is said to be RH-regular if it maps every bounded p-
convergent sequence into a p-convergent sequence with the same p-limit (see Robison
[14]).
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Robison and Hamilton presented a Silverman-Toeplitz type multidimensional char-
acterization of regularity in [14] and [6], respectively.

Theorem 1.1. [6,14] A four dimensional matrix A = (amnkl) is RH-regular if and
only if

RH1 : p− lim
m,n→∞

amnkl = 0 for each k, l ∈ N,

RH2 : p− lim
m,n→∞

∑
k,l

amnkl = 1,

RH3 : p− lim
m,n→∞

∑
k

|amnkl| = 0 for each l ∈ N,

RH4 : p− lim
m,n→∞

∑
l

|amnkl| = 0 for each k ∈ N,

RH5 :
∑
k,l

|amnkl| is p-convergent,

RH6 : There exists finite positive integers M and N such that
∑
k,l>N

|amnkl| < M.

The two dimensional Zweier matrix as a summability method was studied by Szász
[15] and Szász used the notation Y instead of the notation Z in [15]. Following Szász,
Ishiguro [7] also studied this method. Our aim is to extend the results in Ishiguro [7]
from two dimensional summability methods to four dimensional summability methods
mentioned above.

Throughout the paper, we take akl = 0 for negative index. For relevant terminology
and related topics on the normed/paranormed spaces of double sequences and the
domain of triangle matrices in those spaces, and the matrix transformations, the
reader can refer to Başar [2] and Başar and Yeşilkayagil Savaşcı [3].

2. Main results

Theorem 2.1. If a double sequence (akl) is Abel summable to α, then it is also
summable A.Z to the same limit.

Proof. Assume that the double sequence (akl) is Abel summable to α, that is, the
limit

lim
(x,y)→(1−,1−)

(1− x)(1− y)
∑
i,j

aijx
iyj = α
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holds for all x, y ∈ (0, 1). Let umn = (Za)mn = 1
4

m∑
k=m−1

n∑
l=n−1

akl for all m,n ∈ N.

Then, we have
∞∑

i,j=0

uijx
iyj =

∞∑
i,j=0

ai−1,j−1 + ai−1,j + ai,j−1 + aij
4

xiyj

=
1

4

 ∞∑
i,j=1

ai−1,j−1x
iyj +

∞∑
i=1

∞∑
j=0

ai−1,jx
iyj +

∞∑
i=0

∞∑
j=1

ai−1,jx
iyj +

∞∑
i,j=0

aijx
iyj


=

xy + x+ y + 1

4

∞∑
i,j=0

aijx
iyj

=
(1 + x)(1 + y)

4

∞∑
i,j=0

aijx
iyj(3)

and so

lim
(x,y)→(1−,1−)

(1− x)(1− y)

∞∑
i,j=0

uijx
iyj = lim

(x,y)→(1−,1−)

(1− x)(1− y)(1 + x)(1 + y)

4

∞∑
i,j=0

aijx
iyj

= α.

This completes the proof.

Theorem 2.2. If a double sequence (akl) satisfies p − lim
k,l→∞

aklx
kyl = 0 for all

x, y ∈ (0, 1), and if (akl) is summable A.Z to α, then it is summable A to the same
value.

Proof. The proof is obvious from the assumption and the relation (3).

Theorem 2.3. Rqt does not imply Z.

Proof. Define the double sequence (akl) by

akl :=

{
1 , k = 3r or l = 3s,
0 , otherwise

where r, s ∈ N. Then, we have the equality

p− lim
m,n→∞

(Rqta)mn := p− lim
m,n→∞

1

QmTn

m∑
k=0

n∑
l=0

qktlakl = 0

for each m,n ∈ N. But,

(Za)mn =


1/4 , m = n = 0,
3/4 , m = 1, and n ∈ {3s, 3s+ 1},
1/2 , m = 1, and n = 3s+ 2,
1/2 , m ∈ {2, 3, 4, ...} and n ∈ {3s, 3s+ 2},
0 , m ∈ {2, 3, 4, ...} and n = 3s+ 2,

for all m,n, s ∈ N. Hence, the sequence {(Za)mn} has two limit points as m,n→∞
and so it is not p−convergent. Thus, the proof is completed.

Now, we can give the following corollary as a direct consequence of Theorem 2.3:

Corollary 2.4. C(1, 1) does not imply Z.

Theorem 2.5. Z does not imply Rqt.
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Proof. Define the double sequence (akl) by

akl :=

{
qktl , 0 ≤ k ≤ m and 0 ≤ l ≤ n,
0 , otherwise

where k, l,m, n ∈ N. For sufficiently large m and n, we have that

p− lim
m,n→∞

(Za)mn = 0.

But, we easily obtain that

p− lim
m,n→∞

(Rqta)mn = p− lim
m,n→∞

1

QmTn

m∑
k=0

n∑
l=0

aklqktl

= p− lim
m,n→∞

1

QmTn

m∑
k=0

q2k

n∑
l=0

t2l =∞.

This completes the proof.

Corollary 2.6. Z does not imply C(1, 1).

Proof. If we take the double sequence (akl) by

akl :=

{
kl , 0 ≤ k ≤ m and 0 ≤ l ≤ n,
0 , otherwise

we obtain the desired result in a similar way to the proof of Theorem 2.5.

Theorem 2.7. Z implies B.

Proof. Let umn = (Za)mn = 1
4

m∑
k=m−1

n∑
l=n−1

akl for all m,n ∈ N. Then, we have

akl = 4
∑k,l

i,j=0(−1)k+l−(i+j)uij for all k, l ∈ N.

Now, assume that the double sequence (akl) is summable Z to α, that is

p− lim
m,n→∞

(Za)mn = p− lim
m,n→∞

umn = α.(4)

With some calculation we obtain that

(Ba)mn = e−(m+n)

∞∑
k,l=0

mknl

k!l!
akl

= 4e−(m+n)

∞∑
k,l=0

mknl

k!l!

k,l∑
i,j=0

(−1)k+l−(i+j)uij

= 4e−(m+n)

∞∑
i,j=0

(
∞∑
k=i

∞∑
l=j

(−1)k+l−(i+j)
mknl

k!l!

)
uij

= (Cu)mn,(5)

where C = (cmnij) is defined by cmnij = 4e−(m+n)
∑∞

k=i

∑∞
l=j(−1)k+l−(i+j)m

knl

k!l!
for all

m,n, i, j ∈ N.
We want to show that the matrix C is RH−regular. The condition RH1 is obvious.
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For all m,n, i, j ∈ N, we have the equality

∞∑
i,j=0

cmnij = 4e−(m+n)

∞∑
i,j=0

(
∞∑
k=i

∞∑
l=j

(−1)k+l−(i+j)
mknl

k!l!

)

= 4e−(m+n)

∞∑
i=0

∞∑
k=i

(−1)i
(−m)k

k!

∞∑
j=0

∞∑
l=j

(−1)j
(−n)l

l!

= 4e−(m+n)

∞∑
k=0

∞∑
l=0

(m)2k

(2k)!

(n)2l

(2l)!

= 4e−(m+n) e
m + e−m

2

en + e−n

2
= (1 + e−2m)(1 + e−2n).(6)

If we take p−limit as m,n→∞ in the relation (6), the condition RH2 holds.

Since mi+r

(i+r)!
> mi+r+1

(i+r+1)!
for all r ∈ N, we obtain the inequality

∞∑
i=0

|cmnij| = 4e−(m+n)

∞∑
i=0

∣∣∣∣∣
∞∑
k=i

∞∑
l=j

(−1)k+l−(i+j)
mknl

k!l!

∣∣∣∣∣
= 4e−(m+n)

∞∑
i=0

∣∣∣∣∣
∞∑
k=i

(−1)k−i
mk

k!

∣∣∣∣∣
∣∣∣∣∣
∞∑
l=j

(−1)j
(−n)l

l!

∣∣∣∣∣
= 4e−(m+n)

∣∣∣∣∣
∞∑
l=j

(−1)j
(−n)l

l!

∣∣∣∣∣
∞∑
i=0

∣∣∣∣∣
∞∑
k=i

(−1)k−i
mk

k!

∣∣∣∣∣
< 4e−(m+2n)

∞∑
i=0

∣∣∣∣∣
∞∑
k=i

(−1)k−i
mk

k!

∣∣∣∣∣
= 4e−(m+2n)

∞∑
i=0

∣∣∣∣mi

i!
− mi+1

(i+ 1)!
+

mi+2

(i+ 2)!
− mi+3

(i+ 3)!
+ ...

∣∣∣∣
= 4e−(m+2n)

∞∑
i=0

∣∣∣∣mi

i!
−
(

mi+1

(i+ 1)!
− mi+2

(i+ 2)!
+

mi+3

(i+ 3)!
− ...

)∣∣∣∣
< 4e−(m+2n)

∞∑
i=0

∣∣∣∣mi

i!

∣∣∣∣
< 4e−2n,(7)

for all m,n, i, j ∈ N. So, taking p−limit in the relation (7) as m,n → ∞ we obtain
the condition RH3.

Using similar way in the relation (7), we easily have that the conditions RH4-RH6.
So, the matrix C is RH−regular. Thus, by the relations (4) and (5), we obtain that

p− lim
m,n→∞

(Ba)mn = p− lim
m,n→∞

(Cu)mn = α,

as desired.

Theorem 2.8. There is a double sequence summable B but not summable Z.
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Proof. Let us define the sequence a = (akl) as akl = (−2)k+l for all k, l ∈ N. One
can easily see that the sequence a is Borel summable but not Zweier summable.

3. Conclusion

Let 0 < r, s < 1. The Euler mean of orders r and s for double sequences defined
by the four dimensional matrix E(r, s) = (er,smnkl) defined in [16,18] as follows;

er,smnkl :=


(
m
k

)(
n
l

)
rksl(1− r)m−k(1− s)n−l , 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0 , otherwise

for all m,n, k, l ∈ N.
In [9, 10] Kiltho et al. defined the four dimensional Pascal matrix P = (pmnkl) by

pmnkl =

{ (
m

m−k

)(
n

n−k

)
, 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0 , otherwise

for all m,n, k, l ∈ N.
Let L(α, β) denote the method of doubly Laurent means of orders (α, β), defined

by the four dimensional matrix L(α, β) = (lα,βmnkl) given by Talebi [17] as

lα,βmnkl =

(
m+ k − 1

k

)(
n+ l − 1

l

)
(1− α)k(1− β)lαmβn

for all m,n, k, l ∈ N.
Demiriz and Erdem [4, 5] studied the four dimensional Euler-Totient matrix φ∗ =

(φ∗mnkl) which is defined as follows;

φ∗mnkl =

{
ϕ(k)ϕ(l)
mn

, k|m, l|n,
0 , otherwise

for all m,n, k, l ∈ N, where ϕ denotes the Euler function.
In this paper, we extended the results given by Ishiguro [7] from two dimensional

summability methods to four dimensional Abel, Riesz, Cesàro, Borel and Zweier
summability methods. I should note that one can investigate the relation between
the methods mentioned above and four dimensional Zweier method.
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