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TWO TYPES OF ALGEBRAIC STRUCTURES BASED ON

GENERALIZED RESIDUATED LATTICES

Jin Won Park and Young-Hee Kim∗,†

Abstract. In this paper, we introduce two types of left and right algebraic struc-
tures. We investigate the relations between bi-interior(bi-closure) operators and
bi-interior(bi-closure) systems. We explore how a bi-preordered space leads to the
formation of right and left rough sets.

1. Introduction

Pawlak [11,12] introduced the rough set theory as a formal tool to deal information
systems and decision rules in the data analysis. As an important mathematical tool
for rough set theory, the notions of closure (interior) systems and closure (interior)
operators facilitate to study topological structures, logic and concept lattices [1-6].

As a base lattice, Ward et al. [18] introduced a complete residuated lattice which is
an algebraic structure for many valued logic [1,8,15]. Bělohlávek [1,2] investigated the
properties of fuzzy relations and fuzzy closure systems on a residuated lattice which
supports part of foundation of fuzzy concept lattices and theoretic computer science.
Using fuzzy interior and fuzzy closure operators, many researchers investigated fuzzy
rough sets based on a residuated lattice [5,6,13,16,17].

As a non-commutative algebraic structure, Turunen [15] introduced a generalized
residuated lattice as a generalization of weak-pseudo-BL-algebras and left continuous
pseudo-t-norms [7]. Ko et al. [9,10] introduced the notions of bi-closure operators,
bi-closure systems and bi-completeness on a generalized residuated lattice.

In this paper, we introduce two types of left and right algebraic structures which
are bi-preorders, bi-interior and bi-closure operators, bi-interior and bi-closure systems
and rough sets based on a generalized residuated lattice.

In Section 2, we review the basic concepts and properties of generalized residuated
lattices. In Theorem 3.5, we demonstrate that both bi-interior and bi-closure operators
create corresponding bi-interior and bi-closure systems. Theorem 3.6 shows that these
systems can in turn generate bi-interior and bi-closure operators. In Theorem 3.7, we
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explore how a bi-preordered space can lead to the formation of right and left rough
sets.

2. Preliminaries

Definition 2.1. [9,10,15] A structure (L,∨,∧,�,→,⇒,⊥,>) is called a general-
ized residuated lattice if it satisfies the following conditions:

(GR1) (L,∨,∧,>,⊥) is a bounded lattice where > is the upper bound and ⊥ is
the lower bound;

(GR2) (L,�,>) is a monoid;
(GR3) it satisfies a residuation , i.e.,

a� b ≤ c iff a ≤ b→ c iff b ≤ a⇒ c.

Remark 2.2. (1) A generalized residuated lattice is a residuated lattice (→=⇒)
iff � is commutative.

(2) Let (L,≤,�) be a quantale [14]. For all x, y ∈ L, define

x→ y =
∨
{z ∈ L | z � x ≤ y},

x⇒ y =
∨
{z ∈ L | x� z ≤ y}.

Then it satisfies Galois correspondence, that is,
(x� y) ≤ z iff x ≤ (y → z) iff y ≤ (x⇒ z).
Hence (L,∨,∧,�,→,⇒,⊥,>) is a generalized residuated lattice.
(3) [7,15] A pseudo MV-algebra is a generalized residuated lattice with the law of

double negation.

In this paper, we always assume that (L,∧,∨,�,→,⇒,>,⊥) is a complete gener-
alized residuated lattice with the law of double negation defined as a = (a∗)0 = (a0)∗

where a0 = a→ ⊥ and a∗ = a⇒ ⊥.

Lemma 2.3. [9,10] Let x, y, z, xi, yi ∈ L. Then the following hold.
(1) If y ≤ z, then (x � y) ≤ (x � z), x → y ≤ x → z and z → x ≤ y → x where

→∈ {→,⇒}.
(2) x→ (

∧
i∈Γ yi) =

∧
i∈Γ(x→ yi) and (

∨
i∈Γ xi)→ y =

∧
i∈Γ(xi → y) for →∈ {→

,⇒}.
(3) (x� y)→ z = x→ (y → z) and (x� y)⇒ z = y ⇒ (x⇒ z).
(4) x→ (y ⇒ z) = y ⇒ (x→ z) and x⇒ (y → z) = y → (x⇒ z).
(5) x� (x⇒ y) ≤ y and (x→ y)� x ≤ y.
(6) (x⇒ y)� z ≤ x⇒ y � z and y � (x→ z) ≤ x→ y � z.
(7) (x⇒ y)� (y ⇒ z) ≤ x⇒ z and (y → z)� (x→ y) ≤ x→ z.
(8) (x⇒ z) ≤ (y � x)⇒ (y � z) and (x→ z) ≤ (x� y)→ (z � y).
(9) x→ y ≤ (y → z)⇒ (x→ z) and (x⇒ y) ≤ (y ⇒ z)→ (x⇒ z).
(10) y → z ≤ (x→ y)→ (x→ z) and (y ⇒ z) ≤ (x⇒ y)⇒ (x⇒ z).
(11) x→ y = > iff x ≤ y, where →∈ {→,⇒}.
(12) x→ y = y0 ⇒ x0 and x⇒ y = y∗ → x∗.
(13) (x→ y)∗ = x� y∗ and (x⇒ y)0 = y0 � x. Moreover, (x� y)∗ = y ⇒ x∗ and

(x� y)0 = x→ y0.
(14)

∧
i∈Γ x

∗
i = (

∨
i∈Γ xi)

∗ and
∨

i∈Γ x
∗
i = (

∧
i∈Γ xi)

∗.
(15)

∧
i∈Γ x

0
i = (

∨
i∈Γ xi)

0 and
∨

i∈Γ x
0
i = (

∧
i∈Γ xi)

0.
(16) xi → yi ≤ (

∧
i∈Γ xi)→ (

∧
i∈Γ yi), where →∈ {→,⇒}.
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(17) xi → yi ≤ (
∨

i∈Γ xi)→ (
∨

i∈Γ yi), where →∈ {→,⇒}.

Definition 2.4. [9,10] Let X be a set. A function erX : X × X → L is called a
right preorder if it satisfies the following conditions :

(O) erX(x, x) = > for all x ∈ X,
(R) erX(x, y)� erX(y, z) ≤ erX(x, z) for all x, y, z ∈ X.
A function elX : X ×X → L is called a left preorder if it satisfies (O) and
(L) elX(y, z)� elX(x, y) ≤ elX(x, z) for all x, y, z ∈ X.
The triple (X, erX , e

l
X) is called a bi-preordered space.

Example 2.5. [9,10] (1) Define two functions erL, e
l
L : L× L→ L as

erL(x, y) = x⇒ y, elL(x, y) = x→ y.

By Lemma 2.3 (7), (L, erL, e
l
L) is a bi-preordered space.

(2) Define two functions erLX , e
l
LX : LX × LX → L as

erLX (A,B) =
∧

x∈X(A(x)⇒ B(x)),
elLX (A,B) =

∧
x∈X(A(x)→ B(x)).

By Lemma 2.3 (7), (LX , erLX , e
l
LX ) is a bi-preordered space.

3. Two types of algebraic structures

Definition 3.1. An operator Ir : LX → LX is called a right interior operator on
X if it satisfies the following conditions:

(I1) Ir(A) ≤ A,
(I2) if A ≤ B, then Ir(A) ≤ Ir(B),
(I3) Ir(Ir(A)) = Ir(A),
(IR) Ir(A)� α ≤ Ir(A� α) where α(x) = α.
The pair (X, Ir) is called a right interior space.
An operator I l : LX → LX is called a left interior operator on X if it satisfies the

conditions (I1),(I2),(I3) and
(IL) α� I l(A) ≤ I l(α� A) where α(x) = α.
The triple (X, Ir, I l) is called a bi-interior space.
An operator Cr : LX → LX is called a right closure operator on X if it satisfies the

following conditions:
(C1) Cr(A) ≥ A,
(C2) if A ≤ B, then Cr(A) ≤ Cr(B),
(C3) Cr(Cr(A)) = Cr(A),
(CR) Cr(α→ A) ≤ α→ Cr(A) where α(x) = α.
The pair (X,Cr) is called a right closure space.
An operator C l : LX → LX is called a left closure operator on X if it satisfies the

conditions (C1),(C2) (C3) and
(CL) C l(α⇒ A) ≤ α⇒ C l(A) where α(x) = α.
The triple (X,Cr, C l) is called a bi-closure space.

Definition 3.2. Let (X, Ir, I l) be a bi-interior space and (X,Cr, C l) be a bi-closure
space.

(1) The pair (Ir(A), Cr(A)) is a right rough set for A ∈ LX .
(2) The pair (I l(A), C l(A)) is a left rough set for A ∈ LX .
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(3) Define αr : LX → L as

αr(A) =
∧
x∈X

(C(A)(x)⇒ I(A)(x))

for all for A ∈ LX , C ∈ {Cr, C l} and I ∈ {Ir, I l}. The map αr is called a right
accuracy measure

Define αl : LX → L as

αl(A) =
∧
x∈X

(C(A)(x)→ I(A)(x))

for all A ∈ LX , C ∈ {Cr, C l} and I ∈ {Ir, I l}. The map αl is called a left accuracy
measure.

Definition 3.3. (1) A family F r is called a right interior system on X if (Ai �
k),

∨
i∈ΓAi ∈ F r for all Ai ∈ F r and k ∈ L.

(2) A family F l is called a left interior system on X if (k � Ai),
∨

i∈ΓAi ∈ F l for
all Ai ∈ F l and k ∈ L.

The triple (X,F r, F l) is called a bi-interior systems.
(3) A family Gr is called a right closure system on X if (k → Ai) ∈ Gr,

∧
i∈ΓAi for

all Ai ∈ Gr and k ∈ L.
(4) A family Gl is called a left closure system on X if (k ⇒ Ai) ∈ Gl,

∧
i∈ΓAi for

all Ai ∈ Gl and k ∈ L.
The triple (X,Gr, Gl) is called a bi-closure system.

Theorem 3.4. (1) An operator I l : LX → LX is a left interior operator on X iff
I l satisfies (I1), (I2), (I3) and I l(α⇒ A) ≤ α⇒ I l(A).

(2) An operator Ir : LX → LX is a right interior operator on X iff Ir satisfies (I1),
(I2), (I3) and Ir(α→ A) ≤ α→ Ir(A).

(3) An operator I l : LX → LX is a left interior operator on X iff I l satisfies (I1),
(I3) and elLX (A,B) ≤ elLX (I l(A), I l(B)) for all A,B ∈ LX .

(4) An operator Ir : LX → LX is a right interior operator on X iff Ir satisfies (I1),
(I3) and erLX (A,B) ≤ erLX (Ir(A), Ir(B)) for all A,B ∈ LX .

(5) An operator Cr : LX → LX is a right closure operator on X iff Cr satisfies
(C1), (C2), (C3) and

Cr(A)� α ≤ Cr(A� α).

(6) An operator C l : LX → LX is a left closure operator on X iff C l satisfies (C1),
(C2), (C3) and

α� C l(A) ≤ C l(α� A).

(7) An operator Cr : LX → LX is a right closure operator on X iff Cr satisfies
(C1), (C3) and erLX (A,B) ≤ erLX (Cr(A), Cr(B)) for all A,B ∈ LX .

(8) An operator C l : LX → LX is a left closure operator on X iff C l satisfies (C1),
(C3) and elLX (A,B) ≤ elLX (C l(A), C l(B)) for all A,B ∈ LX .

Proof. (1) Since α � I l(α ⇒ A) ≤ I l(α � (α ⇒ A)) ≤ I l(A), then I l(α ⇒ A) ≤
α⇒ I l(A).

Conversely, since I l(α⇒ α�A) ≤ α⇒ I l(α�A) iff α�I l(α⇒ α�A) ≤ I l(α�A),
we have

α� I l(A) ≤ α� I l(α⇒ α� A) ≤ I l(α� A).
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(3) Put α = elLX (A,B). By (IL) and (I2), α� I l(A) ≤ I l(α�A) = I l(elLX (A,B)�
A) ≤ I l(B). Hence elLX (A,B) ≤ elLX (I l(A), I l(B)).

Conversely, if A ≤ B, then > = elLX (A,B) ≤ elLX (I l(A), I l(B)). Thus, I l(A) ≤
I l(B).

Since α ≤ elLX (A,α � A), we have α ≤ elLX (A,α � A) ≤ elLX (I l(A), I l(α � A)).
Thus α� I l(A) ≤ I l(α� A).

(5) Let Cr be a right closure operator on X. Since Cr(α→ A�α) ≤ α→ Cr(A�α)
iff Cr(α→ A� α)� α ≤ Cr(A� α), we have

Cr(A)� α ≤ Cr(α→ A� α)� α ≤ Cr(A� α).

Conversely, Cr(α→ A)�α ≤ Cr((α→ A)�α) ≤ Cr(A), then Cr(α→ A) ≤ α→
Cr(A).

(2), (4) and (6) are similarly proved as (1),(3) and (5), respectively.
(7) Put α = erLX (A,B). Since, by (CR), Cr(erLX (A,B) → B) ≤ erLX (A,B) →

Cr(B), erLX (A,B) ≤ Cr(erLX (A,B) → B) ⇒ Cr(B). Since A � erLX (A,B) ≤ B, then
A ≤ erLX (A,B)→ B. Hence

erLX (A,B) ≤ Cr(erLX (A,B)→ B)⇒ Cr(B)
≤ Cr(A)⇒ Cr(B).

Thus erLX (A,B) ≤ erLX (Cr(A), Cr(B)).
Conversely, if A ≤ B, then > = erLX (A,B) ≤ erLX (Cr(A), Cr(B)). Thus, Cr(A) ≤

Cr(B).
Since α ≤ erLX (α→ A,A), we have α ≤ erLX (α→ A,A) ≤ erLX (Cr(α→ A), Cr(A)).

Thus Cr(α→ A) ≤ α→ Cr(A).
(8) Put α = elLX (A,B). Since, by (CL), C l(elLX (A,B) ⇒ B) ≤ elLX (A,B) ⇒

C l(B), elLX (A,B) ≤ C l(elLX (A,B) ⇒ B) → C l(B). Since elLX (A,B) � A ≤ B, then
A ≤ elLX (A,B)⇒ B. Hence

elLX (A,B) ≤ C l(elLX (A,B)⇒ B)→ C l(B)
≤ C l(A)→ C l(B).

Thus elLX (A,B) ≤ elLX (C l(A), C l(B)).

Conversely, (C2) if A ≤ B, then > = elLX (A,B) ≤ elLX (C l(A), C l(B)). Thus,
C l(A) ≤ C l(B).

(CL) Since α ≤ elLX (α ⇒ A,A), we have α ≤ elLX (α ⇒ A,A) ≤ elLX (C l(α ⇒
A), C l(A)). It implies α� C l(α⇒ A) ≤ C l(A). Thus C l(α⇒ A) ≤ α⇒ C l(A).

Theorem 3.5. (1) Let (X, Ir, I l) be a bi-interior space. Let F r
Ir = {A ∈ LX |

Ir(A) = A} and F l
Il

= {A ∈ LX | I l(A) = A}. Then (X,F r
Ir , F

l
Il

) is a bi-interior
system such that F r

Ir = {Ir(B) | B ∈ LX} and F l
Il

= {I l(B) | B ∈ LX}.
(2) Let (X,Cr, C l) be a bi-closure space. Let Gr

Cr = {A ∈ LX | Cr(A) = A} and
Gl

Cl = {A ∈ LX | C l(A) = A}. Then (X,Gr
Cr , Gl

Cl) is a bi-closure system such that
Gr

Cr = {Cr(B) | B ∈ LX} and Gl
Cl = {C l(B) | B ∈ LX}.

(3) Let (X, Ir, I l) be a bi-interior space. Let Cr(A) = I l(A∗)0 and C l(A) = Ir(A0)∗

for all A ∈ X. Then (X,Cr, C l) is a bi-closure space.

Proof. (1) For all Ai ∈ F r
Ir , since Ai�α = Ir(Ai)�α ≤ Ir(Ai�α) ≤ Ai�α, then

Ai � α ∈ F r
Ir . Since

∨
i∈Γ Ai =

∨
i∈Γ I

r(Ai) ≤ Ir(
∨

i∈ΓAi) ≤
∨

i∈ΓAi, then
∨

i∈ΓAi ∈
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F r
Ir . Put F r = {Ir(B) | B ∈ LX}. Let Ir(B) ∈ F r. Then Ir(Ir(B)) = Ir(B);i.e.
Ir(B) ∈ F r

Ir . Let A ∈ F r
Ir . Then A = Ir(A) ∈ F r. Hence F r

Ir is a right interior system
such that F r

Ir = {Ir(B) | B ∈ LX}. Other case is similarly proved.
(2) For all Ai ∈ Gr

Cr , since Cr(α → Ai) ≤ α → Cr(Ai) = α → Ai, then α → Ai ∈
Gr

Cr . Since
∧

i∈ΓAi =
∧

i∈ΓC
r(Ai) ≥ Cr(

∧
i∈ΓAi) ≥

∧
i∈ΓAi, then

∧
i∈Γ Ai ∈ Gr

Cr .
Other cases are similarly proved as (1) and the above method.
(3) Since I l(A∗) ≤ A∗, we haveA ≤ Cr(A). Cr(Cr(A)) = Cr(I l(A∗)0) = I l(I l(A∗))0 ≤

I l(A∗)0 = Cr(A). By Lemma 2.3(13),

Cr(α→ A) = I l((α→ A)∗)0 = I l(α� A∗)0

≤ (α� I l(A∗))0 = α→ I l(A∗)0 = α→ Cr(A).

Since Ir(A0) ≤ A0, we have A ≤ C l(A). C l(C l(A)) = C l(Ir(A0)∗) = Ir(Ir(A0))∗ ≤
Ir(A0)∗ = C l(A). By Lemma 2.3(13),

C l(α⇒ A) = Ir((α⇒ A)0)∗ = Ir(A0 � α)∗

≤ (Ir(A0)� α)∗ = α⇒ Ir(A0)∗ = α⇒ C l(A).

Theorem 3.6. (1) Let (X,F r, F l) be a bi-interior system on X, Define IrF r , I lF l :
LX → LX as

IrF r(A) =
∨
{Ai | Ai ≤ A, Ai ∈ F r}

I l
F l(A) =

∨
{Ai | Ai ≤ A, Ai ∈ F l}.

Then (X, IrF r , I lF l) is a bi-interior space such that

IrF r(A) =
∨

Ai∈F r(Ai � erLX (Ai, A)),
I l
F l(A) =

∨
Ai∈F l(elLX (Ai, A)� Ai).

(2) Let (X,Gr, Gl) be a bi-closure system. Define Cr
Gr , C l

Gl : LX → LX as

Cr
Gr(A) =

∧
{Ai | A ≤ Ai, Ai ∈ Gr},

C l
Gl(A) =

∧
{Ai | A ≤ Ai, Ai ∈ Gl}.

Then (X,Cr
Gr , C l

Gl) is a bi-closure space such that

Cr
Gr(A) =

∧
Ai∈Gr(erLX (A,Ai)→ Ai),

C l
Gl(A) =

∧
Ai∈Gl(elLX (A,Ai)⇒ Ai).

(3) F r = {Bi | i ∈ Γ} is a right interior system on X iff Gl = {B∗i | Bi ∈ F r} is a
left closure system on X.

(4) F l = {Bi | i ∈ Γ} is a left interior system on X iff Gr = {B0
i | Bi ∈ F l} is a

right closure system on X.

Proof. (1) Since I l
F l(A) =

∨
{Ai | Ai ≤ A, Ai ∈ F l} ≤ A, (I1) and (I2) are easy.

Since I l
F l(A) ≤ I l

F l(A) and I l
F l(A) ∈ F l, I l

F l(I
l
F l(A)) ≥ I l

F l(A). By (I1), I l
F l(I

l
F l(A)) =

I l
F l(A). (IL), for all α,A ∈ LX ,

α� I l
F l(A) = α�

∨
{Ai | Ai ≤ A, Ai ∈ F l}

≤
∨
{α� Ai | α� Ai ≤ α� A, α� Ai ∈ F l}

= I l
F l(α� A).

Put I l(A) =
∨

Ai∈F l(elLX (Ai, A) � Ai). Since
∨

Ai∈F l(elLX (Ai, A) � Ai) ≤ A and∨
Ai∈F l(elLX (Ai, A)� Ai) ∈ F l, I l(A) ≤ I l

F l(A).

Since I l
F l(A) ∈ F l, I l(A) ≥ elLX (I l

F l(A), A)� I l
F l(A) = IF l(A).
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Other case is similarly proved.
(2) Since Cr

Gr(A) =
∧
{Ai | A ≤ Ai, Ai ∈ Gr}, then (C1) and (C2) hold.

Since Cr
Gr(A) ∈ Gr and Cr

Gr(A) ≤ Cr
Gr(A), Cr

Gr(Cr
Gr(A)) ≤ Cr

Gr(A). By (C1),
Cr

Gr(Cr
Gr(A)) = Cr

Gr(A). (CL), for all α,A ∈ LX ,

α→ Cr
Gr(A) = α→

∧
{Ai | A ≤ Ai, Ai ∈ Gr}

=
∧
{α→ Ai | A ≤ Ai, Ai ∈ Gr}

≥
∧
{α→ Ai | α→ A ≤ α→ Ai, α→ Ai ∈ Gr}

≥ Cr
Gr(α→ A).

Then Cr
Gr is a right closure operator on X. Similarly, C l

Gl is a left closure operator
on X.

Put C l(A) =
∧

Ai∈Gl(elLX (A,Ai) ⇒ Ai). Since A ≤ elLX (A,Ai) ⇒ Ai ∈ Gl for

Ai ∈ Gl, C l
Gl ≤ C l.

Since C l(A) ≤ elLX (A,C l
Gl(A))⇒ C l

Gl(A), C l(A) ≤ C l
Gl(A).

(3) and (6) are easily proved that for B∗i ∈ Gl with Bi ∈ F r, by Lemma 2.3 (13),
α⇒ B∗i = (Bi � α)∗ ∈ Gl.

(4) and (5) are easily proved that, by Lemma 2.3 (13), α→ B0
i = (α�Bi)

0.

Theorem 3.7. Let (X, erX , e
l
X) be a bi-preordered space.

(1) Define

I lerX (A) =
∧

x∈X(erX(−, x)→ A(x))

C l
erX

(A) =
∨

x∈X((A(x)� erX(x,−)).

Then (I lerX (A), C l
erX

(A)) is a left rough set for A ∈ LX and erX .

(2) Define

IrerX (A) =
∧

x∈X(erX(x,−)⇒ A(x))

Cr
erX

(A) =
∨

x∈X(erX(−, x)� A(x)).

Then (IrerX (A), Cr
erX

(A)) is a right rough set for A ∈ LX and erX .

(3) Define

I l
elX

(A) =
∧

x∈X(elX(x,−)→ A(x))

C l
elX

(A) =
∨

x∈X((A(x)� elX(−, x)).

Then (I l
elX

(A), C l
elX

(A)) is a left rough set for A ∈ LX and elX .

(4) Define

Ir
elX

(A) =
∧

x∈X(elX(−, x)⇒ A(x))

Cr
elX

(A) =
∨

x∈X(elX(x,−)� A(x)).

Then (Ir
elX

(A), Cr
elX

(A)) is a right rough set for A ∈ LX and elX .

(5) Let A,B ∈ LX . Then A ≤ I lerX (C l
erX

(A)) and C l
erX

(I lerX (B)) ≤ B. Moreover,

C l
erX

(A) ≤ B iff A ≤ I lerX (B).

(6) Let A,B ∈ LX . Then A ≤ IrerX (Cr
erX

(A)) and Cr
erX

(IrerX (B)) ≤ B. Moreover,

Cr
erX

(A) ≤ B iff A ≤ IrerX (B).

(7) Let A,B ∈ LX . Then A ≤ I l
elX

(C l
elX

(A)) and C l
elX

(I l
elX

(B)) ≤ B. Moreover,

C l
elX

(A) ≤ B iff A ≤ I l
elX

(B).
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(8) Let A,B ∈ LX . Then A ≤ Ir
elX

(Cr
elX

(A)) and Cr
elX

(Ir
elX

(B)) ≤ B. Moreover,

Cr
elX

(A) ≤ B iff A ≤ Ir
elX

(B).

Proof. (1) Since a→ b� c ≥ b� (a→ c),

I lerX (α� A)(y) =
∧

x∈X(erX(y, x)→ α� A(x))

≥ α� (
∧

x∈X(er(y, x)→ A(x)),

I lerX (I lerX (A))(y) =
∧

x∈X(er(y, x)→ I lerX (A)(x))

=
∧

x∈X(er(y, x)→ (
∧

z∈X(er(x, z)→ A(z))
=

∧
z∈X(

∨
x∈X(er(y, x)� er(x, z))→ A(z))

=
∧

z∈X(er(y, z)→ A(z)) = I lerX (A)(y).

Other cases (I1) and (I2) are easily proved. Thus I lerX is a left interior operator.

(C1) and (C2) are easily proved. (C3) and (CL) follow

C l
erX

(C l
erX

(A))(y) =
∨

x∈X(C l
erX

(A)(x)�erX
(x, y))

=
∨

x∈X(
∨

z∈X(A(z)� erX(z, x)� erX(x, y))
=

∨
z∈X(A(z)�

∨
x∈X(erX(z, x)� erX(x, y)))

=
∨

z∈X(A(z)� erX(z, y)) = C l
erX

(A)(y).

Since (a⇒ b)� c ≤ a⇒ b� c, C l
erX

(α⇒ A) ≤ α⇒ C l(A). Hence C l
erX

is a left closure
operator.

(2),(3) and (4) are similarly proved.

(5) For all y ∈ X,A ∈ LX ,

C l
erX

(I lerX (A))(y) =
∨

x∈X(I lerX (A)(x)�erX
(x, y))

=
∨

x∈X(
∧

z∈X(erX(x, z)→ A(z))� erX(x, y))
≤

∨
x∈X((erX(x, y)→ A(y))� erX(x, y)) ≤ A(y).

I lerX (Cr
erX

(A))(y) =
∧

x∈X(er(y, x)→ C l
erX

(A)(x))

=
∧

x∈X(er(y, x)→ (
∨

z∈X(A(z)� erX(z, x))
≥

∧
x∈X(er(y, x)→ (A(y)� erX(y, x)) ≥ A(y).

Example 3.8. Let M = {(x, y) ∈ R2 | y > 0} be a set and we define an operation
⊗ : M ×M →M as follows:

(x1, y1)⊗ (x2, y2) = (x1 + y1x2, y1y2).

Then (M,⊗) is a group with e = (0, 1), (x, y)−1 = (−x
y
, 1
y
).

For (x1, y1), (x2, y2) ∈M , we define

(x1, y1) ≤ (x2, y2)
⇔ y1 < y2 or y1 = y2, x1 ≤ x2.

Then (M,≤ ⊗) is a lattice-group.
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Let (L,�,⇒,→, (1, 1
2
), (0, 1)) be a pseudo MV-algebra where (1, 1

2
) is the least

element and (0, 1) is the greatest element from the following statements:

(x1, y1)� (x2, y2) = (x1, y1)⊗ (x2, y2) ∨ (1, 1
2
)

= (x1 + y1x2, y1y2) ∨ (1, 1
2
),

(x1, y1)⇒ (x2, y2) = ((x1, y1)−1 ⊗ (x2, y2)) ∧ (0, 1)
= (−x1+x2

y1
, y2
y1

) ∧ (0, 1),

(x1, y1)→ (x2, y2) = ((x2, y2)⊗ (x1, y1)−1) ∧ (0, 1)
= (x2 − x1y2

y1
, y2
y1

) ∧ (0, 1).

It is not commutative because

(2
3
, 3

4
)� (4, 1

2
) = (3 + 2

3
, 3

8
)

6= (4, 1
2
)� (2

3
, 3

4
) = (4 + 1

3
, 3

8
).

Furthermore, we have (x, y) = (x, y)∗◦ = (x, y)◦∗ from:

(x, y)∗ = (x, y)⇒ (1, 1
2
) = (−x+1

y
, 1

2y
),

(x, y)◦ = (x, y)→ (1, 1
2
) = (1− x

2y
, 1

2y
).

Let X = {x, y, z} and A ∈ LX as follows:

A(x) = (1, 0.6), A(y) = (0.2, 0.8), A(z) = (0, 0.6).

Define erA, e
l
A : X ×X → L as erA(x, y) = A(x) ⇒ A(y) and elA(x, y) = A(x) → A(y)

such that

erA =

 (0, 1) (0, 1) (−5
3
, 1)

(1, 3
4
) (0, 1) (−1

4
, 3

4
)

(0, 1) (0, 1) (0, 1)


elA =

 (0, 1) (0, 1) (−1, 1)
(17

20
, 3

4
) (0, 1) (− 3

20
, 3

4
)

(0, 1) (0, 1) (0, 1)

 .

By Lemma 2.3(7), (X, erA, e
l
A) is a bi-preordered space. Moreover, erA(x, y) = A(x)⇒

A(y) = A∗(y)→ A∗(x) = elA∗(y, x) and elA(x, y) = A(x)→ A(y) = A0(y)⇒ A0(x) =
erA0(y, x).

(1) Put F r = {A � k | k ∈ L} and Gr = {k → A | k ∈ L}. Since ki ≤ A ⇒∨
i∈I(A � ki),

∨
i∈I ki ≤ A ⇒

∨
i∈I(A � ki). Then A � (

∨
i∈I ki) ≤

∨
i∈I(A � ki).

Moreover,
∨

i∈I(A� ki) ≤ A� (
∨

i∈I ki). Hence F r is a right interior system.
Since k1 → (k2 → A) = (k1 � k2)→ A ∈ Gr and

∧
i∈I(ki → A) = (

∨
i∈I ki)→ A ∈

Gr, Gr is a left closure system.
For B = ((1, 4

5
), (0, 2

3
), (2, 3

4
)) ∈ LX , since A � k1 ≤ B and B ≤ k2 → A, k1 =∧

x∈X(A(x)⇒ B(x)) = (−1
4
, 5

6
), k2 =

∧
x∈X(B(x)⇒ A(x)) = (0, 3

4
) and

IrF r(B) =
∨

D∈F r(D(−)� erLX (D,B))
=

∨
{D | D ≤ B,D ∈ F r} = A� k1

= A� (−1
4
, 5

6
) = ((1, 1

2
), (0, 2

3
), (1, 1

2
)),

Cr
Gr(B) =

∧
D∈Gr(erLX (B,D)→ D(−))

=
∧
{D | B ≤ D,D ∈ Gr} = k2 → A

= (0, 3
4
)→ A = ((1, 4

5
), (0, 2

3
), (0, 4

5
)).

The pair (IrF r(B), Cr
Gr(B)) is a right rough set for B.
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Two maps αr, αl : LX → L are right and left accuracy measures for B ∈ LX ,

αr(B) =
∧

x∈X(Cr
Gr(B)(x)⇒ IrF r(B)(x)) = (0, 5

8
),

αl(A) =
∧

x∈X(Cr
Gr(B)(x)→ IrF r(B)(x)) = (3

8
, 5

8
).

(2) Put F l = {k � A | k ∈ L} and Gl = {k ⇒ A | k ∈ L}. Since ki ≤ A →∨
i∈I(ki � A),

∨
i∈I ki ≤ A →

∨
i∈I(ki � A). Then (

∨
i∈I ki) � A ≤

∨
i∈I(ki � A).

Moreover,
∨

i∈I(ki � A) ≤ (
∨

i∈I ki)� A. Hence F l is a left interior system.

Since k1 ⇒ (k2 ⇒ A) = (k2 � k1)⇒ A ∈ Gl and
∧

i∈I(ki ⇒ A) = (
∨

i∈I ki)⇒ A ∈
Gl, Gl is a left closure system.

For B = ((1, 4
5
), (0, 2

3
), (2, 3

4
)) ∈ LX , k3 =

∧
x∈X(A(x) → B(x)) = (−1

6
, 5

6
), k4 =∧

x∈X(B(x)→ A(x)) = (1
4
, 3

4
) and

I l
F l(B) =

∨
B∈F l(elLX (B,A)�B(−))

=
∨
{B | B ≤ A,B ∈ F l} = k3 � A

= (−1
6
, 5

6
)� A = ((2

3
∨ 1, 1

2
), (0, 2

3
), (−1

6
∨ 1, 1

2
))

= ((1, 1
2
), (0, 2

3
), (1, 1

2
)),

C l
Gl(B) =

∧
B∈Gl(elLX (A,B)⇒ B(−))

=
∧
{B | A ≤ B,B ∈ Gl} = k4 ⇒ A

= (1
4
, 3

4
)⇒ A = ((1, 4

5
), (0, 1), (−1

3
, 4

5
)).

The pair (I l
F l(B), C l

Gl(B)) is a left rough set for B and elX
Two maps αr, αl : LX → L are right and left accuracy measures for B ∈ LX ,

αr(B) =
∧

x∈X(C l
Gl(B)(x)⇒ I l

F l(B)(x)) = (0, 5
8
),

αl(A) =
∧

x∈X(C l
Gl(B)(x)→ I l

F l(B)(x)) = (3
8
, 5

8
).
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