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ERROR ESTIMATES FOR THE FULLY DISCRETE
STABILIZED GAUGE-UZAWA METHOD
PART I: THE NAVIER-STOKES EQUATIONS

JAE-HONG PYO

ABSTRACT. The stabilized Gauge-Uzawa method (SGUM), which is
a second order projection type algorithm to solve the time-dependent
Navier-Stokes equations, has been newly constructed in 2013 Pyo’s
paper. The accuracy of SGUM has been proved only for time discrete
scheme in the same paper, but it is crucial to study for fully discrete
scheme, because the numerical errors depend on discretizations for
both space and time, and because discrete spaces between velocity
and pressure can not be chosen arbitrary. In this paper, we find
out properties of the fully discrete SGUM and estimate its errors
and stability to solve the evolution Navier-Stokes equations. The
main difficulty in this estimation arises from losing some cancellation
laws due to failing divergence free condition of the discrete velocity
function. This result will be extended to Boussinesq equations in the
continuous research (part IT) and is essential in the study of part II.
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1. Introduction

Given an open bounded polyhedral domain €2 in R?, with d = 2 or 3,
we consider the time-dependent Navier-Stokes equations of incompress-
ible fluids:

w+ (u-Vu+Vp—plu==£f  inQ,
(1.1) V.ou=0, inQ,

u(0,x) =u’, inQ,

with vanishing Dirichlet boundary condition u = 0 on 92 and pressure
mean-value [, p = 0. The primitive variables are the (vector) velocity u
and the (scalar) pressure p. The viscosity u = Re™! is the reciprocal of
the Reynolds number Re.

The most popular solvers of (1.1) are the projection type methods
which were introduced independently by Chorin [3] and Temam [17] in
the late 60’s to decouple u and p and thus reduce the computational cost.
And the methods quickly gained popularity in the computational fluid
dynamics community, and over the years, an enormous amount of efforts
have been devoted to develop more accurate and efficient projection type
schemes. One branch of the projection type methods is the Gauge-Uzawa
method (GUM) which has been constructed in [11] to solve (1.1). GUM
enhanced to solve more complicated problems which are the Boussinesq
equations in [12] and the non-constant density fluid problems in [16].
However, GUM has been studied only for the first order backward Euler
time scheme except normal mode error analysis for the Stokes equations
in [15]. We construct second order GUM and analyze the superiority
of the method in normal mode space in [15]. We also discover that
the method is equivalent in continuous level to the consistent splitting
method which is studied in [6]. But we could not obtain any theoretical
proofs for them via energy estimate even for stability condition. Because
we found out weak stability performance through numerical tests, we
concentrate on overcoming the weak stability constraint without losing
advantages of GUM and then we obtain the stabilized Gauge-Uzawa
method (SGUM) which is based on the second order backward Euler time
discrete scheme in [14]. And we estimated errors for the Navier Stokes
equations via energy error estimate, but the error evaluation carried out
only for time discrete scheme. The study for time is not enough to
guarantee accuracy, because numerical errors depend on both time and
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space discretizations and because discrete spaces between velocity and
pressure can not be chosen arbitrary (see Assumption 3 below). We can
find an example in [13]: the numerical tests of the Van Kan method does
not display second order convergence in [13], even though the optimal
accuracy for the method had been proved for the time discrete scheme.
Thus it is crucial to verify error decay for fully discrete algorithm and so
we will estimate optimal convergence and stability for the fully discrete
SGUM in this paper.

In the other direction, the rotational form of pressure-correction meth-
od has been constructed in [19]. The errors of the method have been
estimated via energy estimate in [7] and via normal mode analysis in
[15]. But both proofs had been carried out only for Stokes equations. In
[14], they discover that SGUM is an equivalent method to the rotational
form of pressure-correction method in the view of semi-discrete level.
The main difference of two methods is pressure expression: the pressure
in the rotational form of pressure-correction method is designed to be
updated from previous step value (p"*! = p"+- - ) in contrast to SGUM.
This pressure expression acts upon main obstacle to treat convection
term, and so the study in [7] had limited only for Stokes equations.

In this paper, we will prove stability and estimate errors for the fully
discrete SGUM which is stated in Algorithm 1 to solve Navier Stokes
equations. The main difficulty in this estimation arise from losing some
cancellation laws due to failing divergence free condition of the discrete
velocity function. In order to overcome this deficit, we introduce dis-
continuous velocity to hold (1.8) in the fully discrete Algorithm 1. The
result in this paper will be extended to Boussinesq equations in the con-
tinuous research (part II) and is essential in the study of part II. We will
denote 7 as the time marching size. Also we will use § as difference of

two consecutive functions, for example, for any sequence function z"*1,

62" = 2T o 58T = §(62" ) = 2T -2 4 2

In order to introduce the finite element discretizations we need fur-
ther notations. Let H*({) be the Sobolev space with s derivatives in
L2(9), set L2(Q) = (L2(€2))? and H*(Q) = (H*(Q))%, where d = 2 or 3,
and denote by L2(f2) the subspace of L?(Q) of functions with vanishing
meanvalue. We indicate with |||, the norm in H*(Q2), and with (-, -) the
inner product in L%(Q). Let € = {K} be a shape-regular quasi-uniform
partition of ) of meshsize h into closed elements K [1, 2, 5]. The vector
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and scalar finite element spaces are:
Wy, :={w, € L*(Q) : wi|x € P(K) VK €T}, V,:=W,NnH}Q),
Py, :={qn € L3(Q) N C°Q) : qu|x € Q(K) VK € T},
where P(K) and Q(K) are spaces of polynomials with degree bounded
uniformly with respect to K € T [2, 5]. We stress that the space P,

is composed of continuous functions to make sense. This implies the
crucial equality

<V Wy, 8h> = — <Wh, Vsh> , VWh € Vh,Vsh - ]Ph.
Using the following discrete counterpart of the form
N(u,v,w):=((u-V)v, w)

1

(1) N viwi) = 5 (- V)vic, wi) % (- V)Wn, Va) |

We now introduce the fully discrete stabilized Gauge-Uzawa method
(SGUM) which is studied for semi-discrete level in [14].

ALGORITHM 1 (The fully discrete stabilized Gauge-Uzawa method).
Compute u}, and p}, via any first order projection method and set 1} =
=2Tp; and q; = 0. Repeat for 1 <n < N =[L£ —1].

Step 1: Set u} = 2u} —u} ' and find G} € V}, as the solution of
(1.3)

%(‘Sﬁﬁﬂ dup +upt we) + (Vi wi) + N (wg, ap 't wy)
+u(Vaptt Vwy,) = (£, wy,),  Vwy, € V.
Step 2: Find ;"' € P}, as the solution of
(L4) (VU Vo) = (Vup, Vo) + (V-aptt, én), Vo, € Py
Step 3: Update u;*! and ¢} € P}, according to
(1.5) w =t 4+ V (ot =),

(1.6) (i, on) = (ap, on) — (VW o), Yoy € Py

n+1

Step 4: Update pressure p;"" by

n+1

3
1.7 N+l _ n+l
(1.7) Py 27 + pqj,
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REMARK 1.1 (Discontinuity of u}™"). We note that u}*" is a discon-

tinuous function across inter-element boundaries and that, in light of
(1.4) and (1.5), u}*! is discrete divergence free in the sense that

(1.8) (Vi gp) = (up™, Va,) =0, Vo, € Py

We now summarize the results of this paper along with organiza-
tion. We introduce appropriate Assumptions 1-5 in §2 and introduce
well known lemmas. In §3, we prove stability.

THEOREM 1 (Stability). The SGUM is unconditionally stable in the
sense that, for all 7 > 0, the following a priori bound holds:
(1.9)

g+ IRl + 200 = [l + B[V I + 2em i+ g

N N
+ 3 ([loouz+ s + 3] wovr ) + e Y- v
n=1 n=1

N
< il + |25 = i g + 31w llg + 20 laills + ©7 D NEE ],

n=1

We then prove the following accuracy results through several lemmas
in §4.

THEOREM 2 (Error estimates). Suppose the exact solution of (1.1) is
smooth enough and T = Ch. If Assumptions 1-5 below hold, then the
errors of Algorithm 1 are bounded by

N
Ty (||u(t”+1) — w2 () — ﬁ;;“Hi) <C(r'+n"),
n=1
N
3 (Il =85+ o) = s ly) < C (2 4+ 2).
n=1
We finally conclude in §5 with numerical experiments.

2. Preliminaries

In this section, we introduce 5 assumptions and well known lemmas
to use in proofs of main theorems. We resort to a duality argument via
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the following Stokes equations:
—Av+Vr=g, in{,
V-v=0, in(,

with Dirichlet boundary condition v = 0 on 0€2. We now state a basic
assumption about €.

(2.1)

AssumPTION 1 (Regularity of Q). The unique solution {v,r} of the
steady Stokes equations (2.1) satisfies

[vlly + [l < Cllgllo-

We remark that the validity of Assumption 1 is known if 9 is of class C?
[4, 8], or if O is a two-dimensional convex polygon [10], and is generally
believed for convex polyhedral [8].

In order to launch Algorithm 1, we need to set (u},p;,) via any first
order projection method which holds the following condition.

AssUMPTION 2 (Initial setting). Let (u(t!), p(t')) be the exact solution
of (1.1) at t = t'. The initial value (u},, p;) satisfies
la(t) = wlly < € (7 +77),
[u(t’) =il + [|lp(t") = pifl, < C(r+h).
We impose the following properties for relations between the spaces

V;, and Py,.

AssumpPTION 3 (Discrete Inf-Sup condition). There exists a constant
B > 0 such that

. <v Wp, 8h>
inf sup ——— >
5w Phwy, eV, [[Whlly [[snll
ASSUMPTION 4 (Shape regularity and quasiuniformity [1, 2, 5]). There
exists a constant C' > 0 such that the ratio between the diameter hy of
an element K € T and the diameter of the largest ball contained in K

is bounded uniformly by C', and hk is comparable with the meshsize h
for all K € X.

ASSUMPTION 5 (Approximability [1, 2, 5]). For each (w,s) € H?(Q) x
H'(Q), there exist approximations (wy, s) € Vj, X Py, such that

W = willg + hllw — wall; < Ch*[[wll, —and |[s = sully < Chlls]l;.

The following elementary but crucial relations are derived in [18].
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LEMMA 2.1 (Inverse inequality). If I;, denotes the Clement interpolant,
then

1hWllps) < Ch™ Ol Lywlly, and ||w — Liwl|paq) < Ch*°||wl,.

LEMMA 2.2 (Div-grad relation). If w € H}(Q), then
IV-wily < [[Vwlo.

Let now (vp, 1) € Vp, x P, indicate the finite element solution of
(2.1), namely,
(Vvi, Vwy) — (1, V-wy) = (g, wp), Ywy, € V),

2.2
( ) (V Wy, Sh> =0, Vs, € Py.

Then we can find the well known lemmas in [1, 2, 5]

LEMMA 2.3 (Error estimates for mixed FEM). Let (v,s) € H{(Q) x
L2(Q2) be the solutions of (2.1) and (vp, sp) = Gu(v,s) € V, x P, be
the Stokes projections defined by (2.2), respectively. If Assumptions 1
and 3-5 hold, then

(23) v =vallo +hllv =vally + hllr = rally < CR* (vl + lI7lly)
24) v =vill =1V = Vil @) + IV = Va)llLs ) < Clisllo.
Proof. Inequality (2.3) is standard [1, 2, 5]. To establish (2.4), we

just deal with the L*-norm since the other can be treated similarly. If
Iy, denotes the Clement interpolant, then [|[v — I v||pw«q) < C[v|, and

11V = Vil () < Ch™ 2TV = Villpai) < Cllvll,

as a consequence of an inverse estimate and (2.3). This completes the
proof. n

REMARK 2.4 (H" stability of rj,). The bound ||Vryllo < C ([[vl, + [I7]],)
is a simple by-product of (2.3). To see this, we add and subtract I,r, use
the stability of I;, in H', and observe that (2.3) implies ||V (ry, — In7)|lo <
Ch71||7“h — IhTHO <C.

We finally state without proof several properties of the nonlinear
form N. In view of (1.2), we have a following properties of N for all
Uy, Vi, Wi, € Vi

(2.5) N(up, v, wi) = =N (up, Wi, vi), N(ap, vp,vy) =0,
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and
V-u=0 = N(u,vh,wh) = <(11~V)Vh, Wh> = —<<U'V)Wh, Vh>.
Applying Sobolev imbedding Lemma yields the following useful results.

LEMMA 2.5 (Bounds on nonlinear convection [8, 11]). Let u,v € H*(Q)
with V-u = 0, and let uy,, vy, w, € V;,. Then

[l [[vall, [wnlly

(2.6) N, v, wy) <C ¢ lallyl[vall lwallg
[allyl[vellolwrlly,
(2.7) N(up, v, wp) < Cllu ol VIl wall;-
In addition
ol va Il wal|
2.8 Ny, vy, wy) < C anllo 1
(28) (Wn, v, Wi) < { lanllgscen IVa Wil

We will use the following algebraic identities frequently to treat time
derivative terms.

LEMMA 2.6 (Inner product of time derivative terms). For any sequence

{z"}N_ ) we have

(2.9) 2 (32" — 42" 4 2", 2

= of[m g + o222 g+ [l8a=m g

0’

(2.10) 9 <Zn+1 — Zn+1> _ ||zn+1H§ _ ||Zn||§ + Hzn+1 — Z"Hiv
and
(211) 2 <Zn+1 _ Zn’ Zn> — ||Zn+1H§ . ||Zn||g — Hzn-i-l — an(Q)

3. Proof of stability

In this section, we prove Theorem 1. We start the proof with rewriting
the momentum equation (1.3) by using (1.5) and (1.7) as follows:

% Bupt —4up +ul Tt wy) + N (2u) —up Tttt wy)

3 ~
B <V (z A uqz:) , Wh> + p (VI Vwy) = (£ wa).
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We now choose wj, = 470! and use (2.9) to get
oIy + |2 — il + (|0 g + 4 v
— 6 <V77Z)n+1, AZ+1> + 4T,LL <qh , V . ﬁ2+1> + 47_ <f tn—i—l 7 GZ+1>7

and we denote by A;, fori = 1, 2, 3, the three terms in the right hand side.
We note here that convection term is vanished by (2.5). In conjunction
with U} = uft! — Vot (2.10) yields

A = —6(Vyptt, vyt
= 3 (|IVu I - I9uRIE + [ vaup )

(3.1)

Before we estimate Ay, we evaluate an inequality via choosing ¢, = §¢' !

in (1.6) to get
loai Iy = = (v -+t agi ) < |9 ] logi ™l

In the view of Lemma 2.2, we conclude H(Sq +1||0 < HV A"HHO <

| vaptt ||0, whence

A = = dpr (ai, oai*) = =2 (g [ls = a3 = [loa ™)
< —2ur (a2 = a3 + 267]| vz 5
Clearly, we have
Ay < e DI, + 7l v
Inserting A;-Aj back into (3.1) and summing over n from 1 to N lead

(1.9) by help of Hﬁ”“”o = || h+1H0 - HV‘W’ZHHO which comes form
(1.8). O

4. Error estimates

In this section, we prove Theorem 2 which is error estimates for SGUM
of Algorithm 1. This proof is carried out through several lemmas. We
start the proof with defining (U}, P/ = &y (u(t™th), p(t")) €
V5, x P, to be the Stokes projection of the true solution at time t"*!. It
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means that (UZ“, P,’:H) € V;, x P, is the solution of, for all w;, € V,,
and for all s, € Py,
(VU Vwy) + (VPP wy) = (Vu(t™™), Vwy,) + (Vp(t"™h), wy),
(VU s,) =0.

And we denote notations

Gl i=u(t"tt) — UZ“, gt = p(tn ) — P,?H.
From Lemma 2.3, we can deduce

[l + PlGm =+ #¥]lg

(4.1)
< ont (a5 + o))
and
Jo@r 2+ oG + g
(4.2) gt ) )
<cort [ ()l + 1) e
In conjunction with the definition ||-|| in (2.4), we can deduce
(4.3) le™i < c.

We now carry out error evaluate by comparing (4.10) below with (1.3)-
(1.7). We derive strong estimates of order 1 and use the result to prove
weak estimates of order 2 for the errors

n+1l . __ n+1 n+1 nn+1 o n+1 n+1 n+1l . __ n—+1 n+1
E,7:=U" —u ", E75 =U" —u", e =P —pi.

Then, in conjunction with (4.1), we can readily get of the same accuracy
for the errors

Ertl . — u(tn+1) - uz—&-l?En—&-l — u(tm'l) N ﬁZ—H? el p(th) . pz+1'

In addition, we denote

n+1
n+1 n+1 h
et =P 4 ——,
h h 27
Then we readily obtain the following crucial properties

(4.4)
Gn+1 — En+1 o Ez—i-l — En—H o EZ+1 and EZ—I—I — EZ-H 4 véwz—H,

E! = E/t = G" = 0, on 89,
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as well as, from (1.8),
(4.5) (Eptt, V) = (B, Vy) = (G", Vey,) =0, Vo, € Py,
whence we deduce crucial orthogonality properties:

(4.6) S = NERHIE + VR 15

We also point out that, owing to Lemma 2.2, ¢! € P, defined in (1.6)

satisfies
(4.7) g = ai]ly < IVE™ .

We now estimate the first order accuracy for velocity in Lemma 4.1,
and then the 2nd order accuracy for time-derivative of velocity in Lemma
4.3. The result of Lemma 4.1 is instrumental to treat convection term
in proof of Lemma 4.3. We will use the results in Lemmas 4.1 and 4.3 to
prove optimal error decay in Lemma 4.4. Finally, we will prove pressure
error estimate in Lemma 4.5.

LEMMA 4.1 (Reduced rate of convergence for velocity). Suppose the
exact solution of (1.1) is smooth enough. If Assumptions 2 and 4-5
hold, then the velocity error functions satisfy
(4.8)

(B ) o — B+ o 2 e

2
v <o ).

N N
+ 3 [Vou o + e > || VB
n=1 n=1

PROOF. By virtue of Taylor expansion for the exact velocity u(t), we
get

Ju(t™t) — 4u(t™) +u(t" 1)

+ (u(tn+1) . v) u(tn—l-l)

(4.9) 27
+vp(tn+1) _ /LAu(thrl) — Rn+1 4 f(tn+1),
where R™ = 1 f:ﬂ w(s)(s — t")%ds — £ jﬁj W (s) (1" — 5)?%ds

is the truncation error. In conjunction with the definition of Stokes
projection {U} P11 testing (4.9) with Vwy, € V), yields

(4.10) % (BuE™) — 4u(™) +u(t™), wa) + (VP w,)

+u (VU Vwy) + N (™), u(t™), w)
= (R, wi) + (£(E") wi)
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We replace p term in (1.3) by (1.7) and then subtract from (4.10) to

obtain
1/ ~ .
o < Bl 4R 4+ B wh> +opr <VEZ+1 , th>
.
WA — (v (6P +27), wi) + (Vg wa) + (R wy,)

+ N 2up —up At wy) =N (@), u(t™ ), w) .
Choosing w;, = 4TEZ+1 =47 (E”“ - G”H) in (4.11) and using (2.9),
we easily get

g + 2B — Bl + [180BR g + 6| v

4.12 2 6
(412 N
0 n=1

—ER ) — [[2E; — By + dur|| VE;

where
Ay = —4rN (u(th) L u(t"t), Ez“) AN (gu;; — Gt E;j“) ,
Ay = =2 (3G" —4G" + GML BT A= —ar (VaRITH B,
Ay =47 <V52 , EZ+1> , As :=4pr <Vq,?, EZ+1> ,
Ag =41 <R"Jrl , Ez+1> .

We now estimate terms A; to Ag separately. To tackle A;, we first add and subtract
2u(t") —u(t""!) to obtain

Ay = — 47N (55u(t"+1) ,u(tnty, Eg“) — AN (2ug —upl B Ezﬂ)
Y <2E” —E"L u(t, Eg“) :
Because of NV (2u} — u;fl , EZH , ﬁzﬂ) = 0, which comes from (2.5), the second
term of A; can be replaced by
Y <2E" CEVL 2u(t) +u(tY), GrY, Eg“) .
If we apply Lemma 2.5, then we can readily obtain

A, Or (fasme ) ), + 28 B a1y ) B

1

-~ 1
Bt H .

O (||2E" =B |G | + [l2u(e) — w6 | |
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Since we have Hu(t”“)”2 + [|G™ ||| < M according to (4.3), we arrive at

A <O (|l287 — BT+ 2 — G f e )
n+1

2 ot ot
H +— ||uttt(t)|‘(2)dt-
1% 1

+ /UHVEZH
0 tTL*

In light of (4.2), A becomes

R 9 tn-f—l
Ay < orByr e omt [ (@l + o)1) .
tn—1

In order to estimate Az and A4, we note <V52 , EZH) =0 and EZH =
E7t! 4+ Vot according to (4.5) and (4.4), respectively. The we have

Az = —47 (V6P Vet
t

< |[voups+or [

tn

(e @)1 + lpe(0)17) .

n+1
In conjunction with the definition EZH =P oy 311;’; , A4 can be evalu-
ated by
n n+1 8T2 n n+1 n+1
Ay = —47 (Ve , Voyppth) = - (Vep, V (6ept —opPr™h))

4 2
< == (vl = Iverlly - [vaer o)
+ Or¥|VeRl + Or|[Vorp

If we now apply inequality (a +b)? < 4a? + $b°, then we can get

472 o 472 2
vy =

‘vapg“ + ;vwg“
T

0
< 07| Vo g 4 4] Voup+ .

So we arrive at
4r? n+1(2 ny2 3 n|2
s <= == (Ve Iy = IV=R13) + Cr*IveRl;

(413) tn+1
+ 4| VPt |2+ 072/

tn—1

(a3 + et} d.
In light of V- u(#"*!) = 0 and (2.11), (1.6) and (4.7) yield
As = dpr (qpy, V- W) = —dur (g, qi )
= —2ur (|l o~ gk 12 — 1o [1)
2

< —2ur ([lap+lls - gk ) + 207 |VEZ |
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Also we readily get

n+1

Ag < CTHE;;“Hz n 074/ e (£) | 2lt.

tn—1

Replacing A;-Ag back into (4.12) and summing over n from 1 to N imply
N
[ o + 120 = B g+ 3 (IlooBs 15 + [[vows )
n=1

472

3

N
V2 2l Y VB
n=1

472 N
< 2pu7||gh |5 + %HvaiHﬁ +[|2B" — B[ + B[, + Cr* Y 1 Verlls

n=1

N
rory ([Brn )+ e -+ 2en -+ e )
n=1

tn+1 tn+1

Ccrt
Lo e (0)]2dt + C (v + 1Y) /

tn—

(@)1 + e (01 i

In light of e} = P} + %z/}}b = e}, we obtain HV&}LH?J < C and the first four terms
in the right hand side can be bounded by Assumption 2 and properties E° = 0 and
q! = 0 which are directly deduced from the conditions in Algorithm 1. And the next
terms can be treated by the discrete Gronwall lemma. Finally, in conjunction with
(4.1) and (4.6), we arrive at (4.8) and complete this proof. O

REMARK 4.2 (Suboptimal order). The suboptimal accuracy result in Lemma 4.1 is
due to terms of As and A, which come from parts of pressure in the above estimate.
To improve upon this, we must get rid of the terms and so we will use duality
argument in Lemma 4.4. However, this suboptimal result is essential to control
convection term in proofs of next lemmas to get optimal order.

tn—1

In order to use in the error estimate for time-derivative of velocity in Lemma 4.3,
we need to evaluate optimal initial errors for the case n = 1. To do this, we have to
compute again (4.13) and we rewrite A4 as

872 L ) )

Ay = —7<V€h,V(55h_5Ph)>
47'2 2 2 9
< =T (1913 - I9ehl - veet )

+Cr?|Veb |2 + cr? || verp |

and so we conclude

2
As <= Vel + Cr2 wehy + 4ot

t2
wer® [ (Il + luu®]3) de
t

0
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In light of Assumption 2, we arrive at

|2 ) , 1 ) )
m B2+ 315 + 282 — B4l + llosez s + [ wou;
' 2 2
| VBR| -+ 2url} + T Ve < O (7t 4 ).

We now start to estimate errors for time-derivative of velocity.

LEMMA 4.3 (Error estimate for time-derivative of velocity). Suppose the exact so-
lution of (1.1) is smooth enough and T = Ch. If Assumptions 2 and 4-5 hold, then
the time derivative velocity error functions satisfy

R 2
[+ oy | foamy = omy 2 4 A fwsey

N
(4.15) +3 <||555E;;+1||§ + || Vésyrtt|, + WHVCSETle)

n=2
+2/LTH(5q,11V+1H3 < Cr? (7'2 + h2) .

PROOF. Subtracting two consecutive formulas (4.11) and choosing by wj, =
476E} T yield

OB g + |25 — SR [g + |05y g + 6] Vaswy |

4.16 =R 6
(416) —|6Ep|2 — |20} _5Eg—1H§+4MTHvaEg+1HZ =34,
=1

where
Ay i= 47N (@), u(e ), SER) 4 ar (u(e), (e, 0By )
AT (20— G OB ) 4 (20— G 0BT
A 1= =2 (830G — 40G" 4 6G" ! ST
Ag = —ar (VOO SBIHY) Ayi= —ar (Voep, GBHY),
As 1= 4y (Voqi., 0BT, Ag 1= 4r (R SERHY).
We now estimate each term A; to Ag separately. We first rewrite A; as follows:
Ay =47 (85u(t™), u(e"), SR ) — 4rA” (5u(ent), u@e ), 0By
AN (2B7 - B2 u(en), 0By )
— 47N (2B" —E"T u@n ), 0By
h
h

+4TN <2u “loup? G+ E}, 5]/52“)
— 4N <2u —up Tt G 4 EEH , 6EZ+1) ,
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and we denote by A;;, for i = 1,2,---,6 the six terms in the right hand side. In
estimating convection terms, we will use Lemma 2.5 frequently without notice. We
recall [[u(t)]|, < C to obtain

Ava + Avp <Cr ([osu(e ) | [[a(@ ), + o) olue)l,) 08|

T = 2 ot
S AR U B 0T

tn—2

The result in Lemma 4.1, |2E" —E»! Ho < C (7 + h), is essential to treat next two
convection terms. Invoking (2.7), we have

Avg+ Ayg < OF||2E" — E"‘l]|OH(5u(t"+1)H2H6EZ+1Hl

+ CO7|[20E" — 5E“*1||0\|u(t”)||2H51?3;+1H1

WT ~ar1l2  COT " _an2 072(72+h2) "
e R e e ML 2

n—

We note N (2uZ . 5]?]2”1, 6]@2“) = 0 which comes from (2.5). Then we

obtain

Avs + A = —47N (20uf — dup~t, G4 Bt 0BT
— 4N (20T - w66 OE)
— 47N (20B" = 6E" ! — 26u(t") + du(t "), GM 4 By Sy
+ 47N (2E"—1 —E"? —2u(t"h) +u(t"?), G, 51?3;;“) = B) + Bs.
To attack Bi, we first note Lemma 2.1 which is, for any wy € Vi, [[Wallgsq) <
Ch= 8wl
If we apply HE”H + G”+1HO +VT+ hHE"+1 + Gnt! ‘1 < C (7 + h) which is the

result of Lemma 4.1, then we can conclude, in light of (2.8),

By <C7||20E" — 6E" Y|, o [ EF T + GPH

- 1
(et

o
+ Cr2pu(er) - su ) [+ + 6| [[vomi|

WT ~ox1l2  CT T n 1112
é@HWEh“’ﬁ? (1 1) 268" — 5B

tn+1
cr?

e i I L
K tn—2

0

0
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We now estimate By using HQE”*1 — E"*QHLs(Q) < C’h*d/6||2E”*1 — E"*QHO < M.

By <CT|[2B" ! — B"2| o 667, [ VOB |

+O7|2u( ) — u(tH)Hl||5Gn+1||1Hv5E;+1HO
nt1)2 BT || smnt])
<crllse |} + & |[vaBs ||

nt1

~ 2 ¢
<ot v omn [ (ol + Imnco)17) .
tn—1
In light of Holder inequality, (4.2) yields

Ay =—2(35G"H — 45G" + 5G", 6B; )
tn+1

<L vom+ s +0h4/

tn—

(Irae(®) 13 + lpe )17
Integral by parts leads
Ag =47 (S0P, V- GER)

sy + 0 " (e )2 + e (012 i
=6 ol T 2 1
In order to tackle Ay, marking use of dEI ! = SEF ! + Vasyr L. We readily get
Ay = —4r(Véel, SE}T 4+ Vosyth)
= 82 (Voey, V (80eptt — o5PPH))
< =27 (Ivaey Iy — Ivaspl; - [[vassi ()
+Cr3|Vsep|2 + Or||Vas P2,

If we now apply inequality (a + b)* < 4a® + 3b?, then we can have

2 2 2
sz =

‘waP;;“ - %waw;ﬂ

0
< O7*||Vas P2 + 4| Vasup .

So we arrive at

4 2
A<= T (IIe = I98eR1) + 4| vasup
tn+1

v vl +ort [ (lua@l+ lpu(o)]?) .

tn—
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Invoking (4.7) and (2.11) (1.6) leads

= —dur (g}, 66q; )

= —2p7 (|log 5 — 18k 115  l|oda; 2

< —2ur ([lag* s — 18R 15) + QMHWE”“HO.
Finally, A term becomes

Aq < Cr||srm | loB |

N 2 tn+1
<crljoyt | s ort [ funliar

tn—1

Inserting above estimates into (4.16) and summing for n from 2 to N yield

N
SRS + 2omy +t — amY o + 3 ([l660m 2 + [[wasupt| )
n=2
N o~
+ar Y |vomp | +f||wS N 4 opr|og 2 < [|oER |
n=2
[k

+[|20E2 —5E1||2+ﬁ||V652||2+2,u7||5q2 2+C’72§:HV6E” i
h hilo 3 hilo h h 0

+%( )ZHQ&E” OB}~ 1|\0+CT3Z\\vaah||o
n=2
24 p2)
+ C(M)/O (Ilumllﬁ + e ()15 + i3 + lpe (D117 + ||pt(t)lﬁ) dt

We note here 72 ZLVZZ HVM:]Z

2
can be removed by cancellation with the term
0

2
on the left hand side, provided 7 is small enough. We need as-
0

o | VoEs

sumption 7 = Ch to impose 7 = C. If we apply Gronwall inequality and then use

(4.14), then we arrive at (4.15) and complete the proof. O
In order to extend to optimal accuracy, we use duality argument with the Stokes

equations

—AvTTL vt = EPtY in Q,

4.17
( ) V.-vitl =, on 01,

with vanishing boundary condition v = 0. And let {v"+1 ZH} €V, x P, be the
solution of the weak form of (4.17),

<an+1 th> + <V7’"+1 Wh> = <Ez+1 , Wh>, Ywy, €V,

(4.18)
<v ' V;lH_l ) ¢h> = 07 quh € Pp.
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According to Assumption 1, we have
(4.19) v+ < B
and so Lemma 2.3 yields

vt = v g+ Al = v Al = < B2

(4.20) . ;
[l = vt < (et

In order to use in proof of next lemma, we derive 2 equations by considering for the
case wy, = vt in (4.18)
(3E" —4E" + B, vt = (3GMT —4GT + G v

(4.21)
G AVATAREA VAR VAV VAV

and by choosing wj, = ]T]ZJr1 in (4.18)
o) (VR v (B B - (Vi B,

LEMMA 4.4 (Full rate of convergence for velocity). Let the pairs (v,
r" 1) and (vt 7 TY) be the solutions of (4.17) and (4.18), respectively. Let the
exact solution of (1.1) is smooth enough and 7 = Ch. If Assumptions 1-2 and 4-5
hold, then we have

N
2 2 n
[FvA I + (17 (vt = vil)llp + D I veovit o
(4.23) =t
N 2
+2mz B, < C (v* +h?).

n=1

PROOF. We choose wj, = 47v}"! € V, in (4.11) and then we apply (4.21) and
(4.22) to obtain

19Vt lls + IV 2virtt = villy + [Vasvy g = IV vils
(4.24) 4
|9 (2vi = vi )l + dnr B[ = S As,
=1

where

Ay s = 47N (2u) — w7t vt —4e N (u( ) u(th), v,

A= —2(3GMH 4G @V V), Ay e (BT Wi,

Ay =4r1 <R"+1 , VZ+1> ,
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We now estimate A; to A4 separately. The convection term A; can be rewritten as
follows:

Ay = — 47N (S6u(t" ), u(t" ), VZH) + 47N (QE" —E"! EnTL VZH)

n n—1 mn+1 n+1
—47N(2u(t ) —u(t"ly, Ert ,vh+)
4
— 47N (2E" —E" 1 u(th), vitt) = Ay
=1

To estimate convection terms, we will use frequently Lemma 2.5 without notice.
Using ||u(t”+1)H2 < M, we can readily get

Auy <Orfaa(e ) fae v
gt

SCT||VVZ+1||(2J+CMT4/ Hutt(t)Hgdt

tn—1

and
A1s <Or (B 4+ 1B o) [hae ) |, v

nT nn2 nn2 n2 ny2 cr n 2
§7 (”EhHO + ||G ||0 + ||5EhH0 + ||§G Ho) + 7vah+1’|o'

Because V - (2u(t") — u(t"')) = 0 and 2u(t") — u(t"~') = 0 on boundary, we can
use (2.6) and so we get

Ars <Crl2u(t)  u(t* )|

B it
wr 1112 1112 Cr 1112
<EL (IRl + llem s + 193w ) + — 19Vl
We now apply

n 2 47—2 n n 2
Vo™, = THV (d=h ™" =Pl
(4.25) ) e
< CTQHV‘SEZHHO + 07-3/ (||ut(t)H§ + Hpt(t)Hf) dt,
m

to derive

Avs <EL (B0 + 6™ ) + Cur?|[vosi o
gttt

C
it [ (Il + Il e+ T ovi

If we apply [|2E" —E" 7|, ) < Ch=¥/S||2E" —E"!| | < Ch~%° (7 + h) which
derives from Lemmas 2.1 and 4.1, then we can derive, by using Lemma 2.5 and
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(4.19)-(4.20),

Az <Cr2E" — B |

B v

+Cr|[2E" — E"*1||L3(Q)’

Enﬂ”lenH _V;LL+1||1

SCT(TM)‘

B 1| [l + Crl
1

B v,
C An 2 n 2 /'[/T n 2
<Cr o ([oBe ||+ fvam) + 22 ey
In conjunction with (4.2), we can have

C
Ay < = ([lo@ 1 3 4+ 106" ) + vy
tntt

< CT||VZHH§+Ch4/ 1 (||ut(t)||§ + ||Pt(t)||?) dt.

tn—

The definition of EZ“ =E}! + Voyrt! and (4.19) gives us
Aa = dyur (VOO Vo< e B+ T vaur

If we apply (4.25) again, then we arrive at

Cr crt
As < pr| B + TTHV&’}}“HE + TT . 1Vpe(8) gt

On the other hand, the truncation error term becomes

tn+1

A= ar (R vz orfevi e ert [ fu (o)t
t'n.fl

Invoking v¥ = 0, inserting above estimates from A; and A4 into (4.24) and summing
over n from 1 to N give us

N N
2 2 112 nal2
V9" o + 19 (v = vil)llg + D V88V g + o > _IIBE ™

n=1 n=1

N
<5||Vvh|lE o (r+ )Y <Hvﬁ;;+1”z + | var ) + ||vagz+1||§>
n=1

N
+or Y|V
n=1
al 2 2 2
+our > (1B5 o + 85 o + le™ o + oG )
n=1

tN+1

O (b / (Ihasee I + Ihase ()1 + e D113 + Ipe (1)}
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Applying the discrete Gronwall inequality and Lemmas 4.1 and 4.3, we obtain (4.23).

O

We now estimate the pressure error in L2(0,T; L?(2)). This hinges on the error
estimate for the time derivative of velocity of Lemma 4.3.

LEMMA 4.5 (Pressure error estimate). Let the exact solution of (1.1) is smooth
enough and 7 = Ch. If Assumptions 1-5 hold, then we have

N
(4.26) T Z HeZ‘HHi <C(r*+h?).
n=1

ProOF. We first recall again inf-sup condition in Assumption 3. Consequently, it
suffices to estimate (e"™!, V- w) in terms of |Vwl]|,. In conjunction with (1.7), we
can rewrite (4.11) as

(Vo) = 5 (BB AR B wy)

+u (VELT, V) + N (30u(e), u(t™t), w)
W20 N (2m(r ) —u(em) B wa ) 4 (2B - B 6 wa)

7
— K <V5q,?+1 y Wh> - <Rn+1 s Wh> = ZAz
i=1
We now proceed to estimate each term A; to A7 separately. We readily obtain
C n n C n n
Ar < — ([[0B" | + 1B o) wnllo < — ([JOE" |, + 10B" o) [Vwally
and R
Ay < C’HVEZ“HOHthHO.

Term Az and A, can be dealt with the aid of Lemma 2.5 and Hu(t”"’l)H2 < M as
follows:
Ay < ClJavaE )| a1 | Iwal, < CllasuE ]| [ Fw,

and R R
Aq < Cll2u(@ ) = u(e)||, [B | wall, < C|[B+ 19wl

In light of |[uj*'||, = HE”“ - u(t”“)” < C from Lemma 4.1, we can have
1

Q)||ﬁZ+lH1HWhH1

Ao < ClpEr B,
C
< 2
~Vh (

Integrate by parts and Holder inequality yield
As < CHCSQZ-HHOHVWILHU

B+ IE™ o) VWl

On the other hand, we have
Ar < R [9w,
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Inserting the estimates for A; to A7 back into (4.27), and employing discrete inf-sup
condition in Assumption 3, we obtain

1
Cllem o <= (1B, + I5E™ ) +

+ HVEZ“HO + [[6du(eth||, + ‘

<
Vh

(I Hlg + 1E™ o) + [Jog ™,

pn+1 +1
B+ R,

If we now square, multiply by 7, and sum over n from 1 to N, then Lemmas 4.1 and
4.3-4.4 derives (4.26).

5. Numerical experiments

O

In this section, we perform two numerical experiments: the first is to check accu-
racy and the second is to test stability. In the first experiments, we choose square
domain [0, 1] x [0,1] and impose forcing term the exact solution to become

u = exp(t) sin?(7x) sin(27y),

v = — exp(t) sin(27x) sin? (y),

p =exp(t) cos(mx) cos(my).

| r=h] 1/16 1/32 1/64 1/128 1/256
|1E], || 0-00384017 | 0.00130831 | 0.000391824 | 0.000107996 | 2.8413e-05
Order 1.553466 1.739427 1.859228 1.926355
IE| - || 0-0112291 | 0.00381103 | 0.0011382 | 0.00031345 | 8.24393¢-05
Order 1.558989 1.743427 1.860447 1.926831
|E|, || 0-0798332 | 0.0239901 | 0.00680859 | 0.00183099 | 0.000476245
Order 1.734550 1.817011 1.894732 1.942848
lel, || 0-0986215 | 0.0332739 | 0.0099548 | 0.00267395 | 0.000704462
Order 1.567511 1.740927 1.896420 1.924379
el o || 0-53446 0.214847 | 0.0759942 | 0.0236211 | 0.0070079
Order 1.314772 1.499348 1.685813 1.753022

TABLE 1. Error decay for Algorithm 1

Table 1 is the error decay for Algorithm 1. In this computation, we use Taylor-
Hood (P2-P1) finite element on the uniform mesh. We impose 7 = h and u = 1.
These error decay is optimal and consists to Theorem 2.

In [9], a rectangular driven cavity of low viscosity flow is performed in a domain

[0,0.75] x [0, 1] with initial and boundary conditions as described in Figure 1. In this
paper, we carry out the experiment with p = 1/10,000 and h = 1/256, and then we
hire 7 = 0.5 as big as possible. Most of numerical algorithms have upper bound for
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the size of 7 to make hold the stability constraint, like 7 < Ch, where C' depends on
the Reynolds numbers. So, the smaller 7 has to be imposed for the bigger Reynolds
numbers problem. But Algorithm 1 becomes released from the limitation of the time
marching size 7 by Theorem 1.

u=1,v=0
u=0 ud =0 u=0
=0 0 =0 =0
u=—-1v=0

FIGURE 1. Initial and boundary conditions for rectangu-
lar driven cavity flow in the domain [0,0.75] x [0, 1].

Figure 2 is the numerical result of the rectangular driven cavity flow at time
T = 100 of Algorithm 1 and displays still stable even for high viscosity flow with
p = 1/10,000 under extremely strong unstable conditions h = 1/256 and 7 = 0.5.
The 7 = 0.5 is extremely big size for this case, but it is still stable. We thus can
conclude that Algorithm 1 is unconditionally stable and consists to Theorem 1. We
note here that this experiment is to verify only stability for any 7, not to check
accuracy. So we impose very big 7 = 0.5 and the big 7 is the main reason of the
oscillations in Figure 2. We need to use a reasonable 7, if we want to obtain more
accurate results, because stability and accuracy do not depend each other.
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