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ON TAUBERIAN CONDITIONS FOR WEIGHTED GENERATORS
OF TRIPLE SEQUENCES

AsSIF HUSSAIN JAN* AND TANWEER JALAL

ABSTRACT. This paper introduces a novel perspective on how the (V, p, ¢, 7) method
relates to P-convergence for triple sequences. Our main objective is to establish
Tauberian conditions that govern the behavior of the weighted generator sequence
(#Z1mn) concerning the sequences (P;), (Qm), and (R,,), aiming to offer a fresh in-
terpretation. These conditions manage the Op- and O-oscillatory properties and
establish a link from (N ,D,q,7) summability to P-convergence, contingent upon
specific constraints on the weight sequences. Furthermore, we demonstrate that
particular instances, such as the Op-condition of Landau type and the O-condition
of Hardy type concerning (P;), (@), and (R,,), serve as Tauberian conditions for
(N, p,q,r) summability under additional conditions. Thus, our findings encompass
traditional Tauberian theorems, including conditions related to gradual decline and
slow oscillation in specific scenarios.

1. Introduction

Understanding the origins and development of ideas from the late nineteenth cen-
tury that expanded summability theory from single to multiple sequences is a challeng-
ing endeavor. Before 1990, when Pringsheim published his article ”Zur Theorie der
zweifach unendlichen Zahlenfolgen” (On the Theory of Doubly Infinite Sequences) [26],
it seemed that no researchers were actively working on the theory of multiple se-
quences. In his paper, Pringsheim introduced the concept of P-convergence, which
was further explored by Hardy [10] and Bromwich [5] in their detailed study of double
sequences. This work significantly advanced research on this new type of sequences.
The earliest known contribution to the application of weighted mean methods to dou-
ble sequences comes from Baron and Stadtmiiller [1]. They examined the relationship
between the (IV,p,q) method and P-convergence for double sequences, identifying
necessary conditions for the (bounded) P-convergence of a double sequence that is
(boundedly) (V,p, q,r) summable, expressed through Hardy-type O-conditions rela-
tive to P = (F)), Q = (Qn), and R = (R,,):

m T'n
sup (A1002imn) = O <pl> , sup (Ao102imn) = O <q> and sup (Aoo12imn) = O <>
mneN ]Dl IneN Qm ImeN Rn
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with the sequences (P), (@), and (R,) being regularly varying. Stadtmiiller [29]
built on this by generalizing Op-Tauberian conditions given by Moricz [23] for the
(C,1,1) method, showing that these conditions could be relaxed. Subsequently,
Mishra et al. [20-22], Chen and Hsu [6] developed Tauberian theorems for double
sequences, addressing the implications of (N, p, ¢) summability to P-convergence un-
der Landau-type conditions, Schmidt-type slow decrease conditions, and more general
frameworks involving deferred means. Méricz and Stadtmiiller [24] reduced the as-
sumptions previously made by Stadtmiiller [29], investigating the necessary conditions
for (boundedly) (N, p, q¢) summable double sequences to be (boundedly) P-convergent
using classes A, and A, based on non-factorable weights. Belen [2] introduced the con-
cept of double weighted generator sequences and demonstrated that certain conditions
involving these sequences, such as

AsoVh” (Ari(u) = Oy ( o ) and Aoy V1N (An(u)) = Oy ( o )

m—1 Qn—l
constitute Tauberian conditions for the (N, p,q) method, with additional conditions
on the weight sequences (p,,) and (g,). Onder et al. [25] introduced weighted generator
of double sequences and its Tauberian conditions..

This paper investigates the relationship between the (N,p,q,r) method and P-
convergence for triple sequences. Our goal is to establish Tauberian conditions govern-
ing the behavior of the weighted generator sequence (2, ) relative to (), (Q,,), and
(R,), using Oz and O-oscillation. We explore the transition from (N, p, ¢, ) summa-
bility to P-convergence, imposing specific restrictions on the weight sequences. Within
this framework, we demonstrate that certain conditions, such as the Op-condition of
Landau type relative to (B)), (Qm), and (R,), and the O-condition of Hardy type
relative to (P,), (Qn), and (R,), can be seen as Tauberian conditions for (N, p, q,)
summability under additional conditions. These findings encompass classical Taube-
rian theorems, including those related to slow decrease and slow oscillation in specific
contexts.

2. Preliminaries

In this section, we will start by providing basic definitions and notations related
to double sequences and their weighted means. We will then introduce the weighted
generator sequences and the weighted Kronecker identities, which are based on the
sequence (2yn,). We will discuss their weighted means and generator ones in certain
senses, as well as the weighted de la Vallée Poussin means for triple sequences.

Additionally, we will introduce the concepts of slow decrease relative to (F}), (@),
and (R,,), as well as slow oscillation relative to (P,,), (Qm), and (R,) for triple se-
quences. We will demonstrate how a relationship exists between these newly described
concepts.

Finally, we will conclude this section by identifying the class SV A, providing its
characterization, and discussing two of its subclasses.

Let K := R or K := C be the field of all real or complex numbers, respectively.
Further, let N be the set of all nonnegative integers.

The function X : Nx N x N — R(C) allows for the creation of a sequence of triples
consisting of real or complex numbers. Initially, Sahiner et al. [28] introduced and
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examined various concepts related to triple sequences and their statistical convergence.
For the further information on triple sequence, refer ( [8,15-19,23,24,26,30,31]).

If the set w?(K) denotes the set of all triple sequences, then w?3(K) together
with coordinate-wise addition and scalar multiplication defined by ((zimn) » (Wimn)) —
(Zimn + Wimn) and (A, (Zimn)) = (AzZimn),

w(K) = KNV = L = (2m) | 2 : N X N x N = K, (I,m,n) = 2(I,m,n) := Zmn}

is a linear space over K. Each linear subspace of w3(K) is called a triple sequence
space. Besides, the following subsets of w3(K) are obviously triple sequences spaces:

A(K) :={2 = (Zimn) | (Zmn) is convergent in Pringsheim’s sense, that is,

P— lim z,,, has a finite value
l,m,n—o0

or equivalently,

A(K) ={z = (2imn) | V € >0, 3 ng = ng(e) € N such that |z, — ] < ¢
holds for all I,m,n > ng},

2 (K) :={z = (2imn) || Zimn |l o = SUP| Zimn |< 00 for all {,m,n € N}.

These spaces represent the set of all P-convergent triple sequences and the set of all
bounded triple sequences, respectively.

Note that (2y,,) may converge without (z,,,) being a bounded function of [, m and
n. To put it more explicitly, P-convergence of (2y,,) may not imply boundedness of
its term in contrast to the case in single sequences. For instance, the sequence (2y,)

defined by

5" ifl=1,m,neN
Zimn = & BT ifn=3,I,neN
0 otherwise

is P-convergent, but it is unbounded.
Some notations that will be used in places throughout this paper are given below.

NOTATION 2.1: Let (zy,,) be a triple sequence.

(1) The symbol zp,, = O (1) means that |2y,,| < H for some constant H > 0 and
each [,m,n > ny.

(2) The symbol z;,, = Op (1) means that z,, > M for some constant M > 0 and
each [,m,n > ny.

(3) The symbol 2, = o(1) means that z,,, — 0 as [,m,n — oc.

Let 2 = (2pmn) € w3(K) and let (p;), (¢m) , (rn) € w (R>?) such that

(2.1)

n

l m
B::Zpi%oo,Qm::qu%oo and Rn::qu—M)o as l,m,n — oo
i=0

j=0 k=0

where w (R>?) represents the set of all single sequences of positive real numbers.
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The weighted means of (z,,,) determined by the sequences of weights (p;), (¢,,) and
(rn) are defined by

n

l m
Ul:l?:z%z = ﬁ Z Z Zpl%'rkzijkza

i=0 j7=0 r=0

l m
wo . 1 , o0 . 1 o
Olmn += PiZimn, Olmn “— Q qjZijn,
=0 m =0

1=
n
001 .__ 1 r
Olmn +— _R kZlImk
" k=0

for all (I,m,n) € Nx N and P,Q,,R, > 0.

A triple sequence (2,,) is called (N,p,q,r) summable to ¢ if P — limojll = £.
Similarly, (N, p, *,7), (N,*,q,7) and (N, p, g, *x) summable sequences are defined via
triple sequences (072 ), (opi0) and (opol), respectively. It can be easily seen that
necessary and sufficient condition for regularity of the (IV, p, ¢,7) method is condition
(2.1). To put it another way, (zimn) € 3(K) N £3 (K) is also (N, p,q,r) summable
to same number under condition (2.1). Nevertheless, the opposite of this proposition
is not true in general. The question of whether some conditions on the terms z,,,
under which its (IV, p, ¢, ) summability implies its P-convergence exist comes to mind
at this point. The condition T {zj,,} making such a situation possible is called a
Tauberian condition. The resulting theorem stating that P-convergence follows from
its (N, p, ¢, 7) summability and T {zju,} is called a Tauberian Theorem.

In conjunction with the weighted means, there are many special means occurring
depends on choosing of the sequences of weights (p;), (¢) and (r,,). Included by the
weighted means and also commonly used by researchers in literature, some means are

listed as follows.

(a) In case p; = ¢ = 1, = 1, it leads to the arithmetic means (or called Cesaro
means of order (1,1,1)) of a triple sequence where P, =1+ 1, @, = m + 1 and
R,=n+1forall [,m,n e N.

(b) Incasep; =1/(l+1), g =1/(m+1) and r, = 1/(n+1), it leads to the harmonic
means (or called the logarithmic means) of a triple sequence where P, ~ logl,
Qm ~ logm and R, ~ logn for all [,m,n € N.

(c¢) Incase py = 1/((1 +1)log(l 4+ 1)), gm = 1/((m + 1)log(m + 1)) and r, = 1/((n +
1)log(n + 1)), it leads to the harmonic means of second order (or called the
iterated logarithmic means) of a double sequence where P, ~ logl, @Q,, ~ logm
and R, ~ logn for all [,m,n € N.

(d) In case p; = (I + 1), ¢gn = (m+ 1)? and 7, = (n + 1)? with o, 8,v7 > —1,
it leads to untitled means of a double sequence where P, ~ (I + 1)*™!/(a + 1),
Qum~ (m+1)P*/ (B+1)and 7, ~ (n+ 1)/ (v + 1) for all I,m,n € N.

For (2imn) € w?(K), we define

A1112imn = D100A0108001 Zimn = D100 (AOIOAOOIZlmn) = Aoio (AIOOAOOIZZmn)
= Zlymn — Alomn—1 — Rl—1,mmn — Alm—1n + Rl-1,m—1n—1,

A100Zimn = Zimn — Zlmmn—1,

A0102imn 1= Zimn — lm—1,n

A001Zlmn = Zlmn — Rl—-1,m,n
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for all [, m,n € N.
The weighted Kronecker identities for a sequence (z,,) are defined by:

l
1 (©
100 100(®)
Rlmn — Uzmn( ): Fl E P 1 Avoozimn = ngfl (Alooz)
—

010 010(®)

1
Zimn = Oy (2) = Q_ZQj—lA[)lOuljn— i (Do102)
m i—1

and

1 (
Ztmn — Ol (2) = in > Ry Doorzimn =1 Vi, " (Doo10%)
for all I,m,n € N.

The sequence (Vlwo 0 (A1002)> is the (N, p, %, *) mean of (P_; A19o2imn) and called the

mn

weighted generator sequence of (z,,,,) in the sense (1,0, 0). Concordantly, the sequence
(Vl%g 0 (Aomz)) is the (IV, *, ¢, *) mean of (Q—12010%mn) and <Vlom 0 (A0012)> is

mn

the (IV, *,*,7) mean of (R,_;Ag2mn) and called the weighted generator sequence
of (2mn) in the sense (0,1,0) and (0,0, 1) respectively. More generally, the triple

weighted Kronecker identity for a sequence (2,,) are defined via (V,;Sg 0 (Alooz)>,
<V010<0> (Aomz)) and (VOOl(O) (A0012)> as follows:

Imn Imn

(0)
Rlmn — Ullnlez() Vllll (Aq112)

where
VY (Apz) ==
I m n
0) 1
Voo™ (A1002) + Vi (Doroz) + Vioh” (Ao =) — 7222 i—1Qj—1 -1 2111 245k

P
1Qm B J=1 k=1

for all I, m,n € N.

The sequence (Vhlr}?]i ? (Anlz)> is called the weighted generator sequence of (2j,,,) in
the sense (1,1,1).

In addition, the (N, p, ¢, ) means of order v € N of sequences (2, and <Vl}nl$( ) (Anlz))
are defined by

1

m n (v—1) .
PQnR Zé:o Zj:l Zk:l PZQ]Rkazljlkl (Z) ifvo>1

o () =

Imn
Zlmn ifv=20
and

(v—1) .
PszRn Zz 0 Z] 0 2 k=0 PidjTk ’L;-]];:l (Apiz) ifv>1
‘/2111(”) (Anlz) —

mn

‘/1111(0) (AHlZ) ifv= 0

mn

respectively.
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Throughout this paper, oL and VALY will be used instead of o211 (2) and V2™ (A, 2)

Imn Imn mn
for the sake of convenience.

The weighted de la Vallée Poussin means of (z,,,) are defined by:

1
TMWX Z) = PiqiTkZijk, w> 5777 >m, X >"n
lmn() (PM_PZ)(QU_Q R —R Z Z Z J J

=Il+1j=m+1 k=n+1

and

mn 1
Tllmx (2) == B =P @ =001 Z Z Z PidiTkZijk,  p<l,n<m,x <n

i=p+1j=n+1j=x+1

for all [, m,n € N.
At present, we define concepts of slow decrease relative to (B), (Q,,) and (R,) and
slow oscillation relative to (P), (@) and (R,) for triple sequences. In the wake of
defining of that, we mention a relation between them.
A sequence (2,,) € w3(R) is said to be slowly decreasing relative to both (), (Q,,)
and (R,,) provided that
(2.2) lim liminf min (2 — zp,) > 0;

A—1t Imn—oo P<P;<AP

k—1t QmSQjS"’v

st Rn<Ry<é

that is, for each € > 0 there exist ng = ng(e) € NJA = Ae) > 1, k = k(e) and
d = d(e) > 1 such that

Zijk — Zimn > —€ Whenever ng <1 <i,ng <m<jng<n<k

P Q; Ry,
d1<=2<)\1< 2L <R 1< =<6
aln _P_ s ~ R

l m 0

Condition (2.2) is equivalent to
lim liminf min (%, — wij) > 0.
A—1t Imn—o00 P <P;<AP,
k—1t QmSQjSN
o—1t Rp<Rp<é

The set of all slowly decreasing sequences relative to both (P), (@Q,,) and (R,) is
denoted by - Z(po,r).
A sequence (21,,) € w3(C) is said to be slowly oscillating relative to both (7), (Q,,)
and (R,,) provided that

(2.3) lim lim sup  |zijk — Utmn| = 0
A=1t mn—oo  p<p.<AP,
r—1T Qm<Q;<KkQm
51t R.<Rp<éR,

that is, for each € > 0 there exist ng = no(€) € NJA = Ae) > 1, k = k(e) > 1 and
d = d(e) > 1 such that

|Zijk — Zimn| < € whenever ng <1 <i,ng <m <jnyg<n<k,

P; ; R
and 1§F§A,1§g—fgm,1§R—’“§5.

l m n

Condition (2.3) is equivalent to
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The set of all slowly oscillating sequences relative to both (B), (Q,,) and (R,) is
denoted by . 0\po r)-

A sequence (2im,) € w3(R) is said to be slowly decreasing relative to (P;) provided
that

2.4 lim liminf min Zimn — % >0
mn lmn 9
A—=1t Lmn—oo PI<P<AP,

or equivalently,

lim liminf min (zpm — 2 > 0.
Ao 1- Lm,n—oo >\131<Pi§Pl( mn = Zimn) 2

The set of all slowly decreasing sequences relative to (F)) is denoted by Y@( - Besides,

a sequence (zy,y,) is said to be slowly decreasing relative to (F}) in the strong sense if
(2.4) is satisfied with
i ik — 21 instead of i imn, — :
5 Srgilgkpl (2ijk — z155)  instead o Plgrgilg)\ﬂ (Zimn — Zimn)
Q’H'LSQ] <KkQm
Rn<Rp<6Rn

The set of all slowly decreasing sequences relative to (F)) in the strong sense is denoted
by S92 T (P).
A sequence (2j,,) € w3(C) is said to be slowly oscillating relative to (P,) provided
that
(2.5) lim limsup max |Zimn — Zimn| = 0

A=1F | mn—oo PISPISAR,
or equivalently,

lim limsup max  |Zpun — Zimn| = 0.
A=17 | mn—oo API<P <P,

Besides, a sequence (2y,,) is said to be slowly oscillating relative to () in the strong
sense if (2.5) is satisfied with

max |2 — 26| instead of  max  |Zimn — Zimnl -
P <P,<A\P, P <P;<A\P,
QWSQJSHQm

The set of all slowly oscillating sequences relative to (P) in the strong sense is denoted
by SO T (P).

Similarly, the sets 7 2y, /27 7 (Q), " Oq), and L 0. T (Q)) can be analogously
defined.

Indeed, for all large enough I, m and n, that is, [,m,n > ng, A > 1, x > 1 and 6 > 1,
we find

min  (Zijk — Zimn) = min (Zijk — Wik + Wik — Wimn)
P <P,<\P, P <P;<\P,
<@, <k
QnLSQjS’QQm Qm,Q], Qm
RnSngéRn
RnSRkS(SRn
(26) > min (Zijk — Uljk) + min (uljk — Zlmn) .
P <P, <AP, Qm<ji<kQm
QmSQjS"@Qm
RmSRjSKRn

Taking lim inf and limit of both sides of (2.6) as [, m,n — oo and \, k,§ — 1T respectively,
we get that the terms on right-hand side of (2.6) are greater than 0 . Therefore, we
reach (2pmn) € L Z(pg)-
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It can be also said that if (zim,) € S2ST(Q) NS Dpy NS DR, then (2imn) €
y.@(p’QJg). Similarly, if (Zlmn) < Yﬁﬁﬂ?(P) N efﬁ(Q) or (Zlmn) S yﬁ«?ﬂ(@) N
LZP) N y.@(p), then (Zlmn) S yﬁ(P,Q,R)-

In the remainder of this section, we mention the classes including all positive sequences
(pr) whose sequence of partial sum (F)) is

(i) a regularly varying sequence of positive index,

(ii) a rapidly varying sequence of index oo (see [3] for more details).
Let p = (p1) be a sequence that satisfies (p;) = (P, — Pj—1), where P_y =0 and P, # 0
for all [ € N.
(i) A sequence (P,,) of positive numbers is said to be regularly varying if for all A > 0

lim —= = p(\) exists,

where 0 < p(\) < oo (cf. [4]).

In spite of the fact that this definition has been used by many authors as a starting
point for studies including regularly varying sequences, these sequences possess quite
useful properties, the most important of which is probably the following characteri-
zation theorem.

THEOREM 2.2 [18] (Characterization Theorem) The following statements are equiv-
alent:

(a) A sequence (P)) of positive numbers is a regularly varying sequence.

(b) There exists a real number « > 0 such that ¢(\) = A\* for all A > 0.

(c¢) The sequence (P,) has the form P, = (14+1)*L(l) for | > 0 with constant o > 0 and
slowly varying function L(.)on(0, 00), i.e. the function L(.)ispositive, measurable,
and satisfies

L(\t)
im ——=
To emphasize such «, a sequence (P,) is called a regularly varying sequence of positive
index «, as well. Note that a regularly varying sequence of index a = 0 corresponds
to a slowly varying sequence.
The set of all sequences of positive numbers (p;) with py > 0 satisfying (c) is denoted
by SVAreg(a).
Here, it is useful to give the following implication proved by Bojanic and Seneta [4].

=1 for all A > 0.

LEMMA 2.3 [4] If a sequence P = (P,) of positive numbers is regularly varying, then

P
jjl1—>1asl—>oo

(ii) A sequence (P,) of positive numbers is said to be rapidly varying of index oo if

p 0 ifo<A<l,
(2.7) % {1 ifa=1, as m — 0o.
! oo ifA>1

The set of all sequences of positive numbers (p,,) satisfying (2.7) is denoted by
SV Aap . In addition, it may be written conventionally as A\ because the right
hand side of (2.7) is the limit of \* as o — 0.
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3. Auxiliary results
In this section, we state and prove some auxiliary results to be benefited in the
proofs of our main results. The next lemma presents two representations of difference
between general terms of (2,,) and (o) and it can be proved when it is make
convenient modification in Lemma 1.2 proved by Fekete [9].

LEMMA 3.1: Let z = (z;ns) be a triple sequence.

(i) For sufficiently large > I, n > m and x > n, we have

P.Q,R
111 pldnily 111 111 111 111
Z -0 = o -0 — Ojpy, T O
Ilmn Imn (PM —_ f)l) (Qn — Qm) (RX — Rn) ( unx pumn Inn lmn)
P Q R
T (ohtha = ahih) + g o (ot i) + o (ol = ol
(3.1) - Piq;Tk (Zijk — Zimn) -
(P = P (Qn = Q) (R — Qu) G, 2= =
(ii) For sufficiently large u < I, n < m and x < n, we have
P,Q,R
o1 plonitx 11 111 111 111
Ol =B B @ @) oy~ Ry (i ™ i O+ %)
Py 111 111 Q@ 111 111 Ry 111 111
+ F)l — PM (Uumn - lmn) + m (Ulnn - Ulmn) + m (Ulmx - Ulmn)
1 l m n
(3:2) T BB @ Q) (R - @y 2 2 2 Pitimk Gmn = i)

i=p+1 j=n+1 k=x+1

Interpreted differently from the statement given in Lemma 3.1, the following lemma

points out two representations of difference between the general terms of (2yy,,) and

(o}l via the weighted de la Vallée Poussin means of (2, ).

LEMMA 3.2: Let z = (z;mn) be a triple sequence.

(i) For sufficiently large > 1, n > m and x > n we have

111 _PMQWRX (0111 _ /mx) _ ﬂ (0111 unx)

Zimn — Omn _PlQ R unx Ilmn Pl pmn Timn
miln
C27] 111 RX 111
- (Jlnn - Tll:r?if) - A (Jlnx - Tlﬁ:ﬁf) - (Tll:g:@( - Zlmn) :
@m @n

(ii) For sufficiently large p < I, n < m and x < n, we have

B 111__PMQ77RX(lmn_ 111)+ﬂ(zmn_ 111)
Zimn = Opp, = PO,R Tunx — Punx P, 7
m n

BX pmn
Q’] Ilmn 111 Rn Imn 111 lmn
+ m (Tunx - Ulnn) + +R—n (Tunx - Ulnx) + (Zlm" - TIWX) .
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Proof. (i) For sufficiently large p > [, n > m and x > n we have from definition of
the weighted de la Vallée Poussin means of (szn)

1
Tz’f%(z) (P — P) (Qy — Qu) ( Z Z Z DiqjTkZijk

i=l+1 j=m+1 k=n+1

1 © l n m X n
N (P, — P)(Qn—Qm) (Ry — Ry) <l B E) Z B Z) (Z PiqiTkzijk

l n o X L n I m X m
IS DI IEDIY }pz-qjmzmk
=0 j=0 k=0 =0 j=0k=0 =0 5=0k=0 =0 j=0 k=0
PanRx 111 Pn 111

" (Bu— P1) (Qn — Q) (By — Ra) P ™ (P = ) (Qq — Q) (R — Rp) ™"

_ PQmRn ol D ol
(Pu = ) (Qp = Qm) (Ry = Ry) ™™ (Pu = P) (Qy — Q) (Ry — Rn) ™™
It follows from Eq. (3.3) that
0_11 (U)
_ Bu@nlty ot Do & 11 By i (Pu = P) (Qn = Qm) (By — Rn)Tunx
PQuRy "~ B T QT T R, T PiQm R e
_ BBy o Bu o Qn o By [ Du@nB B Qn By

T PQmR, T T T g T TR X T PO Ry P Qm Qn || imm

_ PMQWRX (0111 _ /mx) _ PM ( 11 unx) _ & (0111 ;mx)

unx — Timn Inn ~ Timn

- PQnR, p, Ve e
(3.4)
R
— X (b, — ) — o,
n

If we implicate in the term u,,, to both sides of equality (3.4), then we can observe
that the proof of (i) is completed.

(ii) The proof is similar to that of part (i) of Lemma 3.2. So, we omit it.

To be also commented as a result of Lemma 3.1, the mentioned representations below
give the difference between the weighted de la Vallée Poussin means and the weighted
means of (u,y,). O

LEMMA 3.3 Let z = (2ynn) be a triple sequence.
(i) For sufficiently large > [, n > m and x > n, we have

PO, R
HnX 111 _ Hen= =X 111 111 111 111 111
Timn (Z) - Ulmn(z) _(P,u — Pl) (Q — Qm) (R — Rn) ( unx U,umn - Gmnn - lmX + lmn)
b, Q
b b oA + o B (ot ol

R
b (ot - atth).
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(ii) For sufficiently large u < I, n < m and x < n, we have

P/LQﬂRX 111 111 111 111 111
(B = 70 (@ — Qo) (i = Fop) (7~ i = %tan = Tl + %)

n P, (011 111 )+ Qn ( 111 111)

l
T (2) = Tl (2) =

— g — 0
mn mn Imn Inm
Pm - P,u . Qm - Q'n K
R
n 111 111
+—=—= 0 -0 .
Rn - RX ( Imn lmx)

In [7], Canak pointed out that a generator sequence <Vn(10)(Az)> converges under some

proper conditions. Getting inspired the one for single sequences, we demonstrate
under which conditions the weighted generator sequence of (zj,,) in sense (1,1,1) is
P-convergent.

LEMMA 3.4: For a sequence z = (2my,) € w*(R) and (p1) , (gm) (1n) s € SV Areg(a), let
the hypotheses

lim liminf (o't —7#7%) >0 lim liminf (oil! — 7#7%) >0
umn Ilmn ’ Inn Ilmn )
A—=1+ I ;mn—o0 k—1+ I;mn—o0

lim liminf (ot — 787X} >

S 1+ Lmon ( Ilmx lmn) =

3.5 lim limsup ol XY <
( ) A 01+ l,m,n—>oo( unx lmn) =

for p>1,7>m and xy > n and

: : 111 Ilmn : : 111 Ilmn
lim limsup (aumn — Tlmx> <0, lim limsup (Ulnn TMX) <0,
A= 1T o, x—o0 K17 pum x—o00

(3.6) lim liminf (o)) —7i7") >0

Ars 1= fx oo\ HITX pnx

pw<Il,nm<mandyx <n hold.
If conditions

(37) A lnlinl-&- ll}nn}LE}ofo (Tll:;]n - Zlmn) Z 0

and
. lim liminf — T >
(3. i ind (o = 7n) 2 0
are satisfied, then the weighted generator sequence (V#}L(O) (Anlu)> is P-convergent

to 0.

Proof. Suppose that (3.5)-(3.8) are satisfied. To prove that
P— lim (V" (An2)) =0,

Imn
l,m,n—o00

we investigate 2y, —o}ll (2) in two cases u > I,n >m,x >nand u < l,n < m,x < n.

Firstly, we consider the case p > [, n > m and y > n. Putting
p=argmin{P;, > AP} =min{i >m: P, > AP},
n=argmin{Q; > kQ,} =min{j >m:Q; > kQn}
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and
x = argmin {Ry > AP,} = min{k >n: Ry, > éR,}

with A\, k,d > 1, we observe by Lemma 2.3 that p;,/F, = 0, ¢n/Qm and r, /R, — 0
as [, m,n — oo and hence

B9 F=pon ad oot Becn Bl ancon)
(3.10) %2g—::/ﬁand%:%+%§m+g—:%:n(l+o(l))
nd

a;3.11) % > ii" — § and Z—: — R};: + é—z <6+ %Z_: = 6(1+o(1))
hich

:;.Z)mean %—>)\, %—)FL andg—z—MS as [,m,n — oo

respectively. If we get lim sup of both sides of identity (3.1) as [, m,n — oo, then we
arrive by (3.12)

. 111
lim sup (zlmn — Uzmn)
l,m,n—o0
P.Q.R P
. pldn iy .. 111 _pnx . BT (111 _pmx
< limsup o lim sup (O'lmx Tlmn) + lim sup — lim sup ( (O'#mn Tlmn))
l,m,n—o00 QO l,m,n—00 =0 [ I,m,n—00
: @y . 111 HnX : pnx
+ limsup = limsup (— (07, — 7)) + limsup (= (777 = Zimn))
m—00 m l,m,n—00 l,m,n—00
= \kd limsup (ot — 77 — X liminf (0!} — 77 ) — g liminf (ofl! — 747X
l,m,n—ME( unx lmn) l,m,n—>oo( umn lmn) l,m,n—)oo( I lmn)
— ¢ liminf (o't — 79— liminf (77 — 2,,..) .
I,m,n—o00 ( Imx lmn) l,m,n—)oo( imn mn)

If we get limit of both sides of last inequality as \, k,0 — 17, we obtain

: 111 : : 111 _pnx
lim sup (Zimn — Ojpy) < lim  limsup (UMX Tl

111 ;mx)

) — lim liminf (Jumn — T

[,m,n—o0 Ak, 0—1F l,m,n—00 A—1t I,mn—oo
— lim liminf (alné — Tl'l:::f) — lim liminf (Ullnlllx —Tl!;g:f)
ko1t mn—soo * ! s1+ Lm,n—oo
11X

— lim liminf (7% — z )
A 01+ Lmyn—soo ( Imn mn)

From hypotheses in (3.5) and (3.7), it follows that
(3.13) lm sup (Zmn — o) < 0.

l,m,n—00
On the other hand, we consider the case i < [, 7 < m and y < n. Putting
fa=argmax {P, > AP} = max{l >i: P, > \P;},
n = argmax {Qy,, > kQ;} = max{m > j: Q,, > rkQ,}

and
X = argmax{R, > R} = max{n > k: R, > 0R;}
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with A, k,0 > 1, we observe by Lemma 2.3 that p;/P; — 0, ¢;/Q; — Oand ry /Ry — 0
as 1,1, X — oo and hence

ﬁgl and &:Pﬂ+1_ﬁ9ﬂ+1>l pu+1P+1P
P A Py P, Py A P P B
1 1 1
14 =———o(1)(1 1)) =—(1-o0(1
(314) == So(1)(1+o(1)) = £(1 - o(1),
Qi 1 g Yi_ @ din 1 G @in @
m R Qm Qm Qm R QﬁJrl Qﬁ Qm
1 1 1
1 =———o(1)(1 1)) =—(1-o0(1
(3.15) —— —o(1)(1+ (1) = (1 - o(1))
and
R;( 1 Ry Ry qx+1 1 qg+1 By By
O I S G R O S ¢ x+1 {ix
=™ R, R, R, 8 Ryu Ry R.
1 1 1
(3.16) =5 50(1)(1 +0o(1)) = 5(1 —o(1))
which mean
P; 1 Qs R 1 o
- X Z and =X il
2 \ O R 5 as [, 1n,x — 00,

respectively. If we get lim inf of both sides of identity (3.2) as
arrive by (3.12)

.1, X, — 00, then we

=

lim inf (zlmn allnlﬁl)

l,m,n—o00
P;Q:R P
> liminf i LS liminf ( EII ) + lim inf - lim inf (U}l}in — TLZ?Z))
i x—oo PiQ,, R, inx—00 firoo Py finx—o0
Q7 Ry
n 111 lmn 111 Imn
4+ liminf = liminf o + hm 1nf lim inf Ope — T
=00 Qm unx%oo( ( lim ;mx)) unxﬁoo( ( Imx lmx))
Imn
+ liminf (zm —7,,0)
_ b lim inf ( UL Tlm") . lim sup (0111 — Tlm”) 1 lim sup (0111 — Tlm")
- P i HnX ] Aamn Hnx o ln,n Hnx
AKO fi,7,x—00 A i X 00 K fi,7,x—00
1
: 111 Imn Imn
— — limsup (almx — unx) + liminf (zlmn — TWX) .
7], %00 Lm,n—o0

If we get limit of both sides of last inequality as A\, k,d — 17, we obtain

lim inf (zlmn all,%)
l,m,n—00

> lim liminf (J}J% - TZZ:;;) — lim limsup (o Eﬁn - Tﬁ%?)
AR, 0—17 [1,7,X—>00 A=17 f.f, x—00

— lim limsup (crllnlé Tﬁ?g ) + liminf (zlmn — TLZZ‘) .
R il o0 Lmym—00

From hypotheses in (3.6) and (3.8), it follows that
(3.17) Hminf (Zimn — o (2)) > 0.

Olmn
l,m,n—o0
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If we combine inequalities (3.13) with (3.17), we reach

Hm  (2n — O (2)) =0
l,m,n—o0

mn

which means by the triple weighted Kronecker identity that (Vllll (A1112)> is P—
convergent to 0 . O

4. Main results for the (N,p,q,r) summable triple sequences

In this section, we introduce several Tauberian theorems concerning triple sequences
where the concept of P-convergence can be derived from the summability condi-
tion of (N,p,q,r), given certain requirements on the weighted generator sequence

(V}};}Z(O) (Anlz)) in terms of slow decrease or slow oscillation. Additionally, certain

conditions are imposed on the sequences (p;), (¢), and (r,). Subsequently, we provide
some related corollaries based on these outcomes.

THEOREM 4.1 Let (2iy,) € £, (R) and (1), (gm) . (rn) € SV Arega). If a sequence
(Zimn) is (N, p, q,7) summable to a number ¢ and

(Ve (An2)) € S Dpy 1S D)V Dy 0 S 95 T (Q)

mn

or

(‘/2717%711(0 (A1112)> €SNI DoyNS" Diry NS DS T py

or

(4.1) (Vi (Aun2)) € Fpy) NS D) S Dy O S DS T

Imn
then (2y,y) is P-convergent to (.

Proof. Without loss of generality, assume that (z,,) € 3, (R) is (N, p, ¢, r) summable
to ¢ and (Vllll © (A1112)> € S DpyNS DigyN S Dry NS DS Tpy. To prove that

mn

(Zimn) is P-convergent to ¢, we demonstrate that (Vl}ﬁ}l (Anlz)) is P-convergent to

111
Olmn\?

0 . Because ( (2)) is P-convergent to ¢ and the (N, p, ¢, r) method is regular under

the boundedness condition of (zj,,), we attain that (0},1,117;2) (z)) is also P-convergent
to the same number. It follows from the triple weighted Kronecker identity that

(Vllu(l) (Aq11 z)) is P - convergent to 0 . For p > [, n > and x > n , if we replace

mn

Zmn by VAT (A1 2) in Lemma 3.1(i), we obtain
Vin® —yiit

PHQﬁRX 111 1111 1111 111<1) 1111
=P A @ @ui Ry i Vi Vi v v

b, 111 111 Q@
ye )
+ P/L iy ( pmn Imn t+5— A QTI

1
(P, —P)(Qy — Qm) (Ry — Ry) Z Z Z PigjTh ( Z}Ilcl(o) _yi o>>

i=l4+1 j=m+1 k=n-+1

o (Vi V) + e (e - )
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PMQURX 111 111 1111 111(1) 1111
= BRI @~ Q= F Ui i =i i i)

+ Py <V111(1>_V111<1))+ Q@
Qn —

111 111 Ry 1111 1111
P _ P umn Imn Vi -V > + (‘/l o Vvl )
1

Qm ( Inn Ilmn RX R, mx
Iz n

e ma e X, o 3w (i)

z—l+1] m+1 k=n+1
|2 n

1 . .
- (PH - Pl) (Qn - Q R — R Z Z Z Pig;Tk (Vllll( ) Vzlll >>

i=l4+1 j=m+1 k=n-+1

P.QnR ) &9 ) &9 &
< plntvy ( 111 111 1110 111 111 )
= (B = P (@ = Q) (R — Ry Ao~ Hamn = Hian = i Fonn

i R,
=+ P, P <V/»L17}117£1) Vl%}tm) L 5 Q@ =5 (VZ}#(U Vlinlyll(l)) +RX73 (Vlﬂi(l) —Vlm(l))
n m
(4.2)
_ . '11<0) . 11}(0)) _ . ( 110 11(0))
Juin, (=) = i (v v
nsjsn

Putting p = argmin { P, > AP}, n = argmin {Q); > xQ,,} and x = argmin {Qy > 6R,,}
with A, k,d > 1, we can observe inequalities (3.9), (3.10) and, accordingly, (3.11).
Grounding that V22 (Ajj1u) — 0 as [, m, n — oo, we could remark Vi}}cl(l) (App12)—
VI (Ayy2) — 0 fori=1lor pu, j=mornand k =n or x as [,m,n — oo. Since

mn
the sequences (B), (Q.,) and (R,) are strictly increasing sequences, we attain from

(4.2) that

V1111<0 . V111(1>

P,Q,R (1) 1) <1 (1> <1)
< et (W g ! )

P R,
n (Vﬂly}qln(l) ‘/li;%qyl)) 4w o Q (Vllll<1) . Vllll(l)> + <vlir1)1<(l) _ VZE}L(D)
n

. '1.1(0) . 11.(0) 11(0) . 11(0)
ngr%-lgxpm (V” Ving ) Qn<%ljl I<1HQ,L <Vm] Vin )
QnSQjSHQn
(4.3)
MO+ AN =1+ A=+ A0—-1)+(A—=1)0+d(k—1)+ (0 —1)r
<
< O - D6 -1 (I1+0(1))o(1)
_ min <V111(0> _ V111(0>> min (V111<0) _ V111<0>>
Pn<Piiap \ Wk L Rn<Q;<rQm \ 1T !
QmSQjS’me
Rn<R;<rRn
where
P, P,/P, A
= < 1 1
G DO B o)

Qn_Qm_Qn/Qm_l_ (’i_l)
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and
R,  RyR, < )
R,—-R, Ry/R,—17 (6—1)
If we get lim sup of both sides of inequality (4.3) as I,m,n — oo, then we reach for
any \,k,0 > 1
. 111(0) 1110 .. . 1110 111(0)
zh;nnilog (Vlm” = Vimn > < - tmind I, <V”’“ ~ Vigk )
QmSQjSHQm
Rn<Rp<kRn

o . © 0
— liminf min <Vllil — vl )
Lm,n—00 Qm<Qj<kQm \

(1+ o(1)).

If we get limit of both sides of last inequality as \, x,0 — 1T, then we find
(4.4) lim sup <Vl1“<°) yiL ”) <0

mn mn
l,m,n—00

mn

due to (Vlm (A1112)> € S DN DioyNS DiryNS DS T py. Following a similar

procedure to above for i1 < I, 7 < m and ¥ < n, if we replace 2, by Vl“l( ) (A1112)
in Lemma 3.1(ii), we obtain

111(® 111D
V - Wmn

Imn

PﬁQﬁRi 1110 111® 111D 111M 111M
- ARG o BT (Vi = Vit = Vit — v v

P 111 111 Q 11 1111 Ry 1111 111
+ (Wmn omn ) +t Q (Vlmn VZ ) + R, <Vlmn - VEm)Z )
7

P — P Qm — " — Ry

1 111<0)
e . 3 3 pn (V)

i=p+1 j=n+1i=x+1
PrQs Ry 111 111 111D 111D 1110
(Pl _ P~) (Q _ Qf]) (Rn . PX) (Wmn pamn VEnn Vlmx + V,unx )

P Ry
+ Pl P~ (‘/2717%71(1) ﬁl,;llwfl)> S/ Q Q Q <‘/l}r}7(11) ‘/27177111(1)) + ﬁ (‘/2717%%(1) ‘/2717;1((1))
m n

- (P — Pﬂ) (Qm 711@77 R, — P Z Z Z Piq;Tk <V1111<0) VE;}LN))>

i= /H-IJ +1i=x+1

IR (QmiQn R, — Py) Z Z Z iy (VZH“O) V111(0>>

1=p+1j=n+1i=x+1
PiQsR 1 & & & 1
> Ao tvy (V111 _ VALY i _pi y )
= (P P3) (Qu— Qi) (R — P \! "

pamn limn ATIX

P 111 111 Q@ 1M 111 Ry 111 111
+ P — P (‘/lmn pamn )+ Qm — Qr (Vzmn Wnn )+ ﬁ (Wmn ‘/lmx )
7 n X
(4.5)
+in (Vi = Vot )+ min (Vi = V).
n=j=n n<i<
n<j<m

X<k<n
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Putting i = argmax {P, > AP}, ) = argmax {Q),,, > ~Q;} and x = argmax {R,, > 6 R}
with A\, k,0 > 1, we can observe (3.13), (3.14) and, accordingly, (3. 11) Ground-
ing that Vl#}%“) (A1112) — 0 as I,m,n — oo, we could remark Vlm (A112) —

Vi}u(l) (Ajj12) - O fori =1lorji, j =morsnand k = n or XY as fi,7Y — 00.
Since the sequences (F)), (@) and (R,,) are strictly increasing sequences, we attain
from (4.5) that

111(0) 111
Vi — Vimn

Imn

PiQsR 1 & & & &
> plnity 111 111 1o 1 111
B By (@) (e~ Py o~ Vi = Vit =V vt
(4.6)
P 1 1 R 1 1
4 = P (Vllll( ) /117}11751)) .1/ N o Q Qn (W}é}l(l) Vl}#}( )) i o R (Vlnl( ) v111( ))
AN+ i+0— AR
> ATRTOZMA (1 5(1))o(1) +  min (Vi — v
(1-=MN1-r)(1-9) RQn<Qj<Qn J
+  min (VJ}C“O) Vi 0>)
AP <P;<P
FQm<Q;<Qm
SRm<Rr<Rn
where )
P PP M1-o(1))
P—-P, 1-P,/P — 1—X
Qi QufQu _ K(1-o(1)
Qm—Q; 1-Q3/Qm ~ 1—-k&
and )
R — Rf( — ;(/R o 1— S ’

for 1I/\=X\1/k =k,1/6 =0, and 0 < X\, %, 0 < 1. If we get lim inf of both sides of
inequality (4.6) as fi, 7], Y — oo, then we reach for any 0 < \, &, < 1

lim inf <

l,m,n—o0
. . © 0)

+ liminf  min (V;]l,il VZ;}C )
l,m,n—o0 AP <P;<P

FQm<Q;<Qm
5Rn§Rk§Qn

) 6% . ) () (0)
| V}Hl )2 lim inf min (V”l Vlﬁl >

tmn mn L n—00 AQm<Q; <Qm \ "

If we get limit of both sides of last inequality as \, 7,0 — 17, then we arrive

(4.7) liminf (VA1 - ViEY) > 0

mn
l,m,n—00

due to (Vlnl (A1112)> € L DpyN L Do NS Dry NS DS T py. If we combine

mn

inequalities (4.4) with (4.7), we reach

: 1110 4. 111D
lim ‘/lmn - lim ‘/lmn
l,m,n—00 l,m,n—00
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which means that <V}},}$( ) (A1112)> is P-convergent to 0 . Therefore, we conclude
from the triple weighted Kronecker identity that (zy,,) is P-convergent to /. O]

In regard to Theorem 4.1, we can point out the following theorem.

THEOREM 4.2: Let (21nn) € 63 (R) and (1) , (gm) € SV Areg(a)- If a sequence (zymy)
is (N, p,q,r) summable to a number ¢ and conditions

P, m
p—lAloonHl(O) (Alllz) OL(l) Q Aowvlllm) (Alllz) = OL(l)
R,
(48) and _A001‘/1111(0) (A1112> OL(l)

are satisfied, then (zy,,) Is P-convergent to .

Proof. Assume that (zp,,) is (N, p, ¢, r) summable to £ and conditions (4.8) are satis-
fied. If we indicate that conditions (4.8) imply one of the conditions (4.1), shall we say,

(‘/}111( ) (Am’z)) c ,5/%3))mjﬂ_@(Q)my@(R)ﬂy@yﬁ(Q), then we prove this theorem

with the help of Theorem 4.1. Put p = argmin {P;, > AP}, n = argmin {Q; > Q. }
and y = argmin { Ry, > dR, } with A\, k,d > 1. Then, we have for no < m <1i < u and
ng <n

1110 1110 _ 11(0> Pr
Vinn — Vimn Z AoV = =My Z

mn
Jj=m+1 k= m+1

> M, (% _ 1) > My — 14 do(1)

for any constant M; > 0. If we get lim inf and limit of both sides of last inequality
as m,n — oo and A — 1Trespectively, then we reach

lim liminf min (an(o) 1/2111@) >0

A1+ mn—00 P <P;<APy, \ mn

which means that (Vl}nl?}fo) (A111U)> € “%ppy. On the other hand, we obtain for
no S m,n and no S m,n S.]ak S n, X

J
© (0) r
7ASR IR VR Z Amvm > _ M, Z qr

ijn lmn
r=n+1 r=n+1 QT

> (% _ ) > —My(k — 14 Mo(1))

for any constant M, > 0. If we get lim inf and limit of both sides of last inequality
as [,m,n — oo and k — 1*respectively, then we reach

lim lim inf min (Vllll V111(0)> >0

k=11 I;m,n—00 Qm<Q; <kQm g imn

mn

(V“l(o) (A1112)> € 9.7 7(Q) is verified. Therefore, we conclude with the help of

which means that (Vllll (Anlz)) € Y q). Similarly, we can easily observe that

Ilmn

Theorem 4.1 that (z,,) is P-convergent to /. O
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Analogous results for triple sequences of complex numbers can be formulated as fol-
lows.

THEOREM 4.3:  Let (2imn) € Co(R) and (p;), (gm) , (rn) € SV Arega). If a sequence
(2imn) Is (N, p, q,r) summable to a number ¢ and

(Vhlnlé(m (Aulz)) € yﬁ(p) N yﬁ(@) N yﬁ(}z) NSO0ST(Q)

or

(Vi (An2)) € S0y S Oy N S Oy 5 0.5 T (P)

Imn

or

(Vi (An2)) € S 615y S Oy N S Oy 1 S 0.5 T (R)

mn

then (zyny,) is P-convergent to (.
In regard to Theorem 4.3 , we can point out the following theorem.

THEOREM 4.4: Let (Zimn) € C20(R) and (1), (gm) » (rn) € SV Areg(a)- If a sequence
(Zimn) is (N, p, q,r) summable to a number ¢ and conditions

P 0 m 0
AVt (i) = 0(), @ VIO (AL ) = 0(1)

Imn Imn
m

and

%AOOM%(O) (Ainiz) = O(1)

are satisfied, then (zyny) is P-convergent to (. Before finishing this section, we discuss
some conditions needed for (N, p, q,r) summable triple sequences to be convergent.

THEOREM 4.5: Let (2imn) € £3,(R) and (p;), (gm) , (7n) € SV Areg(a)- If a sequence
(Ztmn) 1s (N, p, q,r) summable to a number ¢ and conditions

4.9 i it (77— 2 )30
( ) )\,/f,%glﬂL l,;lrgzl_{loo (Tlmn 2l ) >
and

(4.10) lim liminf (Zlmn _ TL?;%;) >0

Ak, 0—1~ Imn—o0

are satisfied, then (zy,,) Is P-convergent to (.

Proof. Assume that (2, is (IV, p, ¢, 7) summable to £ and conditions (4.9) and (4.10)
are satisfied. To prove that (zy,,) is P-convergent to the same number, it is enough
to prove that conditions in (3.5) and (3.6) are verified. For u > [, n > m ans y > n,
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we have from Lemma 3.3(i)

T (2) = Thon (2) =
P,uQnRX (0_111 _ 0_111 _ 111 + 111)
(PM - Pl) (Qn - Qm) (Rn - Rn) g HiX fmn tn
(4.11)
Pl 111 111 Q”] 111 111 RX 111 111
+ P,u _ B (Ulmn U,umn) + Qﬂ o Qm (Ulmn Ulnn) + Rx _ Rm (Ulmn Ulmx) .

Putting p = argmin { P, > AP}, n = argmin {Q; > k@, } and x = argmin {R;, > 0R,,}
with A, k,d > 1, we can observe inequalities (3.9), (3.10) and, accordingly, (3.11).
Grounding that o,,(u) — € as [,m,n — oo, we could remark ;) — ol — 0 for
t=1orpu,j=mornand k=noryasl,mn— oco. If wegetlim inf of both sides

of equality (4.11) as [,m,n — oo, then we obtain

Jiminf (o5, = 7i70,)
)‘ K 5 : : 11 111 111 111 111
- () () () o ot~ -t
: . 111 111 : : 11 11
X1 (i = o) 277 Bl (Ot = i)
: : 11 11
5= dmind (T = i)
where
P, P,/P, A
— < 1+ 0(1
Po—P  PufPn—1-(r— 1)( +o(l));
Qn_Qm Qn/Qm_l (5_1)
and

R, RJR, _ ¢
R, —R, BRy/R,—1~(0-1)

(14 0(1)).

If we get limit of both sides of last inequality as \, k,0 — 17, then we arrive

lim liminf (o't — 797X > (.
A\ k,0—11 I,m,n—o0 ( Hmmn lmn) -

In the same vein, for p < I, 7 < m and y < n , we have from Lemma 3.3(i)

O (2) = Thn (2)

— PNQU (0_111 _0_111 111 + 111)
(Pu . -Pl) (QT] . Qn) pumn unx Imn I
(4.12)
P m R,
b (b~ o)+ o2 (ol — o) + e (obih — o)
n n

P,u_Pl g Qn_Qm



On Tauberian Conditions for Weighted Generators of Triple Sequences 723

If we get lim inf of both sides of equality (4.12) as [, m,n — oo, then we obtain

imi 111 BnX

lhm inf (Ulnn <Z) ~ Timn (Z))
, M, N—>00

A K )

111 111 111 111 111
2 ()\_1 H_l 6—1 (O-an_aunx_glmn+alnn+Ulmx>
o 111 111 . 11 11
+ liminf (0, — 0 + liminf (o), — 0
A —1Imn—oo ( tmn “m”) Kk — 1 l,mn—oo ( Imn lnn)
. 111 111

+ lim inf (almn — Ulmx) .

60—1 l,m,n—o00
If we get limit of both sides of last inequality as A\, x,0 — 17, then we arrive

. . . 111 - KX >
yJm L (o3, (2) = 7 (2)) 2 0.

In addition to what is attained above, for u < I, n < m and y < n, we have from
Lemma 3.3(i)

11
U;lmx o Tl%if
= PQn Ry (0l111 _ 0111)
(PM - Pl) (Qn - Qm) (Rx - Rn) " H
i P.Qn R, (0111 _ J111) X Qm (0111 _ 0111)
(PM - Pl) (Qn - Qm) (Rx - Rn) o o Qn - Qm fmn Hix
Ry 111 11
(4.13) + T (Tl — Tpny) -
If we get lim sup of both sides of equality (4.13) as [, m,n — oo, then we obtain
timsup (o1, — )
K A
< i 111 111 li 11 111
DD D e (i =) G 1) e (e )
0 . 111 111 Lo 111 111
P A= DB 1) oy = ) 57 oS (i = )

If we get limit of both sides of last inequality as A, k,0 — 17, then we arrive

lim limsup (o:t — 77%) < 0.

A,n,5—>1+l,m,nﬁ£( o~ Tin) <
Hence, we can state that conditions in (3.5) are verified. Following a similar procedure
to above for < I, n < m and x < n, we can behold that conditions in (3.6) are also

verified. In that case, we reach from Lemma 3.4 that (V“l(o) (A1112) ) is P-convergent

Imn

to 0 . Therefore, we conclude from the triple weighted Kronecker identity that (zj,)
is P-convergent to /. O
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