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ON THE N-SUPERCYCLICITY OF ISOMETRIES ON BANACH

SPACES

Hamid Rezaei∗ and Meysam Asadipour

Abstract. In this paper, we present a simple and self-contained proof that isome-
tries are not N -supercyclic and m-isometries are not supercyclic, providing an al-
ternative to the proof given by the authors in [4, 5, 11].

1. Introduction

The notion of m-isometry, as an extension of isometry, was introduced by Agler in
the eighties, and it was thoroughly studied by Agler and Stankus in a series of three
papers [1–3]. A bounded linear operator T on a complex Hilbert space H is called an
m-isometry if it satisfies

m∑
k=0

(−1)m−k

(
m

k

)
T ∗kT k = 0.(1)

It is easy to see that the condition is equivalent to

l∑
k=0

(−1)m−k

(
m

k

)
‖T kx‖2 = 0 ( for all x ∈ H)(2)

The definition of m-isometric on Banach spaces was provided by Bayart, and some
preliminary properties related to them, similar to those existing in Hilbert space, were
developed. Bayart [5] used condition (2) as the basis for defining isometries on Banach
spaces. In fact if X is a Banach space and T : X → X is a bounded linear operator
the T is an m-isometry if and only if condition (2) holds. For any x ∈ X and any
j, n, k ≥ 0, let us define the Beta function as follows:

βj(x) = βj(T, x) :=
1

j!

j∑
k=0

(−1)j−k

(
j

k

)
‖T kx‖2.

In terms of the Beta function the operator T is an m-isometry if and only if βm(x) = 0.
Additionally, T is an m-isometry and not an (m − 1)-isometry if and only if βm ≡ 0
and βm−1(x) 6= 0 for some x ∈ X. The Beta function helps us to better identify the
properties of isometric operators. The following result briefly states the preliminary
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properties of m-isometries on Banach spaces. For the proof, one can refer to reference
[5]. Recall that the symbol n(j) used in the following proposition has the following
meaning:

n(j) =

{
1 if n = 0 or j = 0,

n(n− 1) · · · (n− j + 1) otherwise.

Proposition 1.1. Let T be any m-isometry. Then

(i) ‖T nx‖2 =
∑m−1

j=0 n(j)βj(x) for every n ≥ 1.

(ii) If m > 1 then ‖T nx‖ → +∞ for every x ∈ X.

(iv) If T is invertible then T−1 is also an m-isometry.

(v) For every x ∈ X. There exists nx ∈ N such that ‖T n+1x‖ ≥ ‖T nx‖ for any
n ≥ nx.

(vi) The approximate point spectrum of T lies in the unit circle and so σ(T ) ⊂ T
or σ(T ) = D.

In the context of isometric operators, Ansari and Bourdon [4] proved that isometries
are not supercyclic. However, the proof is based on a result by R. Godement [12] which
states that isometries always have non-trivial invariant subspaces. The study of the
dynamics of m-isometries began in [8] where it was proved that an m-isometry acting
on a Hilbert space H with an injective covariance operator cannot be N -supercyclic.
In [11], the authors showed that m-isometries on a Hilbert space are not supercyclic.
The result was extended in [5] by showing that, for any N,m ≥ 1, an m-isometry
cannot be N -supercyclic, without any further assumptions on the m-isometry or on
the underlying Banach space X.

In this article, our aim is to provide an alternative, simple, and independent proof
of the non-supercyclic nature of isometries and m-isometries.

2. Main result

Recall that a bounded linear operator T on a Banach spaceX is calledN -supercyclic,
N ≥ 1, if there exists a subspace M of X with dim(M) = N such that

orb(T,M) =
⋃
n≥0

T n(M)

is dense in X. If N = 1 then T is called briefly supercyclic.
Authors in [4] showed that if {‖T n‖} is bounded and T is supercyclic, then at least

one orbit of T must tend to zero:

Theorem 2.1. Suppose T is a bounded linear operator on a Banach space with
the following properties:

(a) There exists M > 0 such that ‖T n‖ ≤M for each positive integer n.
(b) For each nonzero x ∈ X, T nx9 0 as n→∞.

Then T has no supercyclic vectors.
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Theorem 2.2. Let T be an isometry on a separable Banach spaceX with dim(X) >
N then T is not N -supercyclic.

Proof. By contradiction, suppose that T is an N -supercyclic isometry and there
exists an N -dimensional subspace M such that orb(T,M) is dense in X. Assume that
M is generated by the linearly independent vectors x1, x2, . . . , xN .

Claim: For any z ∈ X, there exists a sequence {nk} of positive integers and a
unique vector x ∈M such that ‖x‖ = ‖z‖ and T nkx→ z.

To see this, let z ∈ X. Then there exist scalar sequences {λ1k}, {λ2k}, . . . , {λNk}
and some integer sequence {nk} such that

T nk
(
λ1kx1 + λ2kx2 + . . .+ λNkxN

)
→ z.

Consider the bounded linear functionals {f1, f2, . . . , fN} such that fi(xj) = δij, where
δij is the Kronecker delta function. Then∥∥λ1kx1 + λ2kx2 + . . .+ λNkxN

∥∥ =
∥∥T nk

(
λ1kx1 + λ2kx2 + . . .+ λNkxN

)∥∥ ≤M

for some scalar M . Hence

|λ1k| = |f1(λ1kx1 + λ2kx2 + . . .+ λNkxN)|
≤ ‖f1‖‖λ1kx1 + λ2kx2 + . . .+ λNkxN‖ ≤ ‖f‖M.

The above observations lead to the conclusion that the bounded sequence {λ1k} has
a convergent subsequence. By passing to a subsequence, we can assume that λ1k →
λ1 for some scalar λ1. By continuing this process for other sequences and passing
to successive subsequences, we can assume that λik → λi for some scalar λi, i =
1, 2, . . . , N . Thus∥∥λ1x1 + λ2x2 + . . .+ λNxN

∥∥ = lim
k

∥∥λ1kx1 + λ2kx2 + . . .+ λNkxN
∥∥

= lim
k

∥∥T nk
(
λ1kx1 + λ2kx2 + . . .+ λNkxN

)∥∥
= ‖z‖.

Let x = λ1x1 + λ2x2 + . . . + λNxN . Then x ∈ M , ‖x‖ = ‖z‖, and T nkx → z.
Considering the relation:

‖x1 − x2‖ = ‖T nk(x1 − x2)‖ (x1, x2 ∈ X),

the uniqueness of x is deduced. Now the mapping Λ : X →M by Λ(z) = x defines a
function satisfying ‖Λ(z)‖ = ‖z‖. This forces that dim(X) ≤ dim(M) = N , which is
a contradiction.

Theorem 2.3. Let X be a Banach space with dim(X) > 1 then for every positive
integer m, an m-isometry is never supercyclic.

Proof. If m = 1, then T is an isometry and by the Theorem 2.2, it is not supercyclic.
Assume that m > 1. Let T : X → X be an m-isometry, and by contradiction, suppose
that x0 is a supercyclic vector for T . Then for any x ∈ X, there exist sequences {λk}
of scalars and {nk} of positive integers such that

λkT
nkx0 → x.

Applying Proposition 1.1 (ii), ‖T nkx‖ → +∞, hence λk → 0. This implies that
the set {λT nx : |λ| ≤ 1, n ≥ 0} must be dense in X. However, the recent set
itself is a subset of the balanced convex hull of orb(T, x). Using Theorem 2.3 in [7],
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supn |f(T nx)| = +∞ which implies that σp(T
∗) ∩ D = ∅ (see Proposition 2.5 in [7]).

Considering Proposition 1.1 (vi), T is invertible. Hence T−1 is also supercyclic and
so is an m-isometry by Proposition 2.1. Let y0 be a supercyclic vector for T−1. Then
using part (v) of Proposition 1.1 for both m-isometries T and T−1, there exists some
integer N such that

‖λT nx0‖ ≤ ‖T (λT nx0)‖ and ‖λT−ny0‖ ≤ ‖T−1(λT−nx0)‖

for every integer n ≥ N and every scalar λ. Since both C orb(T, x0) and C orb(T−1, y0)
are dense in X, ‖x‖ ≤ ‖Tx‖ and ‖x‖ ≤ ‖T−1x‖ for every x ∈ X. This implies that T
is an isometry and so by Theorem 2.2, it cannot be supercyclic.
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