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ON VECTOR VALUED DIFFERENCE SEQUENCE SPACES

Manoj Kumar, Ritu∗, and Sandeep Gupta

Abstract. In the present paper, using the notion of difference sequence spaces, we
introduce new kind of Cesàro summable difference sequence spaces of vector valued
sequences with the aid of paranorm and modulus function. In addition, we extend
the notion of statistical convergence to introduce a new sequence space SC1(∆, q)
which coincides with C1

1 (X,∆, φ, λ, q) (one of the above defined Cesàro summable
difference sequence spaces) under the restriction of bounded modulus function.

1. Introduction and preliminaries

Generalizing the usual notion of convergence of scalar sequences, Zygmund [40]
in 1979 paid key attention to statistical convergence. However, Steinhaus [35] and
Fast [15] already have formally introduced this concept of statistical convergence in
1951. While dealing with ‘convergence in density’ it was Buck [9] who get encountered
with statistical convergence.

After the remarkable work in the field of statistical convergence by Šalát [32] and
Fridy [17], now statistical convergence has become one of the most vibrant field
for researcher in summability theory. Later on, statistical convergence was further
scrutinized by Mursaleen [26], Şengül and Et [33], Tripathy [36] and many oth-
ers [7, 10, 12, 14, 16, 20, 21, 23, 30, 38]. The statistical convergence relies upon the
definition of natural density of subset of N

Definition 1.1. [28] For A ⊆ N, the natural density δ(A) is defined as

δ(A) = lim
n→∞

1

n
card({k ≤ n : k ∈ A})

provided the limit exists, where card( · ) means numbers of elements in the enclosed
set. Obviously, δ(A) = 0, for finite subset A of N. Also δ(N− A) = 1− δ(A).

Definition 1.2. A scalar sequence (ξm) is said to be statistically convergent to

l ∈ C if for given ε > 0, δ({m ≤ n : |ξm − l| ≥ ε}) = 0, i.e., lim
n→∞

1

n
card({m ≤ n :

|ξm − l| > ε}) = 0. And l is referred as statistical limit of the (ξm). By S we notate
the class of all statistically convergent sequences.

Received August 3, 2024. Revised August 29, 2024. Accepted August 29, 2024.
2010 Mathematics Subject Classification: 46A45, 40A05, 40A35.
Key words and phrases: Difference sequence spaces, Modulus function, Paranorm, Statistical

convergence.
∗ Corresponding author.
© The Kangwon-Kyungki Mathematical Society, 2024.
This is an Open Access article distributed under the terms of the Creative commons Attribu-

tion Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits un-
restricted non-commercial use, distribution and reproduction in any medium, provided the original
work is properly cited.



440 M. Kumar, Ritu, and S. Gupta

Motivating from the definition of absolute value function, i.e., |a|

|a| =
{

a if a ≥ 0,
−a if a < 0

Nakano [27] in 1953, structured the image of modulus function. By Ruckle [31] and
Maddox [24], a modulus function is a map φ : [0,∞)→ [0,∞) such that the following
holds:

(M1) φ(ξ) = 0 iff ξ = 0
(M2) φ(ξ + η) ≤ φ(ξ) + φ(η) for all ξ ≥ 0, η ≥ 0
(M3) φ is monotonically increasing
(M4) lim

ξ→0+
φ(ξ) = φ(0).

As an example, φ1(ξ) =
ξ

1 + ξ
and φ2(ξ) = ξp, (0 < p ≤ 1) are modulus functions

where φ1 is bounded and φ2 is unbounded. It is observed that sum of two modulus
functions is again a modulus function. Moreover, composition of a modulus function
over itself is also a modulus function.

Kizmaz [22] in 1981, introduced the idea of difference sequence space by introducing
the following difference sequence spaces :

c0(∆) = {(ξm) ∈ s : (∆ξm) = (ξm − ξm+1) ∈ c0}
c(∆) = {(ξm) ∈ s : (∆ξm) = (ξm − ξm+1) ∈ c}

`∞(∆) = {(ξm) ∈ s : (∆ξm) = (ξm − ξm+1) ∈ `∞}

where s, `∞, c and c0 respectively denote the linear spaces of all, bounded, conver-
gent and null sequences of scalars.

Adding the flavour of statistical convergence, modulus function and difference
sequence, many more mathematician, for instance, Connor [13], Ghosh and Sri-
vastva [18], Çolak [11], Altin and Et [2], Bhardwaj and Singh [8] and some others
have enriched the theory of sequence space by introducing some new sequence spaces.
For many more refrences one may refer to [1, 3–6,19,29,34,37,39].

Let us recall some definitions and notations, before proceeding further.
A paranorm space (X, q) is a topological linear space whose topology is induced by

a paranorm, a real valued sub-additive function on X such that q(θ) = 0, q(−ξ) = q(ξ)
and the scalar multiplication is continuous (here θ is the zero element of linear space
X).

A seminorm q is real valued function defined on linear space X such that q(ξ) ≥ 0
; q(ξ + η) ≤ q(ξ) + q(η) and q(aξ) = |a|q(ξ). Every seminorm is a paranorm but not
conversely.

A seminorm q2 is said to be rough than q1 on X if there exists a constant µ > 0
such that q2(ξ) < µ.q1(ξ), ξ ∈ X.

Throughout the paper, φ will denote a modulus function. By X we refer a linear
topological and locally convex T2−space whose topology is induced by continuous
seminorm q. The symbol s(X) will denote the space of X−valued sequences. Let
λ = 〈λm〉 be a bounded sequence of positive real numbers with h = infm≥1 λm,
H = supm≥1 λm and C = max {1, 2H−1}.

Also for am, bm ∈ C , we have |am + bm|λm ≤ C[|am|λm + |bm|λm ] ∀ m ∈ N, and for
any µ ∈ C, |µ|λm ≤ max {1, |µ|H} (see for instance Maddox [24]).



On Vector Valued Difference Sequence Spaces 441

In the present paper, we get an opportunity to work with vector valued sequences
and making use of modulus function, paranorm and Cesàro summability to introduced
some generalized Cesàro difference sequence spaces.

2. Main Results

Motivating from the spaces of strongly Cesàro summable sequences of Maddox
[25] and exploring the Cesàro means of difference sequences of X, we introduce the
following sequence spaces:

C0
1 (X,∆, φ, λ, q) =

ξ = (ξm) ∈ s(X) : lim
n→∞

1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
= 0


C∞1 (X,∆, φ, λ, q) =

ξ = (ξm) ∈ s(X) : sup
n

1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
<∞


C1

1 (X,∆, φ, λ, q)

=

ξ = (ξm) ∈ s(X) : lim
n→∞

1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi − l

))]λm
= 0 for some l ∈ X

 .

If we take φ(ξ) = ξ, then the above defined spaces reduce to C0
1(X,∆, λ, q), C∞1 (X,∆, λ, q)

and C1
1(X,∆, λ, q) respectively.

Throughout the paper Θ will notate 0, 1 or ∞.

Theorem 2.1. The sequence sets CΘ
1 (X,∆, φ, λ, q) are linear spaces.

Proof. It is sufficient to prove the result for Θ = 0, as other cases may be proved
on similar line. Let ξ, η ∈ C0

1(X,∆, φ, λ, q) and α, β ∈ C. Then there exists positive
integers Mα and Nβ such that |α| ≤Mα and |β| ≤ Nβ. Linear of ∆ and sub-additivity
of φ yields[

φ

(
q

(
1

m

m∑
i=1

∆(αξi + βηi

))]λm

≤

[
φ

(
|α|q

(
1

m

m∑
i=1

∆ξi

))
+ φ

(
|β|q

(
1

m

m∑
i=1

∆ηi

))]λm

≤ C

[
Mαφ

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
+ C

[
Nβφ

(
q

(
1

m

m∑
i=1

∆ηi

))]λm

≤ C.MH
α

[
φ

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
+ C.NH

β

[
φ

(
q

(
1

m

m∑
i=1

∆ηi

))]λm
−→ 0 as n→∞.

Hence (αξ + βη) ∈ C0
1(X,∆, φ, λ, q). Consequently C0

1(X,∆, φ, λ, q) is a linear space

Theorem 2.2. For a modulus function φ,

C0
1(X,∆, φ, λ, q) ⊂ C1

1(X,∆, φ, λ, q) ⊂ C∞1 (X,∆, φ, λ, q)
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Proof. As first inclusion is trivial, so we proceed for second one.
Let ξ ∈ C1

1(X,∆, φ, λ, q). Then[
φ

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
=

[
φ

(
q

(
1

m

m∑
i=1

∆ξi − l + l

))]λm

≤

[
φ

(
q

(
1

m

m∑
i=1

∆ξi − l

))
+ φ(q(l))

]λm

≤ C

[
φ

(
q

(
1

m

m∑
i=1

∆ξi − l

))]λm
+ C[φ(q(l))]λm .

Let µ be positive integer such that q(l) ≤ µ. Then

1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi

))]λm

≤ C
1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi − l

))]λm
+
C

n

n∑
m=1

µH [φ(1)]λm

≤ C
1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi − l

))]λm
+
C

n
µH max

[
(φ(1)h, (φ(1))H

]
n.

Hence C1
1(X,∆, φ, λ, q) ⊂ C∞1 (X,∆, φ, λ, q) and so the proof is complete.

The following examples state that the converse of Theorem 2.2 does not always
hold.

Example 2.3. Let X = C and q(ξ) = |ξ|, φ(ξ) = ξ, λm = 1 ∀ m ∈ N. Then

lim
n→∞

1

n

n∑
m=1

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣ = 0 for ξ = (ξm) = (m) with l = −1.

But lim
n→∞

1
n

∑n
m=1

∣∣ 1
m

∑m
i=1 ∆ξi

∣∣ = 1 6= 0.

Thus (ξm) /∈ C0
1(X,∆, φ, λ, q) but (ξm) ∈ C1

1(X,∆, φ, λ, q).

Example 2.4. [7] Consider X = C, λm = 1, φ(ξ) = ξ, q(ξ) = |ξ| and the sequence
(ηm) as η1 = 1, η2 = 0 and

ηm =

{
1 if 2i−1 < m ≤ 3(2i−2),
0 otherwise

i = 1, 2, 3, ...

We can find a sequence (ξm) such that ηm = 1
m

∑m
i=1 ∆ξi. Here (ηm) /∈ C1 and

(ηm) ∈ `∞, i.e.,
(

1
m

∑m
i=1 ∆ξi

)
/∈ C1 and

(
1
m

∑m
i=1 ∆ξi

)
∈ `∞.

This implies lim
n→∞

1
n

∑n
m=1( 1

m

∑m
i=1 ∆ξi) does not exist but

(
1
n

∑n
m=1( 1

m

∑m
i=1 ∆ξi)

)
∈

`∞,
i.e., lim

n→∞
1
n

∑n
m=1 |

1
m

∑m
i=1 ∆ξi| does not exist but supn

1
n

∑n
m=1 |

1
m

∑m
i=1 ∆ξi| <∞

This gives (ξm) ∈ C∞1 (X,∆, φ, λ, q) but (ξm) /∈ C1
1(X,∆, φ, λ, q).
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Theorem 2.5. C0
1(X,∆, φ, λ, q) is a paranormed space, paranormed by

g∆(ξ) = sup
n

 1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
1

P
where P = max {1, sup

m
λm}.

Proof. (i) g∆(−ξ) = g∆(ξ)
(ii) For ξ = θ, g∆(ξ) = 0.

(iii) Since λm ≤ P and P ≥ 1, so for each n, we get as an application of Minkowski
inequality,

g∆(ξ + η) =

 1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆(ξi + ηi

))]λm
1

P

≤

 1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi

))
+ φ

(
q

(
1

m

m∑
i=1

∆ηi

))]λm
1

P

≤

 1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
1

P
+

 1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ηi

))]λm
1

P

≤ g∆(ξ) + g∆(η).

(iv) In order to have continuity of multiplication, let us take any α ∈ C. Now

g∆(αξ) ≤ µ
H
P g∆(x), where µ is a positive integer such that |α| ≤ µ. Hence

α → 0, ξ → θ imply g∆(αξ) → 0 and also ξ → θ, α fixed imply g∆(αξ) → 0.
We now show that α→ 0, ξ fixed imply g∆(αξ)→ 0. Since ξ = (ξm) is fixed in

C0
1(X,∆, φ, λ, q), so lim

n→∞
1
n

∑n
m=1

[
φ(q( 1

m

∑m
i=1 α∆ξi))

]λm
= 0. For ε > 0, there

exist n0 ∈ N such that

(1)
1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

α∆ξi

))]λm
< ε, for all n ≥ n0.

Now for n ≤ n0, and using continuity of φ in [0,∞), we have

(2)
1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

α∆ξi

))]λm
< ε.

From (1) and (2), we have g∆(αξ)→ 0 as α→ 0.
Consequently, the proof is complete.

Theorem 2.6. Let φ, φ1 and φ2 are modulus functions and 0 < h = infm λm ≤
λm ≤ supm λm = H <∞. Then

(i) CΘ
1 (X,∆, φ1, λ, q) ⊆ CΘ

1 (X,∆, φ ◦ φ1, λ, q),
(ii) CΘ

1 (X,∆, φ1, λ, q) ∩ CΘ
1 (X,∆, φ2, λ, q) ⊆ CΘ

1 (X,∆, φ1 + φ2, λ, q).

Proof. It is sufficient to prove the the theorem for Θ = 0 as other cases may be
prove on the similar ways.
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(i) Let (ξm) ∈ C0
1(X,∆, φ, λ, q). As φ is continuous at t = 0, so for ε > 0 ∃ δ (0 <

δ < 1) such that φ(t) < ε, whenever 0 ≤ t < δ. Put ηm = φ1(q( 1
m

∑m
i=1 ∆ξi)).

Then
n∑

m=1

[φ(ηm)]λm =
∑
ηm≤δ

[φ(ηm)]λm +
∑
ηm>δ

[φ(ηm)]λm .

Using the continuity of φ,

(3)
∑
ηm≤δ

[φ(ηm)]λm < n max (εh, εH).

As ηm > δ and 0 < δ < 1, so ηm <
ηm
δ
≤ 1 +

[ηm
δ

]
. Now

φ(ηm) ≤ φ
(

1 +
[ηm
δ

])
≤
(

1 +
[ηm
δ

])
φ(1)

≤ 2
ηm
δ
φ(1).

Hence

(4)
1

n

∑
ηm>δ

[φ(ηm)]λm ≤ max

{
1,

(
2φ(1)

δ

)H}
.
1

n

n∑
m=1

(ηm)λm

By (3),(4) we have C0
1(X,∆, φ, λ, q) ⊆ C0

1(X,∆, φ ◦ φ1, λ, q).
(ii) Let (ξm) ∈ C0

1(X,∆, φ1, λ, q) ∩ C0
1(X,∆, φ2, λ, q). Now

1

n

n∑
m=1

[
(φ1 + φ2)

(
q

(
1

m

m∑
i=1

∆ξi

))]λm

=
1

n

n∑
m=1

[
φ1

(
q

(
1

m

m∑
i=1

∆ξi

))
+ φ2

(
q

(
1

m

m∑
i=1

∆ξi

))]λm

≤ C.
1

n

n∑
m=1

[
φ1

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
+ C.

1

n

n∑
m=1

[
φ2

(
q

(
1

m

m∑
i=1

∆ξi

))]λm
−→ 0 as n→∞.

Hence (ξm) ∈ C0
1(X,∆, φ1 + φ2, λ, q).

Thus C0
1(X,∆, φ1, λ, q) ∩ C0

1(X,∆, φ2, λ, q) ⊆ C0
1(X,∆, φ1 + φ2, λ, q).

Corollary 2.7. For modulus function φ, CΘ
1 (X,∆, λ, q) ⊆ CΘ

1 (X,∆, φ, λ, q).

Proof. Taking φ1(ξ) = ξ, in the part(i) of above theorem, we get the result.

Remark 2.8. For semi-norms q1, q2 on X, we have
CΘ

1 (X,∆, φ, λ, q1)∩CΘ
1 (X,∆, φ, ν, q2) 6= ∅, where λ = (λm) and ν = (νm) are sequences

of positive real numbers, as {θ} ⊆ CΘ
1 (X,∆, φ, λ, q1) ∩ CΘ

1 (X,∆, φ, ν, q2)

Theorem 2.9. For q1, q2 are semi-norms on X,

CΘ
1 (X,∆, φ, λ, q1) ∩ CΘ

1 (X,∆, φ, λ, q2) ⊆ CΘ
1 (X,∆, φ, λ, q1 + q2).
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Proof. It is sufficient to prove the result for Θ = 0, as other cases may be proved
on similar line.
Let (ξm) ∈ C0

1(X,∆, φ, λ, q1) ∩ C0
1(X,∆, φ, λ, q2). Then (ξm) ∈ C0

1(X,∆, φ, λ, q1) and
(ξm) ∈ C0

1(X,∆, φ, λ, q2). This implies

lim
n→∞

1
n

∑n
m=1

[
φ(q1( 1

m

∑m
i=1 ∆ξi))

]λm
= 0 and lim

n→∞
1
n

∑n
m=1

[
φ(q2( 1

m

∑m
i=1 ∆ξi))

]λm
= 0.

Now

lim
n→∞

1

n

n∑
m=1

[
φ

(
(q1 + q2)

(
1

m

m∑
i=1

∆ξi

))]λm

≤ lim
n→∞

1

n

n∑
m=1

[
φ

(
q1

(
1

m

m∑
i=1

∆ξi

))
+ φ

(
q2

(
1

m

m∑
i=1

∆ξi

))]λm

≤ C
1

n

n∑
m=1

[
φ

(
q1

(
1

m

m∑
i=1

∆ξi

))]λm
+ C

1

n

n∑
m=1

[
φ

(
q2

(
1

m

m∑
i=1

∆ξi

))]λm
−→ 0 as n→∞.

Hence ξ = (ξm) ∈ CΘ
1 (X,∆, φ, λ, q1 + q2). Consequently, the proof is complete.

Theorem 2.10. For q2 rough than q1, CΘ
1 (X,∆, φ, λ, q1) ⊆ CΘ

1 (X,∆, φ, λ, q2).

Proof. As q2 is rough than q1, so there exists a positive integer µ such that q2(x) ≤
µq1(x). We prove the result for Θ = 1, as other cases may be proved on similar ways.
Let ξ = (ξm) ∈ C1

1(X,∆, φ, λ, q1). Now

1

n

n∑
m=1

[
φ

(
q2

(
1

m

m∑
i=1

∆ξi − l

))]λm
≤ 1

n

n∑
m=1

[
φ

(
µq1

(
1

m

m∑
i=1

∆ξi − l

))]λm

≤ 1

n
µH

n∑
m=1

[
φ

(
q1

(
1

m

m∑
i=1

∆ξi − l

))]λm
−→ 0 as n→∞.

Thus ξ ∈ C1
1(X,∆, φ, λ, q2). Thus C1

1(X,∆, φ, λ, q1) ⊆ C1
1(X,∆, φ, λ, q2).

Theorem 2.11. If q1 and q2 are equivalent semi-norms then

C1
1(X,∆, φ, λ, q1) = C1

1(X,∆, φ, λ, q2).

Proof. If q1 ≡ q2, then for every u ∈ X that satisfies q2(u) > 0, there exists positive

integers T1 and T2 such that T1 ≤
q1(u)

q2(u)
≤ T2. Let ξ = (ξi) ∈ C1

1(X,∆, φ, λ, q1).
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Consider

1

n

n∑
m=1

[
φ

(
q2

(
1

m

m∑
i=1

∆ξi − l

))]λm

≤ 1

n

n∑
m=1

[
φ

(
1

T1

q1

(
1

m

m∑
i=1

∆ξi − l

))]λm

≤ 1

n

n∑
m=1

[
φ

((
1 +

[
1

T1

])
q1

(
1

m

m∑
i=1

∆ξi − l

))]λm

≤ max

(
1,

(
1 +

[
1

T1

])H)
1

n

n∑
m=1

[
φ

(
q1

(
1

m

m∑
i=1

∆ξi − l

))]λm
−→ 0 as n→∞.

So C1
1(X,∆, φ, λ, q1) ⊆ C1

1(X,∆, φ, λ, q2).
Now let ξ ∈ C1

1(X,∆, φ, λ, q2). Consider

1

n

n∑
m=1

[
φ

(
q1

(
1

m

m∑
i=1

∆ξi − l

))]λm

≤ 1

n

n∑
m=1

[
φ

(
T2q2

(
1

m

m∑
i=1

∆ξi − l

))]λm

≤ max
(

1, (1 + [T2])H
) 1

n

n∑
m=1

[
φ

(
q2

(
1

m

m∑
i=1

∆ξi − l

))]λm
−→ 0 as n→∞.

Hence C1
1(X,∆, φ, λ, q2) ⊆ C1

1(X,∆, φ, λ, q1).
Thus C1

1(X,∆, φ, λ, q1) = C1
1(X,∆, φ, λ, q2).

Definition 2.12. A sequence (ξm) is termed as C1(∆, q)−statistically convergent
to l ∈ X if for given ε > 0,

lim
n→∞

1

n
card

({
m ≤ n : q

(
1

m

m∑
i=1

∆ξi − l

)
≥ ε

})
= 0,

and we write ξm → l(C1(∆, q)). By SC1(∆, q), we refer the class of all C1(∆, q)−statistically
convergent sequences.

Theorem 2.13. For given modulus function φ, C1
1(X,∆, φ, λ, q) ⊂ SC1(∆, q).

Proof. Let ξ = (ξi) ∈ C1
1(X,∆, φ, λ, q). Then

lim
n→∞

1

n

n∑
m=1

[
φ(q(

1

m

m∑
i=1

∆ξi − l))

]λm
= 0, for some l ∈ X.



On Vector Valued Difference Sequence Spaces 447

Let ηm = q( 1
m

∑m
i=1 ∆ξi − l). Now for ε > 0.

1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi − l

))]λm
=

1

n

n∑
m=1

[φ(ηm)]λm

=
1

n

∑
1≤m≤n
ηm≥ε

[φ(ηm)]λm +
1

n

∑
1≤m≤n
ηm<ε

[φ(ηm)]λm

≥ 1

n

∑
1≤m≤n
ηm≥ε

[φ(ηm)]λm

≥ 1

n

∑
1≤m≤n
ηm≥ε

[φ(ε)]λm

≥ min
(
(φ(ε))H , (φ(ε))h

)
.
1

n
card({m ≤ n : ηm ≥ ε}).

Hence ξ ∈ SC1(∆, q). Thus C1
1(X,∆, φ, λ, q) ⊂ SC1(∆, q).

Theorem 2.14. For bounded modulus function φ, SC1(∆, q) ⊆ C1
1(X,∆, φ, λ, q).

Proof. Let ε > 0 be given. Since φ is bounded, so there exists an integer µ such
that φ(ξ) < µ, for all ξ ≥ 0. Then (as in Theorem 2.13) we have,

1

n

n∑
m=1

[
φ

(
q

(
1

m

m∑
i=1

∆ξi − l

))]λm
=

1

n

n∑
m=1

[φ(ηm)]λm

=
1

n

∑
1≤m≤n
ηm≥ε

[φ(ηm)]λm +
1

n

∑
1≤m≤n
ηm<ε

[φ(ηm)]λm

=
1

n

∑
1≤m≤n
ηm≥ε

[µ]λm +
1

n

∑
1≤m≤n
ηm<ε

max
(
(φ(ε))h, (φ(ε))H

)
≤ µH .

1

n
card({m ≤ n : ηm ≥ ε})

+ max
(
(φ(ε))h, (φ(ε))H

)
.

Hence ξ ∈ C1
1(X,∆, φ, λ, q). Thus SC1(∆, q) ⊆ C1

1(X,∆, φ, λ, q).

Theorem 2.15. SC1(∆, q) = C1
1(X,∆, φ, λ, q) iff φ is bounded.

Proof. Let φ be a bounded modulus function. Then by Theorem 2.13 and Theorem
2.14,

SC1(∆, q) = C1
1(X,∆, φ, λ, q).

Conversely, suppose that SC1(∆, q) = C1
1(X,∆, φ, λ, q) and let if possible φ is

unbounded. Then there exists a sequence (zn), zn > 0 with φ(zn) = n2, n = 1, 2, 3, ...
If we choose ξ = (ξi) such that

1

m

m∑
i=1

∆ξi =

{
zn if m = n2

0 otherwise,
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then

1

n
card

({
m ≤ n : q

(
1

m

m∑
i=1

∆ξi

)
≥ ε

})
≤
√
n

n
−→ 0 as n→∞.

Thus ξm → 0SC1(∆, q), but ξ /∈ C1
1(∆, φ, q) for X = C and q(ξ) = |ξ|

Indeed (
1

m

m∑
i=1

∆ξi

)
= (z1, 0, 0, z2, 0, 0, 0, 0, z3, ...).

Let sn = 1
n

∑n
m=1 φ

(∣∣ 1
m

∑m
i=1 ∆ξi

∣∣). Then 〈sn〉 has a subsequence 〈sn2〉 where

sn2 =
1

n2
(12 + 22 + 32 + ...+ n2)

=
n(n+ 1)(2n+ 1)

6n2

→∞ as n→∞.

Therefore (sn) is not convergent, i.e., 1
n

∑n
m=1 φ

(∣∣ 1
m

∑m
i=1 ∆ξi

∣∣) is not convergent as
n→∞.
Thus a contradiction to SC1(∆, q) = C1

1(X,∆, φ, λ, q). Hence φ is bounded.

Remark 2.16. If we take X = C, λm = 1 for m ∈ N and φ(ξ) = ξ with q(ξ) = |ξ|,
then we shall write C1

1(X,∆, φ, λ, q) as C1
1(∆), i.e.,

C1
1(∆) =

{
ξ = (ξm) : lim

n→∞

1

n

n∑
m=1

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣ = 0 for some l ∈ C

}
and for the space SC1(∆, q), we write SC1(∆), i.e.,

SC1(∆) =

{
(ξm) ∈ s(X) : lim

n→∞

1

n
card

({
m ≤ n :

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣ ≥ ε
})

= 0 for some l ∈ C

}

Theorem 2.17. (i) If (ξm) ∈ C1
1(∆) then (ξm) ∈ SC1(∆).

(ii) If (ξm) ∈ `∞(∆) and (ξm) ∈ SC1(∆) then (ξm) ∈ C1
1(∆).

(iii) SC1(∆) ∩ `∞(∆) = C1
1(∆) ∩ `∞(∆).

Proof. (i) Let ε > 0 and (ξm) ∈ C1
1(∆). Then lim

n→∞
1
n

∑n
m=1

∣∣ 1
m

∑m
i=1 ∆ξi − l

∣∣ = 0

for some l ∈ X. Now

n∑
m=1

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣ ≥ ∑
m≤n

| 1
m

∑m
i=1

∆ξi−l|≥ε

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣
≥ ε.card

({
m ≤ n :

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣ ≥ ε

})
.

Therefore lim
n→∞

1
n
card

({
m ≤ n :

∣∣ 1
m

∑m
i=1 ∆ξi − l

∣∣ ≥ ε
})

= 0 that is (ξm) ∈ SC1(∆).

(ii) Let (ξm) ∈ `∞(∆) and (ξm) ∈ SC1(∆). Then ( 1
m

∑m
i=1 ∆ξi) is statistically con-

vergent and so ( 1
m

∑m
i=1 ∆ξi) is convergent (because ( 1

m

∑m
i=1 ∆ξi) ∈ `∞).
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Say
∣∣ 1
m

∑m
i=1 ∆ξi − l

∣∣ ≤M ∀ m. We have

1

n

n∑
m=1

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣ =
1

n

∑
m≤n

| 1
m

∑m
i=1

∆ξi−l|≥ε

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣+
1

n

∑
m≤n

| 1
m

∑m
i=1

∆ξi−l|<ε

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣
≤ 1

n
M.card

({
m ≤ n :

∣∣∣∣∣ 1

m

m∑
i=1

∆ξi − l

∣∣∣∣∣ ≥ ε
})

+
1

n
ε.n

and hence lim
n→∞

1
n

∑n
m=1

∣∣ 1
m

∑m
i=1 ∆ξi − l

∣∣ = 0. Thus (ξm) ∈ C1
1(∆).

(iii) By (i) and (ii), it is clear that SC1(∆) ∩ `∞(∆) = C1
1(∆) ∩ `∞(∆).
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