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GEODESICS ON THE KÄHLER CONE OF THE HEISENBERG

GROUP

Joonhyung Kim∗, Ioannis D. Platis, and Li-Jie Sun

Abstract. In this paper, we describe the geodesics on the Kähler cone of the
Heisenberg group. Furthermore, we also prove that this is not a complete manifold.

1. Introduction

The Heisenberg group appears as one of the most important objects in the study
of not only many areas of mathematics but also in other fields such as physics and
quantum mechanics. In particular, and for what concerns the purposes of this article,
the one-point compactification of the Heisenberg group is identified with the boundary
of the complex hyperbolic plane and therefore it plays a vital role in the study of
complex hyperbolic geometry.

The complex hyperbolic plane H2
C, endowed with the Bergman metric, is a Kähler

manifold with constant holomorphic sectional curvature −1 and real sectional curva-
ture pinched between −1 and −1/4. The group SU(2, 1) is a triple cover of the group
PU(2, 1) of the holomorphic isometries of H2

C. A full description of the geodesics of
complex hyperbolic plane may be found in the book of Goldman, [3], or, alternatively,
in the notes of Parker, [8].

Besides the Bergman metric, there is another natural metric which can be defined
on the underlying manifold of complex hyperbolic plane. The full discussion about
this metric may be found for instance in [5]; we repeat here in brief its main features.
The starting point of the construction of this metric is the Heisenberg group H. The
Heisenberg group is also a contact manifold and a CR-manifold. It turns out that
from these structures it is defined a contact metric structure which is Sasakian. This
is equivalent to say that the manifold C(H) = R>0 × H, that is, the horospherical
parametrisation of complex hyperbolic plane, endowed with the warped product met-
ric and a complex structure which is an extension of the almost complex structure of
the horizontal space of H is a Kähler manifold. In contrast to the Bergman metric, it
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is of non-constant negative holomorphic curvature. The manifold C(H) is the Kähler
cone of the Heisenberg group and the goal of this paper is to describe its geodesics;
incidentally, we do the same for the geodesics of the Heisenberg group as a Sasakian
manifold. We also prove that the Kähler cone of the Heisenberg group is not complete.

The paper is organised as follows: in next section, we review the definition and
properties of the Heisenberg group and its Riemannian cone constructed in [5]. In
section 3, we review the geodesics of H in [6]. Section 4 is intended to describe the
geodesics on the Riemannian cone of the Heisenberg group. Finally, we briefly prove
that the Riemannian cone of the Heisenberg group is not geodesically complete.

2. Preliminaries

In this chapter, we briefly introduce the Heisenberg group and its properties. For
more details we refer to [5] as well as in [1], [2], [3], [8].

2.1. Contact metric structure of the Heisenberg group. The (first) Heisenberg
group H is the set C× R with multiplication ∗ given by

(z, t) ∗ (w, s) = (z + w, t+ s+ 2=(zw)),

where =(z) means the imaginary part of z. The Heisenberg group H is a 2-step
nilpotent Lie group; a left-invariant basis for its Lie algebra comprises the following
vector fields:

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
.

The only nontrivial Lie bracket relation between them is

[X, Y ] = −4T.

A left-invariant 1-form ω is defined in H by

ω = dt+ 2xdy − 2ydx = dt+ 2=(zdz).

ω is a contact form for H: ω ∧ dω 6= 0 and in fact dm = −(1/4) ω ∧ dω, where dm is
the Haar measure for H. The Reeb vector field for ω is T . The kernel kerω = H is
spanned by the vector fields X, Y . Consider the almost complex structure J defined
on H by JX = Y , JY = −X. Then J is compatible with dω and moreover, H is a
strictly pseudoconvex CR structure; that is, dω is positively oriented on H.

A sub-Riemannian metric gcc in H is defined in H by the relations

gcc(X,X) = gcc(Y, Y ) = 1, gcc(X, Y ) = 0.

The corresponding sub-Riemannian tensor is then given by

gcc = dx2 + dy2.

Given L > 0 we are able to define a contact Riemannian structure in H such that the
frame

{X, Y, TL = T/
√
L}

is orthonormal. In this way, we have that the Riemannian tensor is

gL = dx2 + dy2 + Lω2 = ds2
cc + Lω2.

Recall that if (M,ω) is a 3-dimensional contact manifold and (H = ker(ω), J) is
its CR-structure, then the almost complex structure J on H can be extended to an
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endomorphism φ of the whole tangent bundle T (M) by setting φ(ξ) = 0, where ξ is
the Reeb vector field of ω. Subsequently, a canonical Riemannian metric g is defined
in M from the relations

ω(X) = g(X, ξ),
1

2
dω(X, Y ) = g(φX, Y ), φ2(X) = −X + ω(X)ξ,

for all vector fields X, Y in X(M). We then call (M ;ω, ξ, φ, g) the contact Riemannian
structure on M associated to the contact structure (M,ω).

The complex structure J on H can be extended to an endomorphism φ of the whole
tangent bundle by setting φ(TL) = 0. Then it is proved in [5] that the group H with

contact form
√
Lω, Reeb vector field TL, endomorphism φ and Riemannian metric gL

is a contact Riemannian manifold if and only if L = 1/4. Being in accordance with

the notation in [5], we will hereafter write g instead of g1/4, T̃ instead of 2T and ω̃
instead of (1/2)ω.

2.2. Kähler cone. With the contact metric structure described above, it is proved
in [5] that H is a Sasakian manifold. That is equivalent to say that the manifold
C(H) = H× R>0 endowed with the metric

gr = dr2 + r2g

is Kähler. Explicitely:

• An orthonormal basis for the metric gr comprises the vector fields

Xr = (1/r)X, Yr = (1/r)Y, Tr = (1/r)T̃ , Rr = d/dr.

Note that all Lie brackets vanish besides

[Xr, Yr] = −(2/r)Tr, [Xr, Rr] = (1/r)Xr, [Yr, Rr] = (1/r)Yr, [Tr, Rr] = (1/r)Tr.

• The endomorphism J defined by

JXr = Yr, JYr = −Xr, JTr = −Rr, JRr = Tr,

is a complex structure for C(H) which preserves the metric gr.
• The 2-form Ωr defined by

Ωr = d

(
r2

2
ω̃

)
is the fundamental form for the Hermitian manifold (C(H), gr, J) and it is closed.
Thus the manifold (C(H), gr, J,Ωr) is Kähler.

3. Geodesics of the Heisenberg group

An exhaustive treatment of the geodesics of (H, g) may be found for instance in
[4], [6], [7]. We repeat in brief the discussion below. Let γ(s) = (x(s), y(s), t(s)) be a
smooth curve defined in an interval I = (−ε, ε), where ε > 0 and is sufficiently small,
and suppose that γ(0) = (x0, y0, t0) = p0. The tangent vector γ̇(s) at a point γ(s) is
then

γ̇(s) = γ̇ = ẋ∂x + ẏ∂y + ṫ∂t

= ẋX + ẏY + (1/2)(ṫ+ 2xẏ − 2yẋ)T̃ .
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We set

f(s) = ẋ(s), g(s) = ẏ(s), h(s) = (1/2)(ṫ(s) + 2x(s)ẏ(s)− 2y(s)ẋ(s)).

We may assume that γ is of unit speed: f 2 + g2 + h2 = 1. Recall from [5] that if ∇ is
the Riemannian connection then the following hold:

∇XX = 0, ∇XY = −T̃ , ∇X T̃ = Y,

∇YX = T̃ , ∇Y Y = 0, ∇Y T̃ = −X,
∇T̃X = Y, ∇T̃Y = −X, ∇T̃ T̃ = 0.

Recall again from [5] that the covariant derivative of γ̇ is

Dγ̇

ds
= ḟX + ġY + ḣT̃ + f∇γ̇X + g∇γ̇Y + h∇γ̇T̃ .

Since

∇γ̇X = f∇XX + g∇YX + h∇T̃X = gT̃ + hY,

∇γ̇Y = f∇XY + g∇Y Y + h∇T̃Y = −fT̃ − hX,
∇γ̇T̃ = f∇X T̃ + g∇Y T̃ + h∇T̃ T̃ = fY − gX,

we deduce
Dγ̇

ds
= (ḟ − 2gh)X + (ġ + 2fh)Y + ḣT̃ .

Therefore, the geodesic equations are

(1) ḟ = 2gh, ġ = −2fh, ḣ = 0, f 2 + g2 + h2 = 1.

In the special case h = 0, that is, γ is horizontal, we obtain the straight lines

γ(s) = (as+ x0, bs+ y0, 2(ay0 − bx0)s+ t0),

where a, b are real constants and a2 + b2 = 1. Those are all gcc-geodesics.
In the case h 6= 0, one can get h = c, where c 6= 0 is a constant. We now write

F = f + ig, z(s) = x(s) + iy(s) and z0 = x0 + iy0. Then the above system (1) is
written equivalently as

Ḟ = −2ic F,

and has general solution

F (s) = ke−2ics, k ∈ C, |k|2 + c2 = 1.

We therefore have |c| ≤ 1. If |c| = 1, then k = 0 and

γ(s) = (x0, y0, 2cs+ t0)

is a vertical geodesic through p0. If now |c| < 1 and γ(s) = (z(s), t(s)), then

z(s) =
ik(e−2ics − 1)

2c
+ z0,(2)

t(s) =
1

c

(
(1 + c2)s− (1− c2) sin(2cs)

2c
−<(z0k(e−2ics − 1))

)
+ t0.(3)

We observe that the curves in (2) are Euclidean circles, which are the same as the
projection of non linear gcc-geodesics on the complex plane. However, Eqs. (2) and
(3) do not give any non linear gcc-geodesic. In fact, in order this to happen we should

have ṫ(s) + 2=(z(s)ż(s)) = 0, that is, the geodesic must be horizontal. This condition
leads to h = 0, i.e., c = 0 which is impossible.
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4. Geodesics of the Riemannian cone

Let γ(s) = (x(s), y(s), t(s), r(s)) be a smooth curve in the Kähler cone and suppose
that γ(0) = (x0, y0, t0, r0) = q0. Its tangent vector is

γ̇(s) = γ̇ = ẋ∂x + ẏ∂y + ṫ∂t + ṙRr

= rẋXr + rẏYr + (r/2)(ṫ+ 2xẏ − 2yẋ)Tr + ṙRr.

We set

f(s) = r(s)ẋ(s), g(s) = r(s)ẏ(s),

h(s) = (1/2)r(s)(ṫ(s) + 2x(s)ẏ(s)− 2y(s)ẋ(s)), k(s) = ṙ(s),

and we may suppose that f 2 + g2 + h2 + k2 = 1. Recall again from [5] that if ∇r is
the Riemannian connection, then

∇r
Xr
Xr = −(1/r)Rr, ∇r

YrXr = (1/r)Tr, ∇r
TrXr = (1/r)Yr, ∇r

Rr
Xr = 0,

∇r
Xr
Yr = −(1/r)Tr, ∇r

YrYr = −(1/r)Rr, ∇r
TrYr = −(1/r)Xr, ∇r

Rr
Yr = 0,

∇r
Xr
Tr = (1/r)Yr, ∇r

YrTr = −(1/r)Xr, ∇r
TrTr = −(1/r)Rr, ∇r

Rr
Tr = 0,

∇r
Xr
Rr = (1/r)Xr, ∇r

YrRr = (1/r)Yr, ∇r
TrRr = (1/r)Tr, ∇r

Rr
Rr = 0.

The covariant derivative of γ̇ is

Dγ̇

ds
= ḟXr + ġYr + ḣTr + k̇Rr

+f∇r
γ̇Xr + g∇r

γ̇Yr + h∇r
γ̇Tr + k∇r

γ̇Rr

= ḟXr + ġYr + ḣTr + k̇Rr

+(f/r)(−fRr + gTr + hYr)

+(g/r)(−fTr − gRr − hXr)

+(h/r)(fYr − gXr − hRr)

+(k/r)(fXr + gYr + hTr).

From the vanishing of the covariant derivative and the unit speed assumption, we
obtain the following geodesic equations:

ḟ = (1/r)(2gh− kf),(4)

ġ = (1/r)(−2fh− kg),(5)

ḣ = (1/r)(−kh),(6)

k̇ = (1/r)(1− k2).(7)

Equation (7) also reads as

rr̈ + (ṙ)2 = 1.

The positive solutions to this ODE are of the form

r(s) =
√

(s+ c1)2 + c2, c1, c2 ∈ R, c2 ≥ 0.

From the initial condition r(0) = r0, we also have c2
1 + c2 = r2

0; thus

r(s) =
√
s2 + 2c1s+ r2

0, c1 ∈ R, r2
0 − c2

1 ≥ 0.
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From Equation (6) we obtain

h(s) =
c3

r(s)
=

c3√
s2 + 2c1s+ r2

0

, c3 ∈ R.

We now have

f 2 + g2 = 1− h2 − k2 =
r2

0 − c2
1 − c2

3

s2 + 2c1s+ r2
0

≥ 0.

On the other hand, from

c3/r(s) = (1/2)r(s)(ṫ(s) + 2x(s)ẏ(s)− 2y(s)ẋ(s))

we obtain that

(8) ṫ(s) + 2x(s)ẏ(s)− 2y(s)ẋ(s) = 2c3/(s
2 + 2c1s+ r2

0).

In the case where r2
0 = c2

1 + c2
3, one can get that f ≡ g ≡ 0 which yields to

x(s) = x0, y(s) = y0.

Also, from ṫ(s) = 2
√
r2

0 − c2
1/(s

2 + 2c1s+ r2
0) we have

t(s) = 2 arctan

(
s
√
r2

0 − c2
1

r2
0 + c1s

)
+ t0, r2

0 − c2
1 > 0.

In the case where r2
0 = c2

1, it is easy to know that r(s) = ±s+ r0 and t(s) = t0. Hence
the resulting geodesics in this case are of the form:

γc(s) =

(
x0, y0, 2 arctan

(
s
√
r2

0 − c2
1

r2
0 + c1s

)
+ t0,

√
s2 + 2c1s+ r2

0

)
, c1 ∈ R

or straight lines of the form

γ(s) = (x0, y0, t0, s+ r0).

In the case where r2
0 > c2

1 + c2
3, by plugging r(s), h(s) and k(s) into Eqs. (4) and (5)

we obtain

ḟ =
2c3g − (s+ c1)f

s2 + 2c1s+ r2
0

,

ġ = −2c3f + (s+ c1)g

s2 + 2c1s+ r2
0

.

We set F = f+ig and the system of geodesic equations becomes the following complex
ODE of the first order:

Ḟ = − s+ c1 + 2ic3

s2 + 2c1s+ r2
0

F,

where

|F |2 =
r2

0 − c2
1 − c2

3

s2 + 2c1s+ r2
0

> 0.

Then we get

F (s) =
CeiΦ(s)

r(s)
,

where C ∈ C satisfies |C|2 = r2
0 − c2

1 − c2
3 and

(9) Φ(s) = − 2c3√
r2

0 − c2
1

arctan

(
s+ c1√
r2

0 − c2
1

)
.
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Since F (s) = r(s)ż(s), we have the complex ODE of the first order

ż(s) =
CeiΦ(s)

r2(s)
,

which gives

z(s) =
iCeiΦ(s)

2c3

+D, D ∈ C.

From the initial conditions we then obtain

D = z0 −
iCeiΦ(0)

2c3

.

Hence, we have

z(s) =
iC
(
eiΦ(s) − eiΦ(0)

)
2c3

+ z0.

Now from Eq. (8) we have

ṫ(s) = 2

(
c3

r2(s)
−=(z(s)ż(s))

)
=

2c2
3 + |C|2

c3r2(s)
− |C|2

c3r2(s)
cos (Φ(s)− Φ(0))− 2

r2(s)
=
(
z0Ce

iΦ(s)
)
.

By integrating and taking under account the initial conditions, we obtain

t(s) = −
(

1 +
|C|2

2c2
3

)
(Φ(s)− Φ(0)) +

|C|2

2c2
3

sin(Φ(s)− Φ(0))

− 1

c3

<
(
z0C

(
eiΦ(s) − eiΦ(0)

))
+ t0,

where Φ(s) is given by (9).

4.1. Non-completeness. In [9], the authors considered the non-completeness of the
geodesics under the metric gU = dr2 + r2dt2 on U , where U = {(t, r) : t ∈ R, r > 0}
is the half plane. That is, there are points in U that can not be joined by a geodesic.
It is also proved in [5] that U can be embedded into C(H) as a submanifold by setting

ιU(t, r) = (0, 2t, r),

which is totally geodesic with gU = ι∗Ugr. We now obtain the following:

Corollary 4.1. The totally geodesic submanifold U of (C(H), gr) is not complete.
Hence the same holds for (C(H), gr).
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