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EXISTENCE THEOREMS AND EVALUATION FORMULAS FOR

SEQUENTIAL YEH-FEYNMAN INTEGRALS

Byoung Soo Kim† and Young-Hee Kim

Abstract. We establish the existence of the sequential Yeh-Feynman integral for
functionals of the form F (x) = G(x)Ψ(x(S, T )), where G belongs to a Banach alge-
bra of sequential Yeh-Feynman integrable functionals and Ψ need not be bounded
or continuous. We also give formulas evaluating the integrals of these functionals.
Note that these functionals are often employed in the application of the Feynman
integral to quantum theory, and Ψ corresponds to the initial condition associated
with Schrödinger equation.

1. Introduction

Cameron and Storvick [4] gave a simple definition of the sequential Feynman in-
tegral on Wiener space which is applicable to a rather large class of functionals. In
particular, they showed that the sequential Feynman integral exists and equals the
analytic Feynman integral for all elements of a Banach algebra S∗ of functionals ex-
pressible as Fourier-transform of measures of finite variation on L2[a, b]. Moreover
in [6], they established the existence of the sequential Feynman integral and gave ex-
plicit formulas for evaluating the integrals for larger classes of functionals containing
the Banach algebras Ŝ studied in [4].

On the other hand, Yeh [16,17] extended Wiener space to Yeh-Wiener space, that
is, a space of functions of two variables. Much varied work on the integrals (analytic
Yeh-Feynman integral and sequential Yeh-Feynman integral) on Yeh-Wiener space
has been done in [1, 9–12,14].

We turn now to reviewing the basic definitions on sequential Yeh-Feynman integral
after which we will describe more precisely the results of this paper.

Let C2(Q) be the Yeh-Wiener space, that is, the space of real valued continuous
functions x(s, t) on Q = [0, S]× [0, T ] such that x(s, 0) = x(0, t) = 0 for all (s, t) ∈ Q.
Let a subdivision σ of Q be given:

0 = s0 < s1 < · · · < sl = S, 0 = t0 < t1 < · · · < tm = T.
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Let X = X(s, t) be a quadratic surface in C2(Q) based on a subdivision σ and the
l ×m matrix of real numbers Ξ = {ξj,k} and defined by

X(s, t) = X((s, t), σ,Ξ)

=
ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1

(sj − sj−1)(tk − tk−1)
(s− sj−1)(t− tk−1)

+
ξj,k−1 − ξj−1,k−1

sj − sj−1
(s− sj−1) +

ξj−1,k − ξj−1,k−1
tk − tk−1

(t− tk−1) + ξj−1,k−1,

when (s, t) ∈ [sj−1, sj] × [tk−1, tk], ξ0,0 = ξ0,k = ξj,0 = 0 for j = 1, 2, . . . , l and
k = 1, 2, · · · ,m. Where there is a sequence of subdivisions {σn}, then σ, l,m, sj, tk
and Ξ will be replaced by σn, ln,mn, sn;j, tn;k and Ξn.

Let q be a given nonzero real number and let F (x) be a functional defined on a
subset of C2(Q) containing all the quadratic surfaces in C2(Q). Let {σn} be a sequence
of subdivisions such that ‖σn‖ → 0 as n→∞, and let {λn} be a sequence of complex
numbers with Reλn > 0 such that λn → −iq as n → ∞. Then if the integral in
the right hand side of (1.1) exists for all n and if the following limit exists and is
independent of the choice of the sequences {σn} and {λn}, we say that the sequential
Yeh-Feynman integral with parameter q exists and it is denoted by∫ syfq

F (x) dx = lim
n→∞

γσn,λn

∫
Rlnmn

exp
{
−λn

2

∫
Q

[ ∂2X
∂s ∂t

((s, t), σn,Ξn)
]2
ds dt

}
× F (X((·, ·), σn,Ξn)) dΞn,

(1.1)

where

γσ,λ =
( λ

2π

)lm/2 l∏
j=1

m∏
k=1

[(sj − sj−1)(tk − tk−1)]−1/2.

Let

Hλ(σ,Ξ) ≡ γσ,λ exp
{
−λ

2

∫
Q

[ ∂2X
∂s ∂t

((s, t), σ,Ξ)
]2
ds dt

}
=
( λ

2π

)lm/2 l∏
j=1

m∏
k=1

[(sj − sj−1(tk − tk−1)]−1/2

× exp
{
−λ

2

l∑
j=1

m∑
k=1

(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)
2

(sj − sj−1)(tk − tk−1)

}
.

(1.2)

Thus in terms of Hλ(σ,Ξ), the sequential Yeh-Feynman integral can be written

(1.3)

∫ syfq

F (x) dx = lim
n→∞

∫
Rlnmn

Hλn(σn,Ξn)F (X((·, ·), σn,Ξn)) dΞn.

To describe the class of functionals that we work with in this paper, we need the
concept of absolute continuouity for functions of two variables. For any subrectangle
R = [a, b]× [c, d] of Q and a real valued function x(s, t) on Q, let ∆R(x) = x(b, d)−
x(a, d) − x(b, c) + x(a, c). A function x(s, t) is absolutely continuous on Q if the
following two conditions are satisfied [2].

(i) Given ε > 0, there exists δ > 0 such that
∑

R∈R |∆R(x)| < ε whenever R is a fi-
nite collection of pairwise non-overlapping subrectangles ofR with

∑
R∈Rm(R) <

δ, where m denotes the Lebesgue measure on R2.
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(ii) The functions x(·, T ) and x(S, ·) are absolutely continuous of a single variable
on [0, S] and [0, T ], respectively.

Let D2(Q) be the class of elements of C2(Q) such that x is absolutely continuous

on Q and ∂2x
∂s ∂t

(s, t) ∈ L2(Q).
For u, v ∈ L2(Q) and x ∈ C2(Q), we let

(1.4) 〈u, v〉 =

∫
Q

u(s, t)v(s, t) ds dt,

and

(1.5) 〈u, v〉j,k =

∫ tk

tk−1

∫ sj

sj−1

u(s, t)v(s, t) ds dt

for j = 1, . . . , l and k = 1, . . . ,m. Thus we have

(1.6) 〈u, v〉 =
l∑

j=1

m∑
k=1

〈u, v〉j,k.

If there is a sequence of subdivisions {σn}, then 〈u, v〉j,k will be replaced by 〈u, v〉n;j,k.
Let M(L2(Q)) be the class of complex measures of bounded variation defined on

B(L2(Q)), the Borel measurable subsets of L2(Q). A functional F defined on a subset

of C2(Q) that contains D2(Q) is said to be an element of Ŝ(L2(Q)) if there exists a
measure f ∈M(L2(Q)) such that for x ∈ D2(Q),

(1.7) F (x) =

∫
L2(Q)

exp
{
i
〈
v,

∂2x

∂s ∂t

〉}
df(v).

Note that Ŝ(L2(Q)) with the norm ‖F‖ = ‖f‖ = var f is a Banach algebra [1].
In the application of the Feynman integral to quantum theory, functionals of the

type

(1.8) F (x) = G(x)Ψ(x(S, T ))

are often employed, with G ∈ Ŝ(L2(Q)) and Ψ corresponding to the initial condition
associated with Schrödinger equation [4, 6].

In Section 2 of the present paper, we prove the existence of the sequential Yeh-
Feynman integral of the type (1.8) when Ψ is the Fourier transform of a measure
of bounded variation on R. However this condition restricts Ψ to be bounded and
continuous.

In Section 3, we shall establish the sequential Yeh-Feynman integrability of the
type (1.8), where Ψ need not be bounded or continuous. We also establish formulas
for the evaluation of such integrals.

2. Sequential Yeh-Feynman integral of some bounded functionals

Let v ∈ L2(Q) and let σ be any subdivision

0 = s0 < s1 < · · · < sl = S, 0 = t0 < t1 < · · · < tm = T.

We define the averaged function vσ(s, t) for v on σ by

(2.1) vσ(s, t) =
1

(sj − sj−1)(tk − tk−1)
〈v, 1〉j,k
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when sj−1 ≤ s < sj and tk−1 ≤ t < tk for j = 1, . . . , l and k = 1, . . . ,m, and

(2.2) vσ(s, t) = 0

when s = S and t = T .

Lemma 2.1 (Proposition 2.3 of [10]). Let v ∈ L2(Q) and let {σn} be a sequence of
subdivisions of Q such that ‖σn‖ → 0 as n→∞. Then we have

lim
n→∞

‖vσn‖22 = ‖v‖22.

The following theorem shows the existence of the sequential Yeh-Feynman inte-
grable of functionals in Ŝ(L2(Q)) which was established in [10].

Theorem 2.2. Let F ∈ Ŝ(L2(Q)) be given by (1.7). Then the sequential Yeh-
Feynman integral of F exists and is given by

(2.3)

∫ syfq

F (x) dx =

∫
L2(Q)

exp
{
− i

2q
‖v‖22

}
df(v)

for each nonzero real number q.

Next we consider two more functionals which are different from but are closely
related with the expression (1.7). The functional in Theorem 2.3 below was studied
in [6–8], while the functional in Theorem 2.4 was studied in [5]. These functionals are
often employed in the application of the Feynman integral to quantum theory.

Let T be the set of functions Ψ defined on R by

(2.4) Ψ(r) =

∫
R

exp{irξ} dρ(ξ)

where ρ is a complex Borel measure of bounded variation on R.
For ξ ∈ R, let φ(ξ) be the function v ∈ L2(Q) such that v(s, t) = ξ for 0 ≤ s ≤ S

and 0 ≤ t ≤ T ; thus φ : R→ L2(Q) is continuous. If E is a Borel measurable subset
of L2[0, T ], then φ−1(E) is a Borel measurable subet of R. Let

(2.5) ψ(E) = ρ(φ−1(E)).

Thus ψ ∈ M(L2(Q)). Transforming the right hand member of (2.4), we have for
x ∈ D2(Q),

(2.6) Ψ(x(S, T )) =

∫
L2(Q)

exp
{
i
〈
u,

∂2x

∂s ∂t

〉}
dψ(u),

and Ψ(x(S, T )), considered as a functional of x, is an element of Ŝ(L2(Q)).

Theorem 2.3. For x ∈ D2(Q), let F (x) = G(x)Ψ(x(S, T )) where G ∈ Ŝ(L2(Q))
and Ψ ∈ T are given by (1.7) with corresponding measure g in M(L2(Q)) and (2.4),
respectively. Then F is sequential Yeh-Feynman integrable and

(2.7)

∫ syfq

F (x) dx =

∫
L2(Q)

∫
R

exp
{
− i

2q
‖v + ξ‖22

}
dρ(ξ) dg(v)

for each nonzero real number q.
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Proof. Because Ŝ(L2(Q)) is a Banach algebra, and G(x) and Ψ(x(S, T )) belong to

Ŝ(L2(Q)) as functions of x, we know that F ∈ Ŝ(L2(Q)). By (1.7) and (2.6), we have
for x ∈ D2(Q),

F (x) =

∫
L2
2(Q)

exp
{
i
〈
v + u,

∂2x

∂s ∂t

〉}
dg(v) dψ(u).

Making the subtitution w = v + u on the inner integral, we have

F (x) =

∫
L2
2(Q)

exp
{
i
〈
w,

∂2x

∂s ∂t

〉}
dgw(w − u) dψ(u),

where the subscript w in the measure g indicates that the integration is being per-
formed with respect to the variable w. By the unsymmetric Fubini theorem(Theorem
6.1 in [3]), we have

F (x) =

∫
L2(Q)

exp
{
i
〈
w,

∂2x

∂s ∂t

〉}
dfg,ψ(w),

where fg,ψ is a complex measure on B(L2(Q)) defined by

fg,ψ(E) =

∫
L2(Q)

g(E − u) dψ(u).

Now, applying Theorem 2.2, we have∫ syfq

F (x) dx =

∫
L2(Q)

exp
{
− i

2q
‖w‖22

}
dfg,ψ(w).

By Theorem 6.1 of [3] and the transformation v = w − u, we have∫ syfq

F (x) dx =

∫
L2
2(Q)

exp
{
− i

2q
‖v + u‖22

}
dg(v) dψ(u).

Finally by (2.5) and the Fubini theorem, we rewrite the right hand side of the last
expression to obtain (2.7).

In [5], Cameron and Storvick proved the existence of the sequential Fourier-Feynman
transform of the functionals

(2.8) H(x) =

∫
L2[0,T ]

exp{i〈v, x′〉}Φ(v) dµ(v),

for x ∈ D[0, T ], where D[0, T ] is the class of elements x in Wiener space such that x
is absolutely continuous on [0, T ] and x′ ∈ L2[0, T ], and Φ is a bounded measurable
functional defined on L2[0, T ]. Moreover, recently Kim and Yoo [13, 15, 18] extended
the above result for the generalized sequential Fourier-Feynman transform.

In our next theorem, we establish the sequential Yeh-Feynman integrability of the
Yeh-Wiener space version of the functionals of the type (2.8). Our results in Theorem
2.4 below can be applied to establish the sequential Fourier-Yeh-Feynman transform
of the functionals of the type (2.8).

Theorem 2.4. Let Φ be a bounded measurable functional defined on L2(Q), and
let

(2.9) F (x) =

∫
L2(Q)

exp
{
i
〈
v,

∂2x

∂s ∂t

〉}
Φ(v) df(v)
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for x ∈ D2(Q). Then F is sequential Yeh-Feynman integrable and

(2.10)

∫ syfq

F (x) dx =

∫
L2(Q)

exp
{
− i

2q
‖v‖22

}
Φ(v) df(v)

for each nonzero real number q.

Proof. Let a measure fφ be defined by fφ(E) =
∫
E

Φ(v) df(v) for E ∈ B(L2(Q)).
Clearly fφ ∈M(L2(Q)) and for x ∈ D2(Q),

F (x) =

∫
L2(Q)

exp
{
i
〈
v,

∂2x

∂s ∂t

〉}
dfφ(v)

so that F ∈ Ŝ(L2(Q)). Applying Theorem 2.2 and replacing dfφ(v) by Φ(v) df(v), we
completes the proof.

3. Sequential Yeh-Feynman integral of some unbounded functionals

All the functionals we worked with in Section 2 was actually bounded. In this sec-
tion, we discuss the sequential Yeh-Feynman integrability of some unbounded func-
tionals, that is, we establish the sequential Yeh-Feynman integrability of functionals
of the form

(3.1) F (x) = G(x)Ψ(x(S, T )),

where G ∈ Ŝ(L2(Q)) and Ψ need not be bounded or continuous. The same type of
functionals on Wiener space, but not on Yeh-Wiener space, were studied in [6, 8].
In [6], Cameron and Storvick established the sequential Feynman integrability of
those functionals. While in [8], Chang et al. studied the sequential Fourier-Feynman
transform and a translation theorem for such functionals.

To assist the proof of Theorem 3.5 below, the main result of this section, we first
introduce some lemmas.

Lemma 3.1. Let 0 = t0 < t1 < · · · < tm, let ξm, c1, . . . , cm and β1, . . . , βm be real,
let α > 0 and let Reλ > 0. Let

J ≡
∫
Rm−1

exp
{
−λ

2

m∑
k=1

(ξk − ξk−1 − ck + ck−1)
2

α(tk − tk−1)

+ i

m∑
k=1

βk(ξk − ξk−1 − ck + ck−1)

α(tk − tk−1)

}
dξ1 · · · dξm−1.

(3.2)

Then we have

J = t−1/2m

(2πα

λ

)(m−1)/2( m∏
k=1

(tk − tk−1)1/2
)

exp
{ 1

2λαtm

( m∑
k=1

βk

)2
− 1

2λα

m∑
k=1

β2
k

tk − tk−1
+

1

2αtm

(
−λ(ξm − cm)2 + 2i(ξm − cm)

m∑
k=1

βk

)}
,

(3.3)

where ξ0 = c0 = 0.
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Proof. Since α > 0, we have 0 = τ0 < τ1 < · · · < τm, where τk = αtk for k =
0, 1, . . . ,m. Changing the variables uk = ξk− ck for k = 0, 1, . . . ,m, we apply Lemma
1 in [6] to obtain

J =

∫
Rm−1

exp
{
−λ

2

m∑
k=1

(uk − uk−1)2

τk − τk−1
+ i

m∑
k=1

βk(uk − uk−1)
τk − τk−1

}
du1 · · · dum−1

= τ−1/2m

(2π

λ

)(m−1)/2( m∏
k=1

(τk − τk−1)1/2
)

× exp
{ 1

2λτm

( m∑
k=1

βk

)2
− 1

2λ

m∑
k=1

β2
k

τk − τk−1
+

1

2τm

(
−λu2m + 2ium

m∑
k=1

βk

)}
,

which completes the proof.

To prove the following lemma, we need a mathematical induction on two variables.
That is, a statement P (l,m) is true for all natural numbers l and m if it satisfies the
following three conditions.

1. P (1, 1) is true.
2. For all m ≥ 1, if P (1,m) is true, then P (1,m+ 1) is true.
3. For all l ≥ 1, if P (l,m) is true for all m ≥ 1, then P (l + 1,m) is true for all
m ≥ 1.

Lemma 3.2. Let l and m be natural numbers. Let 0 = s0 < s1 < · · · < sl and
0 = t0 < t1 < · · · < tm. Let ξl,m and β1,1, . . . , βl,m be real, and let Reλ > 0. Let

P (l,m) ≡
∫
Rlm−1

exp
{
−λ

2

l∑
j=1

m∑
k=1

(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)
2

∆j,k

+ i
l∑

j=1

m∑
k=1

βj,k(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)

∆j,k

}
× dξ1,1 · · · dξ1,m · · · dξl−1,1 · · · dξl−1,m dξl,1 · · · dξl,m−1.

(3.4)

Then we have

P (l,m) = (sltm)−1/2
(2π

λ

)(lm−1)/2( l∏
j=1

m∏
k=1

∆
1/2
j,k

)

× exp
{ 1

2λsltm

( l∑
j=1

m∑
k=1

βj,k

)2
− 1

2λ

l∑
j=1

m∑
k=1

β2
j,k

∆j,k

+
1

2sltm

(
−λξ2l,m + 2iξl,m

l∑
j=1

m∑
k=1

βj,k

)}
,

(3.5)

where ξ0,k = ξj,0 = 0 for j = 0, 1, . . . , l and k = 0, 1, . . . ,m, and ∆j,k = (sj−sj−1)(tk−
tk−1) for j = 1, . . . , l and k = 1, . . . ,m.

Proof. We shall use induction on l and m. Let us first assume that l = m = 1.
Then there is no integrals in the right-hand member of (3.4) and, both expressions in
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(3.4) and (3.5) equal to

exp
{ 1

2sltm
(−λξ21,1 + 2iξ1,1β1,1)

}
,

and the lemma is true when l = m = 1.

Let us next assume that l = 1 and m be arbitrary number. Then

P (1,m) =

∫
Rm−1

exp
{
−λ

2

m∑
k=1

(ξ1,k − ξ1,k−1)2

∆1,k

+i
m∑
k=1

β1,k(ξ1,k − ξ1,k−1)
∆1,k

}
dξ1,1 · · · dξ1,m−1.

Now we apply Lemma 3.1 with ck = 0 for k = 0, 1, . . . ,m and α = s1 to obtain

P (1,m) = t−1/2m

(2πs1
λ

)(m−1)/2( m∏
k=1

(tk − tk−1)1/2
)

exp
{ 1

2λs1tm

( m∑
k=1

β1,k

)2
− 1

2λs1

m∑
k=1

β2
1,k

∆k

+
1

2s1tm

(
−λξ21,m + 2iξ1,m

m∑
k=1

β1,k

)}
,

which is equal to the right-hand side of (3.5) when l = 1, and the lemma is true when
l = 1 and m is an arbitrary natural number.

Let us next assume that the lemma is true when l ≥ 1 and m ≥ 1, and proceed to
establish that the lemma is valid when l + 1 and m ≥ 1. Multiplying (3.4) with l by

exp
{
−λ

2

m∑
k=1

(ξl+1,k − ξl,k − ξl+1,k−1 + ξl,k−1)
2

∆l+1,k

+ i
m∑
k=1

βl+1,k(ξl+1,k − ξl,k − ξl+1,k−1 + ξl,k−1)

∆l+1,k

}
,

and integrating with respect to ξl,m, ξl+1,1, . . . , ξl+1,m−1 on Rm we obtain

P (l + 1,m) =

∫
R(l+1)m−1

exp
{
−λ

2

l+1∑
j=1

m∑
k=1

(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)
2

∆j,k

+ i

l+1∑
j=1

m∑
k=1

βj,k(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)

∆j,k

}
× dξ1,1 · · · dξ1,m · · · dξl,1 · · · dξl,m dξl+1,1 · · · dξl+1,m−1.

By the induction hypothesis we obtain

P (l + 1,m) = (sltm)−1/2
(2π

λ

)(lm−1)/2( l∏
j=1

m∏
k=1

∆
1/2
j,k

)

× exp
{ 1

2λsltm

( l∑
j=1

m∑
k=1

βj,k

)2
− 1

2λ

l∑
j=1

m∑
k=1

β2
j,k

∆j,k

}
K(l,m),

(3.6)
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where

K(l,m) ≡
∫
Rm

exp
{
−λ

2

m∑
k=1

(ξl+1,k − ξl,k − ξl+1,k−1 + ξl,k−1)
2

∆j,k

+ i
m∑
k=1

βl+1,k(ξl+1,k − ξl,k − ξl+1,k−1 + ξl,k−1)

∆l+1,k

+
1

2sltm

(
−λξ2l,m + 2iξl,m

l∑
j=1

m∑
k=1

βj,k

)}
dξl,m dξl+1,1 · · · ξl+1,m−1.

Now we apply Lemma 3.1 with ck = ξl,k and α = sl+1 − sl to obtain

K(l,m) = t−1/2m

(2π(sl+1 − sl)
λ

)(m−1)/2( m∏
k=1

(tk − tk−1)1/2
)

× exp
{ 1

2λ(sl+1 − sl)tm

( m∑
k=1

βl+1,k

)1/2
− 1

2λ(sl+1 − sl)

m∑
k=1

β2
l+1,k

tk − tk−1

}
K1(l,m)

where

K1(l,m) ≡
∫
R

exp
{ 1

2(sl+1 − sl)tm

(
−λ(ξl+1,m − ξl,m)2 + 2i(ξl+1,m − ξl,m)

m∑
k=1

βl+1,k

)
+

1

2sltm

(
−λξ2l,m + 2iξl,m

l∑
j=1

m∑
k=1

βj,k

)}
dξl,m

= exp
{ 1

2(sl+1 − sl)tm

(
−λξ2l+1,m + 2iξl+1,m

m∑
k=1

βl+1,k

)}
×
∫
R

exp
{
− λsl+1

2(sl+1 − sl)sltm
ξ2l,m +

( λξl+1,m

(sl+1 − sl)tm

− i

(sl+1 − sl)tm

m∑
k=1

βl+1,k +
i

sltm

l∑
j=1

m∑
k=1

βj,k

)
ξl,m

}
dξl,m.

Performing the last integration on ξl,m, we obtain

K(l,m) =
( sl
sl+1

)1/2(2π(sl+1 − sl)
λ

)m/2( m∏
k=1

(tk − tk−1)1/2
)

× exp
{ 1

2λ(sl+1 − sl)tm

( m∑
k=1

βl+1,k

)1/2
− 1

2λ(sl+1 − sl)

m∑
k=1

β2
l+1,k

tk − tk−1

}
× exp

{ 1

2(sl+1 − sl)tm

(
−λξ2l+1,m + 2iξl+1,m

m∑
k=1

βl+1,k

)
+

(sl+1 − sl)sltm
2λsl+1

( λ

(sl+1 − sl)tm
ξl+1,m −

i

(sl+1 − sl)tm

m∑
k=1

βl+1,k

+
i

sltm

l∑
j=1

m∑
k=1

βj,k

)2}
.
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Substituting this value of K(l,m) in the last member of (3.6) above we find that

P (l + 1,m) = (sl+1tm)−1/2
(2π

λ

)[(l+1)m−1]/2( l+1∏
j=1

m∏
k=1

∆
1/2
j,k

)

× exp
{ 1

2λsl+1tm

( l+1∑
j=1

m∑
k=1

βj,k

)2
− 1

2λ

l+1∑
j=1

m∑
k=1

β2
j,k

∆j,k

+
1

2sl+1tm

(
−λξ2l+1,m + 2iξl+1,m

l+1∑
j=1

m∑
k=1

βj,k

)}
,

that is, the lemma is true when l + 1 and m ≥ 1. Hence by mathematical induction
the lemma is valid for all natural numbers l and m.

Applying Lemma 3.2 with sl = S, tm = T and βj,k = 〈v, 1〉j,k for j = 1, . . . , l and
k = 1, . . . ,m, and using the relationship (1.6), we obtain the following lemma.

Lemma 3.3. Let v ∈ L2(Q) and let ξl,m be a real number. Let σ be a subdivision
of Q and let Reλ > 0. Let

Jσ,λ(ξl,m, v) ≡ γσ,λ

∫
Rlm−1

exp
{
−λ

2

l∑
j=1

m∑
k=1

(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)
2

(sj − sj−1)(tk − tk−1)

+ i
l∑

j=1

m∑
k=1

〈v, 1〉j,k
ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1

(sj − sj−1)(tk − tk−1)

}
× dξ1,1 · · · dξ1,m · · · dξl−1,1 · · · dξl−1,m dξl,1 · · · dξl,m−1.

(3.7)

Then the above integral exists and its value is given by

Jσ,λ(ξl,m, v) =
( λ

2πST

)1/2
exp
{ 1

2λST
(λiξl,m + 〈v, 1〉)2

− 1

2λ

l∑
j=1

m∑
k=1

〈v, 1〉2j,k
(sj − sj−1)(tk − tk−1)

}
.

(3.8)

Using Lemma 2.1 we easily obtain the following lemma.

Lemma 3.4. Let v and {σn} be given as in Lemma 2.1. Let {λn} be a sequence of
complex numbers such that Reλn > 0 and λn → −iq as n → ∞. Let Jσn,λn(ξ, v) be
given by (3.7) with σ, λ and ξl,m replaced by σn, λn and ξ. Then we have

(3.9) lim
n→∞

Jσn,λn(ξ, v) =
( −iq

2πST

)1/2
exp{Kq(ξ, v)},

where

(3.10) Kq(ξ, v) ≡ i

2qST
(qξ + 〈v, 1〉)2 − i

2q
‖v‖22.

Now we are ready to establish the existence of the sequential Yeh-Feynman integral
of functionals of the form (3.1).
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Theorem 3.5. For x ∈ D2(Q), let F (x) = G(x)Ψ(x(S, T )) where G ∈ Ŝ(L2(Q))
is given by (1.7) with corresponding measure g in M(L2(Q)) and Ψ ∈ L1(R). Then
for each nonzero real number q, F is sequential Yeh-Feynman integrable and

(3.11)

∫ syfq

F (x) dx =
( −iq

2πST

)1/2 ∫
L2(Q)

∫
R

exp{Kq(ξ, v)}Ψ(ξ) dξ dg(v),

where Kq(ξ, v) is given by (3.10).

Proof. Let σ be a subdivision of Q

0 = s0 < s1 < · · · < sl = S, 0 = t0 < t1 < · · · < tm = T.

Let λ be a complex number with Reλ > 0, and let

Iσ,λ(F ) ≡
∫
Rlm

Hλ(σ,Ξ)F (X((·, ·), σ,Ξ)) dΞ

= γσ,λ

∫
Rlm

exp
{
−λ

2

l∑
j=1

m∑
k=1

(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)
2

(sj − sj−1)(tk − tk−1)

}
× F (X((·, ·), σ,Ξ)) dΞ.

By (1.7), we have

F (X((·, ·), σ,Ξ)) =

∫
L2[0,T ]

exp
{
i

l∑
j=1

m∑
k=1

〈v, 1〉j,k
ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1

(sj − sj−1)(tk − tk−1)

}
×Ψ(ξl,m) dg(v)

and so

Iσ,λ(F ) = γσ,λ

∫
Rlm

∫
L2(Q)

exp
{
−λ

2

l∑
j=1

m∑
k=1

(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)
2

(sj − sj−1)(tk − tk−1)

+ i
l∑

j=1

m∑
k=1

〈v, 1〉j,k
ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1

(sj − sj−1)(tk − tk−1)

}
Ψ(ξl,m) dg(v) dΞ.

By Lemma 3.2 with βj,k = 0 for j = 1, . . . , l and k = 1, . . . ,m, we have∫
Rlm

∫
L2(Q)

exp
{
−Reλ

2

l∑
j=1

m∑
k=1

(ξj,k − ξj−1,k − ξj,k−1 + ξj−1,k−1)
2

(sj − sj−1)(tk − tk−1)

}
|Ψ(ξl,m)| dg(v) dΞ

≤ |γσ,λ|−1
( Reλ

2πST

)1/2 ∫
L2(Q)

∫
R

exp
{
−Reλ

2ST
ξ2l,m

}
|Ψ(ξl,m)| dξl,m dg(v)

which is finite, and so we apply Fubini theorem and Lemma 3.3 to obtain

Iσ,λ(F ) =

∫
L2[0,T ]

∫
R
Jσ,λ(ξ, v)Ψ(ξ) dξ dg(v),

where Jσ,λ(ξ, v) is given by (3.7) with ξl,m replaced by ξ.
Now let {σn} be a sequence of subdivisions of Q such that ‖σn‖ → 0 as n → ∞,

and let {λn} be a sequence of complex numbers such that Reλn > 0 and λn → −iq
as n→∞. Then we have

Iσn,λn(F ) =

∫
L2[0,T ]

∫
R
Jσn,λn(ξ, v)Ψ(ξ) dξ dg(v).
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But by the Schwartz inequality,

〈v, 1〉2

ST
−

ln∑
j=1

mn∑
k=1

〈v, 1〉2n;j,k
(sn,j − sn,j−1)(tn,k − tn,k−1)

≤ 0

and so we apply dominated convergence theorem and use Lemma 3.4 to conclude that

lim
n→∞

Iσn,λn(F ) =
( −iq

2πST

)1/2 ∫
L2[0,T ]

∫
R

exp{Kq(ξ, v)}Ψ(ξ) dξ dg(v)

and this completes the proof.

From Theorems 2.3 and 3.5 and the linearity of the sequential Yeh-Feynman integral
we have the following theorem.

Theorem 3.6. For x ∈ D2(Q), let F (x) = G(x)Ψ(x(S, T )) where G ∈ Ŝ(L2(Q))
is given by (1.7) with corresponding measure g in M(L2(Q)) and Ψ = Ψ1 + Ψ2 with
Ψ1 ∈ L1(R) and Ψ2 ∈ T is given by (2.4). Then for each nonzero real number q, F is
sequential Yeh-Feynman integrable and∫ syfq

F (x) dx =
( −iq

2πST

)1/2 ∫
L2(Q)

∫
R

exp{Kq(ξ, v)}Ψ1(ξ) dξ dg(v)

+

∫
L2(Q)

∫
R

exp
{
− i

2q
‖v + ξ‖22

}
dρ(ξ) dg(v)

(3.12)

where Kq(ξ, v) is given by (3.10).

Cameron and Storvick [4] gave an example of sequential Feynman integrable func-

tional which does not lie in the Banach algebra Ŝ on Wiener space. As a corollary
of our result Theorem 3.5, we obtain an extension of the Cameron and Storvick’s
example to the sequential Yeh-Feynman integral. That is, we establish the existence
and an evaluation formula for sequential Yeh-Feynman integral of L1 functional in
Corollary 3.7 below.

Corollary 3.7. For x ∈ D2(Q), let F (x) = Ψ(x(S, T )) where Ψ ∈ L1(R). Then
the sequential Yeh-Feynman integral of F exists and is given by

(3.13)

∫ syfq

F (x) dx =
( −iq

2πST

)1/2 ∫
R

exp
{ iqξ2

2ST

}
Ψ(ξ) dξ

for each nonzero real number q.

Proof. Since the constant function G(x) ≡ 1 is obtained by taking g the probability
measure concentrated at v = 0 in L2(Q), G(x) ≡ 1 belongs to the Banach algebra

Ŝ(L2(Q)). Now (3.13) follows immediately from (3.11)

References

[1] J. M. Ahn, K. S. Chang, and I. Yoo, Some Banach algebras of Yeh-Feynman integrable func-
tionals, J. Korean Math. Soc., 24 (1987), 257–266.

[2] E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-
bounded operators, J. London Math. Soc., 30 (1984), 305–321.
https://doi.org/10.1112/jlms/s2-30.2.305

https://doi.org/10.1112/jlms/s2-30.2.305


Existence theorems and evaluation formulas for sequential Yeh-Feynman integrals 781

[3] R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable
functionals, Analytic Functions Kozubnik 1979, Lecture Notes in Mathematics, 798, Springer-
Verlag, Berlin, 1980, 18–67.
https://doi.org/10.1007/bfb0097256

[4] R. H. Cameron and D. A. Storvick, A simple definition of the Feynman integral, with applica-
tions, Mem. Amer. Math. Soc., No. 288, Amer. Math. Soc., 1983.
https://doi.org/10.1090/memo/0288

[5] R. H. Cameron and D. A. Storvick, Sequential Fourier-Feynman transforms, Ann. Acad. Sci.
Fenn., 10 (1985), 107–111.
https://doi.org/10.5186/aasfm.1985.1013

[6] R. H. Cameron and D. A. Storvick, New existence theorems and evaluation formulas for sequen-
tial Feynman integrals, Proc. London Math. Soc., 52 (1986), 557–581.
https://doi.org/10.1112/plms/s3-52.3.557

[7] R. H. Cameron and D. A. Storvick, New existence theorems and evaluation formulas for analytic
Feynman integrals, Deformations Math. Struct., Complex Analy. Phys. Appl., Kluwer Acad.
Publ., Dordrecht (1989), 297–308.
https://doi.org/10.1007/978-94-009-2643-1_27

[8] K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Sequential Fourier-Feynman
transform, convolution and first variation, Trans. Amer. Math. Soc., 360 (2008), 1819–1838.
https://doi.org/10.1090/S0002-9947-07-04383-8

[9] K. S. Chang, J. G. Kim, and I. Yoo, Relationships between the sequential Yeh-Feynman integral
and Truman integral, Bull. Korean Math. Soc., 24 (1987), 173–180.

[10] K. S. Chang, J. G. Kim, I. Yoo, and K. S. Choi, Sequential Yeh-Feynman integrals of certain
classes of functionals, Commun. Korean Math. Soc., 3 (1988), 213–224.

[11] J. G. Choi, Yeh-Fourier-Feynman transforms and convolutions associated with Gaussian pro-
cesses, Ann. Funct. Anal., 12 (2021), 12–41.
https://doi.org/10.1007/s43034-021-00128-7

[12] B. S. Kim, Integral transforms of square integrable functionals on Yeh-Wiener space, Kyungpook
Math. J., 40 (2009), 155–166.
https://doi.org/10.5666/KMJ.2009.49.1.155

[13] B. S. Kim, Generalized first variation and generalized sequential Fourier-Feynman transform,
Korean J. Math., 31 (2023), 521–536.
https://doi.org/10.11568/kjm.2023.31.4.521

[14] B. S. Kim and Y. K. Yang, Fourier-Yeh-Feynman transform and convolution on Yeh-Wiener
space, Korean J. Math., 16 (2008), 335–348.

[15] B. S. Kim and I. Yoo, Generalized sequential convolution product for the generalized sequential
Fourier-Feynman transform, Korean J. Math., 29 (2021), 321–332.
https://doi.org/10.11568/kjm.2021.29.2.321

[16] J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc., 95
(1960), 433–450.
https://doi.org/10.2307/1993566

[17] J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1973.
[18] I. Yoo and B. S. Kim, Generalized sequential Feynman integral and Fourier-Feynman transform,

Rocky Mountain J. Math., 51 (2021), 2251–2268.
https://doi.org/10.1216/rmj.2021.51.2251

https://doi.org/10.1007/bfb0097256
https://doi.org/10.1090/memo/0288
https://doi.org/10.5186/aasfm.1985.1013
https://doi.org/10.1112/plms/s3-52.3.557
https://doi.org/10.1007/978-94-009-2643-1_27
https://doi.org/10.1090/S0002-9947-07-04383-8
https://doi.org/10.1007/s43034-021-00128-7
https://doi.org/10.5666/KMJ.2009.49.1.155
https://doi.org/10.11568/kjm.2023.31.4.521
https://doi.org/10.11568/kjm.2021.29.2.321
https://doi.org/10.2307/1993566
https://doi.org/10.1216/rmj.2021.51.2251


782 Byoung Soo Kim and Young-Hee Kim

Byoung Soo Kim
School of Natural Sciences, Seoul National University of Science and Technology,
Seoul 01811, Korea.
E-mail : mathkbs@seoultech.ac.kr

Young-Hee Kim
Ingenium College of Liberal Arts, Kwangwoon University
Seoul 01897, Korea.
E-mail : yhkim@kw.ac.kr


	1. Introduction
	2. Sequential Yeh-Feynman integral of some bounded functionals
	3. Sequential Yeh-Feynman integral of some unbounded functionals
	References

