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DEFINING EQUATIONS OF X1(2N)

Daeyeol Jeon

Abstract. In this paper, we give a new method to get defining
equations of modular curves X1(2N) which show the moduli prob-
lems.

1. Introduction

For a positive integer N, consider the congruence subgroup Γ1(N) of
SL2(Z) defined by

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(

1 ∗
0 1

)
mod N

}
.

Then the modular curve X1(N) corresponding to Γ1(N) is related to
moduli problems of elliptic curves with N -torsion points. Defining equa-
tions of a modular curve are any polynomials that yield an isomorphic
function field of that modular curve(cf. [6]).

Baaziz [1], Ishida and Ishii [3], Reichert [5], and Yang [6] suggested
some methods to find defining equations of X1(N). The purpose of this
paper is to present a new method for obtaining equations of X1(N) for
even integers N . The author, Kim and Lee [4] found defining equations
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of X1(20) and X1(24) whose degree in one of variables is 4 for obtain-
ing infinitely many points over quartic number fields. We improve the
method in [4] to get defining equations of X1(2N) for all N .

2. Preliminaries

The Tate normal form of an elliptic curve with P = (0, 0) is given as
follows:

E(b, c) : y2 + (1− c)xy − by = x3 − bx2,

and this is nonsingular if and only if b 6= 0. In this case, P is not of
order 2 or 3(cf. [2]). On the curve E(b, c) we have the following by the
chord-tangent method(cf. [5]):

P = (0, 0),(1)

2P = (b, bc),

3P = (c, b− c),

4P =
(
r(r − 1), r2(c− r + 1)

)
; b = cr,

5P =
(
rs(s− 1), rs2(r − s)

)
; c = s(r − 1),

6P =

(
s(r − 1)(r − s)

(s− 1)2
,
s2(r − 1)2(rs− 2r + 1)

(s− 1)3

)
.

The condition NP = O in E(b, c) gives a defining equation for X1(N).
For example, 11P = O implies 5P = −6P , so

x5P = x−6P = x6P ,

where xnP denote the x-coordinate of the n-multiple nP of P . Eq. (1)
implies that

(2) rs(s− 1) =
s(r − 1)(r − s)

(s− 1)2
.

Without loss of generality, the cases s = 0 and s = 1 may be excluded.
Then Eq. (2) becomes as follows:

−rs3 + 3rs2 − 4rs + r2 + s = 0,

which is one of the equations of X1(11), called the raw form of X1(11).
By the coordinate changes s = v/u+1 and r = v+1, we get the following
equation:

v2 + v = u3 − u2.
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3. Defining equations of X1(2N)

Let E be an elliptic curve with a N -torsion point P . Suppose Q is a
point of E with 2Q = P and Q /∈ 〈P 〉. Then Q is a 2N -torsion point of
E. The set of pairs (E,P ) defines X1(N), and so the set of pairs (E,Q)
does X1(2N). Thus it suffices to find a method to parametrize the pairs
(E,Q) for getting a defining equation of X1(2N).

Suppose E is an elliptic curve defined by

E : y2 + (1− c)xy − by = x3 − bx2,

and P = (0, 0) is an N -torsion point of E. By the coordinate changes
x→ x and y → y + c−1

2
x + b

2
, E is changed to the following:

E ′ : y2 = x3 +
(c− 1)2 − 4b

4
x2 +

b(c− 1)

2
x +

b2

4
.

For simplicity, we write E ′ by

y2 = x3 + Ax2 + Bx + C,

where A = (c−1)2−4b
4

, B = b(c−1)
2

, and C = b2

4
. Then (0,− b

2
) is an N -

torsion point of the curve E ′.
Now consider a point Q = (x1, y1) with 2Q = (0,− b

2
). Take y =

mx+ b
2

as the line through (0, b
2
) tangent at the unknown point Q. Then

the three roots of

(3) x3 + Ax2 + Bx + C −
(
mx +

b

2

)2

are 0, x1 and x1, i.e., x1 is a double root of Eq. (3). Thus

x3 + Ax2 + Bx + C − (mx + b
2
)2

x
= (x− x1)

2,

and hence the discriminant of

(4) x2 + (A−m2)x + (B − bm)

is equal to 0, i.e., m satisfies the following quartic equation:

(5) (z2 − A)2 + 4(bz −B) = 0.

Suppose m0 is a root of Eq. (5). Then

x1 =
m2

0 − A

2
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is a double root of Eq. (4) and hence also of Eq. (3). Thus 2(x1,m0x1 +
b
2
) = (0,− b

2
). In other words, Q = (x1, y1) is a 2N -torsion point of E ′

where y1 = m0x1 + b
2
.

Now suppose fN(u, v) = 0 is a defining eqution of X1(N). Then each
common root of fN(u, v) = 0 and Eq. (5) is corresponding to a pair of
(E ′, Q) where Q is a 2N -torsion point of an elliptic curve E ′. Therefore
we have the following result

Theorem 3.1. A defining equation of the modular curve X1(2N) is
given by {

fN(u, v) = 0,
(z2 − A)2 + 4(bz −B) = 0,

where fN(u, v) = 0 is a defining eqution of X1(N) and b, A,B are defined
as above.

Example 3.2. A defining equation of X1(11) is

v2 + v = u3 − u2,

and

b =
v(v + 1)(v + u)

u
, c =

v(v + u)

u
.

Therefore a defining equation of X1(22) is given by the following:

X1(22) :


v2 + v = u3 − u2,
16u4z4 − 8u2(v4 − 2uv3 − 3(u2 + 2u)v2 − 6u2v + u2)z2

+64u3v(v + 1)(v + u)z + v8 − 4uv7 − 2u(u + 6)v6

+4(3u− 5)u2v5 + u2(9u2 − 4u + 6)v4 + 4(u + 9)u3v3

+10(3u + 2)u3v2 + 20u4v + u4 = 0.
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