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GENERALIZED η-DUALS OF BANACH SPACE VALUED

DIFFERENCE SEQUENCE SPACES

Naveen Sharma and Sandeep Kumar∗

Abstract. In the present paper, we get an opportunity to introduce and study
the notion of generalized η-dual for Banach space valued difference sequence spaces,
as a generalization of the classical α-Köthe Toeplitz dual for scalar sequences. We
obtain a set of necessary and sufficient conditions for (Ak) ∈ Eη(X,∆), where E ∈
{`∞, c, c0}. Moreover, we explore the notion of generalized η-dual for generalized
difference sequence spaces E(X,∆r) and E(X,∆ν), where r ∈ N and ν is a multiplier
sequence.

1. Introduction and Preliminaries

Kizmaz [13], added to the field of sequence spaces a new idea of difference sequence
spaces by introducing `∞(∆), c(∆) and c0(∆) (termed as difference sequence spaces)
as follows

`∞(∆) = {x = (xk) ∈ ω : (∆xk) = (xk − xk+1) ∈ `∞},

c(∆) = {x = (xk) ∈ ω : (∆xk) = (xk − xk+1) ∈ c},

c0(∆) = {x = (xk) ∈ ω : (∆xk) = (xk − xk+1) ∈ c0},
i.e.,

E(∆) = {x = (xk) ∈ ω : (∆xk) ∈ E} for E ∈ {`∞, c, c0}
where c0, c, `∞ are Banach spaces of null, convergent and bounded sequences of

scalars, normed by ‖x‖∞ = supk |xk| and ω is the space of scalar sequences.
It is observed that E(∆) are Banach spaces with the norm

‖x‖∆ = |x1|+ ‖∆x‖∞ for x = (xk) ∈ E(∆) where ∆x = (∆xk) = (xk − xk+1).

Et and Çolak [7] generalized the above concept by introducing E(∆n) as follows

E(∆n) = {x = (xk) ∈ ω : (∆nxk) ∈ E} for E ∈ {`∞, c, c0}
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where ∆nx = (∆nxk) = (∆n−1xk −∆n−1xk+1) for all k ∈ N and ∆0xk = xk. These
spaces turn out to be complete when equipped with the norm

‖x‖∆n =
n∑
i=1

|xi|+ ‖∆nx‖∞ for x = (xk) ∈ E(∆n).

Obviously, for n = 1 the work of Et and Colak [7], reduces to that of Kizmaz [13].
Using a multiplier sequence, Gnanaseelan and Srivastva [9] introduced the following
sequence spaces

`∞(∆ν) = {x = (xk) ∈ ω : (νk(xk − xk+1)) ∈ `∞},

c(∆ν) = {x = (xk) ∈ ω : (νk(xk − xk+1)) ∈ c},
c0(∆ν) = {x = (xk) ∈ ω : (νk(xk − xk+1)) ∈ c0},

i.e.,

E(∆ν) = {x = (xk) ∈ ω : (νk∆xk) ∈ E} for E ∈ {`∞, c, c0}
where ν = (νk) is a sequence of non zero complex numbers and

(1)
|νk|
|νk+1|

= 1 +O

(
1

k

)
,

(2) k−1|νk|
k∑
i=1

|ν−1
i | = O(1) for each k, and

(3)(
k|ν−1

k |
)

is a monotonically increasing sequence of positive numbers tending to infinity

The spaces E(∆ν) for ν = (1, 1, 1, . . .) are noting but the spaces E(∆) of Kiz-
maz and have Banach space structure when equipped with norm ‖x‖∆ν = |ν1x1| +
supk |νk(xk − xk+1)|.

For more insight into difference sequence spaces and its various generalizations, one
may refer to [1–4,6, 8, 16–21].

The theory of sequence spaces is considered to be incomplete without a touch to
the concept of dual spaces. Credit of introducing dual spaces goes to G. Köthe and
O. Toeplitz [14]. For a real or complex sequence space E,

Eα =

{
a = (ak) ∈ ω :

∞∑
k=1

|akxk| <∞ for each x = (xk) ∈ E

}
and

Eβ =

{
a = (ak) ∈ ω :

∞∑
k=1

akxk <∞ for each x = (xk) ∈ E

}
are called α−, β-duals spaces of E, respectively.
Kizmaz [13] observed that

[`∞(∆)]α = [c0(∆)]α = [c(∆)]α =

{
a = (ak) ∈ ω :

∑
k

k |ak| <∞

}
.
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Also we have in view of [7, 9, 11]

[`∞(∆r)]α = [c(∆r)]α = [c0(∆r)]α =

{
a = (ak) ∈ ω :

∑
k

kr|ak| <∞

}
and

[`∞(∆ν)]
α = [c(∆ν)]

α = [c0(∆ν)]
α =

{
a = (ak) ∈ ω :

∑
k

k
∣∣ν−1
k

∣∣ |ak| <∞} .
The above introduced notion of Köthe Toeplitz duals was further generalized by

Maddox [15] and Gupta et al. [10] termed as generalized Köthe Toeplitz duals (or
operator duals) as follows

Consider Banach spaces (X, ‖ · ‖) and (Y, ‖ · ‖) with θ as zero element. By B(X, Y ),
we notate the class of bounded linear operators from X to Y which turn out to be
Banach space with usual operator norm and ω(X) as the space of X-valued (Banach
space valued ) sequences. Then for any nonempty subset E(X) of ω(X)

[E(X)]α =

{
A = (Ak) :

∞∑
k=1

‖Akxk‖ <∞ for each x = (xk) ∈ E(X)

}
and

[E(X)]β =

{
A = (Ak) :

∞∑
k=1

Akxk converges in Y for each x = (xk) ∈ E(X)

}
are termed as generalized α-, β-Köthe Toeplitz dual spaces of E(X) respectively.

Here (Ak) is a sequence of linear (not necessarly bounded) operators from X to Y .
Due to the completeness of Y , [E(X)]α ⊂ [E(X)]β.

It is to be noted that, the generalized dual spaces [E(X)]α and [E(X)]β reduce to
classical dual spaces Eα and Eβ for the case X = Y = C, because in this case the
operator Ak may be identified with scalar ak. Maddox [12] investigated generalized
Köthe Toeplitz duals, for the sequence spaces c0(X), c(X) and `∞(X) (the Banach
spaces of null, convergent and bounded X-valued sequences respectively) normed by
‖x‖∞ = supk ‖xk‖. It was shown that [`∞(X)]α = [c(X)]α = [c0(X)]α which is a
natural generalization of the scalar case `α∞ = cα = cα0 = `1.

Bhardwaj and Gupta [5] applied the above introduced duality notion of Maddox [15]
for newly introduced Banach space valued difference sequence spaces E(X,∆), E(X,∆ν)
and E(X,∆r) where

E(X,∆) = {x = (xk) ∈ ω(X) : (∆xk) ∈ E(X)} ,
E(X,∆ν) = {x = (xk) ∈ ω(X) : (νk(xk − xk+1) ∈ E(X)}

and

E(X,∆r) = {x = (xk) ∈ ω(X) : (∆rxk) ∈ E(X)} for E ∈ {`∞, c, c0}
and computed only their generalized β-Köthe Toeplitz duals.

In this paper, we introduce and study the notion of generalized η-dual for Banach
space valued sequence spaces, as a generalization of the classical α-Köthe Toeplitz dual
of scalar cases. The generalized η-duals of the X-valued (Banach space valued) differ-
ence sequence spaces E(X,∆), E(X,∆ν) are obtained which is a generalization of the
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existing results for duals of the classical difference sequence spaces E(∆) and E(∆ν)
of scalars, E ∈ {`∞, c, c0}. Apart from this, we compute the generalized η-duals for
E(X,∆r), r ≥ 0 integer and observe that the results agree with corresponding results
for scalar cases.

2. Generalized η-dual spaces of sequence spaces c0(X,∆), c(X,∆) and
`∞(X,∆)

In the present section, along with introducing a notion of generalized η-dual for
Banach space valued( that is X-valued ) sequence space E(X) ⊂ ω(X), we compute
generalized η-duals for c0(X,∆), c(X,∆) and `∞(X,∆).

Definition 2.1. Let E(X) ⊂ ω(X). Then generalized η-dual of E(X) is denoted
by E(X)η and defined as

E(X)η =

{
A = (Ak) :

∞∑
k=1

‖Akxk‖p <∞ for each x = (xk) ∈ E(X)

}
where p ≥ 1 integer. Here (Ak) is a sequence of linear (not necessarily bounded)
operators from X to Y . It is worth observing that for

(i) [F (X)] ⊂ [E(X)] we have [E(X)]η ⊂ [F (X)]η.

(ii) η = 1 we have [E(X)]η = [E(X)]α.

(iii) η = 1 and X = C we have [E(X)]η = Eα.

Theorem 2.2. (Ak) ∈ cη0(X,∆) iff there exists positive integer m such that

(1) (Ak) ∈ B(X, Y ) for all k ≥ m and

(2)
∑

k≥m k
p‖Ak‖p <∞.

Proof. Sufficiency: Let (i) and (ii) holds. Let x = (xk) ∈ c0(X,∆). Then xk −
xk+1 → θ in X as k → ∞ and so supk ‖xk − xk+1‖ < ∞. Using Lemma 1 of [5], let
M = supk k

−1‖xk‖, i.e., k−1‖xk‖ ≤ M for all k ≥ 1. Since
∑

k≥m k
p‖Ak‖p < ∞, so

for given ε > 0, there exists an integer k1 ≥ m such that
∑

k≥k1 k
p‖Ak‖p <

ε

Mp
. Then∑

k≥k1

‖Akxk‖p ≤
∑
k≥k1

‖Ak‖p‖xk‖p

=
∑
k≥k1

kp‖Ak‖p
(
k−p‖xk‖p

)
≤Mp

∑
k≥k1

kp‖Ak‖p

< Mp ε

Mp
= ε

and so (Ak) ∈ cη0(X,∆).
Conversely, suppose (Ak) ∈ cη0(X,∆) but no m exists for which (Ak) ∈ B(X, Y )

for all k ≥ m. Then there exists a strictly increasing sequence (ki) of natural numbers
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such that Aki /∈ B(X, Y ) for each i ≥ 1. Thus for each i ≥ 1, we can find zi ∈ S such
that ‖Akizi‖ > i. Define

xk =

{ zi
i

for k = ki, i ≥ 1

θ otherwise
k ∈ N .

Then x = (xk) ∈ c0(X,∆) but ‖Akixki‖ > 1. Consequently, ‖Akixki‖p > 1 for
each i ≥ 1, contrary to the fact that

∑
k≥1 ‖Akxk‖p converges. Hence the Ak’s are

ultimately bounded. Now suppose, if possible,
∑

k≥m k
p‖Ak‖p =∞. Then there exist

natural numbers n(1) < n(2) < . . . with n(1) ≥ m such that for each i ≥ 1,

n(i+1)∑
k=1+n(i)

kp‖Ak‖p > 2n(i+1)p.

Moreover for each k ≥ m, there exists zk ∈ S such that ‖Ak‖ < 2‖Akzk‖. Define

xk =

{
kzk
2k

for n(i) < k ≤ n(i+ 1), i ≥ 1

θ otherwise
k ∈ N .

Then x = (xk) ∈ c0(X,∆) and

n(i+1)∑
k=1+n(i)

‖Akxk‖p =

n(i+1)∑
k=1+n(i)

kp

2kp
‖Akzk‖p

>

n(i+1)∑
k=1+n(i)

kp

2kp
1

2p
‖Ak‖p

>
1

2p

n(i+1)∑
k=1+n(i)

kp‖Ak‖p

2n(i+1) p

>
1

2p

for each i ≥ 1. Consequently,
∑

k≥1 ‖Akxk‖p = ∞, which is contrary to the conver-
gence of series

∑
k≥1 ‖Akxk‖p. Hence the proof.

Theorem 2.3. (Ak) ∈ cη(X,∆) iff there exists positive integer m such that

(1) (Ak) ∈ B(X, Y ) for all k ≥ m and

(2)
∑

k≥m k
p‖Ak‖p <∞.

Proof. Sufficiency: Let (i) and (ii) holds and x = (xk) ∈ c(X,∆). Then

sup
k
‖xk − xk+1‖ <∞.

Arguing in the same way, as in sufficiency part of Theorem 2.2, we get (Ak) ∈ cη(X,∆).
Conversely, as cη(X,∆) ⊂ cη0(X,∆), so the necessity of (i) and (ii) follows from

the necessity part of Theorem 2.2.

The proof of the following runs on the similar lines as of Theorem 2.2 and hence
omitted.
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Theorem 2.4. (Ak) ∈ `η∞(X,∆) iff there exists positive integer m such that

(1) (Ak) ∈ B(X, Y ) for all k ≥ m and

(2)
∑

k≥m k
p‖Ak‖p <∞.

From the Theorem 2.2, Theorem 2.3 and Theorem 2.4 we have the following

Corollary 2.5. cη0(X,∆) = cη(X,∆) = `η∞(X,∆).

Since for X = Y = C, Ak may be identified with ak so we have for p = 1

Corollary 2.6. cα0 (∆) = cα(∆) = `α∞(∆).

3. Some further generalizations

Here in this section, we proposed to compute generalized η-dual spaces of the
generalized difference sequence spaces c0(X,∆r), c(X,∆r) and `∞(X,∆r) where

E(X,∆r) = {x = (xk) ∈ ω(X) : (∆rxk) ∈ E(X)} , E ∈ {`∞, c, c0}, r ∈ N.
Proceeding on the lines similar as in Theorem 2.2, we have obtained necessary and
sufficient conditions for (Ak) ∈ Eη(X,∆r). Before proceeding further we recall the
following simple and useful lemmas of [10].

Lemma 3.1. If supk ‖∆rxk‖ <∞, then supk k
−1‖∆r−1xk‖ <∞, r ∈ N.

Lemma 3.2. If supk k
−i‖∆r−ixk‖ < ∞, then supk k

−(i+1)‖∆r−(i+1)xk‖ < ∞ for all
i, r ∈ N and 1 ≤ i < r.

Corollary 3.3. If supk k
−1‖∆r−1xk‖ <∞, then supk k

−r‖xk‖ <∞.

Theorem 3.4. (Ak) ∈ Eη(X,∆r), E ∈ {`∞, c, c0} iff there exists positive integer
m such that

(1) (Ak) ∈ B(X, Y ) for all k ≥ m and

(2)
∑

k≥m k
rp‖Ak‖p <∞.

Corollary 3.5. cη0(X,∆r) = cη(X,∆r) = `η∞(X,∆r)and hence

(a) cα0 (X,∆r) = cα(X,∆r) = `α∞(X,∆r)

(b) cα0 (∆) = cα(∆) = `α∞(∆).

In the end of this section, making use of Lemma 3.1 of [10] we compute generalized
η-dual spaces of E(X,∆ν) for E ∈ {`∞, c, c0} where

E(X,∆ν) = {x = (xk) ∈ ω(X) : (νk(xk − xk+1)) ∈ E(X)} .

However, for the sake of completeness of the paper we are proving the lemma here.

Lemma 3.6. If supk ‖νk(xk − xk+1)‖ <∞, then supk k
−1‖νkxk‖ <∞.
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Proof. Let supk ‖vk(xk − xk+1)‖ <∞. We get

‖x1 − xk+1‖ = ‖
k∑
i=1

xi − xi+1‖ ≤
k∑
i=1

‖νi(xi − xi+1)‖ |ν−1
i |

= O(1)
k∑
i=1

|ν−1
i |

= O(1)(k−1|νk|)
k∑
i=1

|ν−1
i | k |ν−1

k |

= O(k|ν−1
k |) (using (2)).

Also ‖xk‖ = ‖xk − xk+1 + xk+1 − x1 + x1‖ ≤ ‖xk − xk+1‖ + ‖xk+1 − x1‖ + ‖x1‖
for every k, which implies k−1 ‖νkxk‖ ≤ k−1 |νk| ‖xk − xk+1‖+ k−1 |νk| ‖xk+1 − x1‖+
k−1 |νk| ‖x1‖ . Using (3), we get, k−1‖νkxk‖ ≤ k−1O(1) +O(1) + k−1 |νk| ‖x1‖. Hence
supk k

−1‖νkxk‖ <∞.

Using Lemma 3.6, it is easy to have the following

Theorem 3.7. (Ak) ∈ Eη(X,∆ν), E ∈ {`∞, c, c0} iff there exists positive integer
m such that

(1) (Ak) ∈ B(X, Y ) for all k ≥ m and

(2)
∑

k≥m k
p |ν−pk | ‖Ak‖p <∞.

Corollary 3.8. (a) cη0(X,∆ν) = cη(X,∆ν) = `η∞(X,∆ν).

(b) cη0(X,∆) = cη(X,∆) = `η∞(X,∆).

(c) cα0 (X,∆) = cα(X,∆) = `α∞(X,∆).

(d) cα0 (∆) = cα(∆) = `α∞(∆).
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