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ON SOME IDEALS DEFINED BY AN ARITHMETIC SEQUENCE

Jonghyeon Gil

Abstract. This paper investigates properties of ideals in the affine and homoge-
neous projective coordinate rings of the plane, defined using arithmetic sequence

{aℓ = a+ ℓd | ℓ ≥ 0}
for some positive integers a and d. Specifically, we study two types of ideals:
I(a, d) is generated by D(a, d) in K[x, y] and J(a, d) is generated by E(a, d) in
K[x, y, z] where

D(a, d) = {fℓ = xaℓ − yaℓ+1 | ℓ ≥ 0}
and

E(a, d) = {Fℓ = xaℓzd − yaℓ+1 | ℓ ≥ 0}.
This paper provides detailed answers to several problems, including finding finite
generating sets, describing the zero locus of these ideals, and determining their
Hilbert functions. Finally, the Castelnuovo-Mumford regularity and the minimal free
resolution of the homogeneous coordinate ring and multi secant line are discussed.

1. Introduction

Let K be an algebraically closed field of characteristic zero. Also let A = K[x, y] and
S = K[x, y, z] be respectively the affine and the homogeneous coordinate ring of A2

and P2. The aim of this paper is to study various basic properties of some ideals of
A and S defined by the arithmetic sequence

{aℓ = a+ ℓd | ℓ ≥ 0}
for some positive integers a and d. To be precise, letD(a, d) and E(a, d) be respectively
the infinite subsets of A and S defined as

D(a, d) = {fℓ = xaℓ − yaℓ+1 | ℓ ≥ 0}
and

E(a, d) = {Fℓ = xaℓzd − yaℓ+1 | ℓ ≥ 0}.
Then consider the ideal I(a, d) of A generated by D(a, d) and the homogeneous ideal
J(a, d) of S generated by E(a, d). Throughout this paper, we are intended to answer
for the following problems related to these ideals. In particular, we will explain how
the answers to them are determined by a and d.
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(1.i) Find a finite subset of D(a, d) which generates I(a, d).
(1.ii) Find a minimal generating set of the radical ideal of I(a, d).
(1.iii) Describe the affine algebraic set Γ(a, d) := V (I(a, d)) ⊂ A2.

(2.i) Find a finite subset of E(a, d) which generates J(a, d).
(2.ii) Find a minimal generating set of the radical ideal of J(a, d).
(2.iii) Describe the projective algebraic set Ω(a, d) := V (J(a, d)) ⊂ P2.
(2.iv) Find the Hilbert function and the minimal free resolution of the homogeneous

coordinate ring of Ω(a, d) ⊂ P2.
(2.v) Find the integers ℓ(Ω(a, d)) defined by ℓ(X) := max{length(X ∩P1) | P1 ⊂ P2}.

Regarding (1.i) and (2.i), Hilbert Basis Theorem says that I(a, d) and J(a, d) are
finitely generated. Proposition 2.1 shows that

I(a, d) = ⟨f0 = xa − ya+d, f1 = xa+d − ya+2d⟩

and

J(a, d) = ⟨F0 = xazd − ya+d, F1 = xa+dzd − ya+2d⟩.
Our answer to (1.ii) is closely related to (1.iii) and (2.ii). Regarding (1.ii), let

Λ(a, d) := Γ(a, d)− {(0, 0)} ⊂ A2.

Theorem 3.1 says that Λ(a, d) is a finite abelian group isomorphic to Zd2/g×Zg where
g is the greatest common divisor of a and d. In particular, Γ(a, d) consists of (d2 +1)
distinct points. From now on, we write Γ(a, d) as

Γ(a, d) = {P0, P1, . . . , Pd2}

where P0 = (0, 0). Then it turns out in Theorem 4.1 that I(a, d) has the local property

(1) dimK (A/I(a, d))Pi
=

{
a2 + 2ad for i = 0, and

1 for i ̸= 0.

This is proved by applying Bezout’s theorem to the homogeneous ideal J(a, d) =
⟨F0, F1⟩ of S. Indeed,

Ω(a, d) = Γ(a, d) ∪ {P∞ := [1 : 0 : 0]}

and hence Ω(a, d) has exactly one more point than Γ(a, d). Also the intersection
multiplicities

I(P0, F0 ∩ F1) and I(P∞, F0 ∩ F1)

of F0 and F1 at P0 and P∞ are respectively equal to a2 + 2ad and (a+ d)d. Bezout’s
theorem says that

(a+ d)(a+ 2d) =
d2∑
i=0

dimK (A/I(a, d))Pi
+ I(P∞, F0 ∩ F1)

and hence
d2∑
i=1

dimK (A/I(a, d))Pi
= d2,

which proves (2) in Section 4.
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Regarding (1.ii) and (2.ii), let a = dn + r where n ≥ 0 and 1 ≤ r ≤ d. Theorem
5.1 says that

I(Γ(a, d)) = ⟨xd − yd, (xd−ryr − 1)x, (xd−ryr − 1)y⟩
and

J(Ω(a, d)) = ⟨(xd − yd)y, (xd − yd)z, (xd−ryr − zd)x, (xd−ryr − zd)y⟩.
Finally, we study problems (2.iv) and (2.v) in Section 6. In particular, Theorem

6.2 shows that the homogeneous ideal of Ω(a, d) is minimally generated by four forms
of degree d+1, the Castelnuovo-Mumford regularity of Ω(a, d) is equal to 2d− 1 and
ℓ(Ω(a, d)) is equal to d+1 for d ≥ 2. When d = 1, the number of generators is reduced
to three and calculated separately.

2. Minimal generators of I(a, d) and J(a, d)

In this section, we will find minimal generators of the ideals I(a, d) and J(a, d). To
this aim, we begin with proving the following fact which deals with a more general
situation and tells us a lot about the generating structure of the ideals we want to
study.

Proposition 2.1. For α1, · · · , αm, β1, · · · , βm ∈ K[x1, x2, · · · , xn] and ℓ ≥ 0, let

Wℓ := αℓ
1β1 + · · ·+ αℓ

mβm.

Then the ideal ⟨{Wℓ | ℓ ≥ 0}⟩ of K[x1, x2, · · · , xn] is generated by W0,W1, · · · ,Wm−1.

Proof. We will show that the ideal I := ⟨W0,W1, · · · ,Wm−1⟩ contains Wℓ for all
ℓ ≥ m. To this aim, we use the polynomial

G(x1, · · · , xn, y) := (y − α1)(y − α2) · · · (y − αm) ∈ K[x1, x2, · · · , xn, y].

Write G = ym +G1y
m−1 + · · ·+Gm−1y +Gm where G1, · · · , Gm ∈ K[x1, x2, · · · , xn].

We use induction on ℓ ≥ m. For ℓ = m, note that

G(x1, · · · , xn, αi) = αm
i +G1α

m−1
i + · · ·+Gm−1αi +Gm = 0 for all 1 ≤ i ≤ m

and hence
m∑
i=1

G(x1, · · · , xn, αi)βi = Wm +G1Wm−1 +G2Wm−2 + · · ·+Gm−1W1 +GmW0 = 0.

This shows that

Wm = −(G1Wm−1 +G2Wm−2 + · · ·+Gm−1W1 +GmW0) ∈ ⟨W0,W1, · · · ,Wm−1⟩.
Now, suppose that ℓ > m. By induction hypothesis, we may assume that

Wm, . . . ,Wℓ−1 ∈ ⟨W0,W1, · · · ,Wm−1⟩.
Then
m∑
i=1

G(x1, · · · , xn, αi)α
ℓ−m
i βi = Wℓ+G1Wℓ−1+G2Wℓ−2+· · ·+Gm−1Wℓ−m+1+GmWℓ−m = 0

and hence

Wℓ = −(G1Wℓ−1 +G2Wℓ−2 + · · ·+Gm−1Wℓ−m+1 +GmWℓ−m)
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is contained in the ideal ⟨W0,W1, · · · ,Wm−1⟩. This completes the proof that I contains
Wℓ for all ℓ ≥ m and hence I is equal to ⟨W0,W1, · · · ,Wm−1⟩.

Corollary 2.2. Let a and d be two positive integers and let aℓ = a+ℓd for ℓ ≥ 0.
Then
(a) The ideal I(a, d) = ⟨{fℓ := xaℓ − yaℓ+1 | ℓ ≥ 0}⟩ of A is generated by {f0, f1}.
(b) The ideal I1(a, d) = ⟨{gℓ := xaℓ + yaℓ+1 | ℓ ≥ 0}⟩ of A is generated by {g0, g1}.
(c) The ideal I2(a, d) = ⟨{hℓ := xaℓ + (−1)ℓ+1yaℓ+1 | ℓ ≥ 0}⟩ of A is generated by
{h0, h1}.
(d) The ideal I3(a, d) = ⟨{pℓ := xaℓ +(−1)ℓyaℓ+1 | ℓ ≥ 0}⟩ of A is generated by {p0, p1}.
(e) The ideal J(a, d) = ⟨{Fℓ := xaℓzd − yaℓ+1 |ℓ ≥ 0}⟩ of S is generated by {F0, F1}.

Proof. (a) ∼ (d) For each ℓ ≥ 0, write fℓ as

fℓ = (xd)ℓxa + (yd)ℓ(−ya+d).

Then Proposition 2.1 shows that I(a, d) is generated by {f0, f1}. Similarly, it can be
shown by Proposition 2.1 that the ideals I1(a, d), I2(a, d) and I3(a, d) are generated
by {g0, g1}, {h0, h1} and {p0, p1}, respectively.
(e) For each ℓ ≥ 0, write Fℓ as

Fℓ = (xd)ℓxazd + (yd)ℓ(−ya+d).

Then Proposition 2.1 shows that J(a, d) is generated by {F0, F1}.

Remark 2.3. Let I(a, d)∗ be the homogenization of I(a, d). Thus it contains
J(a, d). Also it contains

ydf0 + f1 = xayd − xa+d.

On the other hand, J(a, d) = ⟨F0, F1⟩ by Corollary 2.2-(e) and hence any degree (a+d)
form in J(a, d) is a constant multiple of F0. Therefore J(a, d) is a proper subset of
I(a, d)∗.

3. The common zero set of I(a, d) in A2

The aim of this section is to describe the common zero set of the ideal I(a, d) of A in
A2. Since I(a, d) is generated by f0 and f1, we will describe the affine algebraic set

Γ(a, d) := V (f0, f1) ⊂ A2.

To this aim, we begin with defining some notations.

• a = gs and d = gt where g := gcd(a, d)

• ζ : a primitive d2

g
th root of unity

• Λ(a, d) := Γ(a, d)− {(0, 0)}

Theorem 3.1. Let Γ(a, d) ⊂ A2 be as above. Then Γ(a, d) has (d2 + 1) points.
Also

Λ(a, d) = {(ζsℓ+tℓ+tm, ζsℓ+tm) | ℓ,m ∈ Z}
and hence it is an abelian group isomorphic to Z d2

g

× Zg.
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Proof. First we show that Λ(a, d) is equal to Φ := {(ζsℓ+tℓ+tm, ζsℓ+tm) | ℓ,m ∈ Z}.
It is an elementary task to check that

f0(ζ
sℓ+tℓ+tm, ζsℓ+tm) = f1(ζ

sℓ+tℓ+tm, ζsℓ+tm) = 0

for all ℓ,m ∈ Z. This means that Φ ⊆ Λ(a, d). On the other hand, if (α, β) ∈ Λ(a, d),
then

αa = βa+d and αa+d = βa+2d.

Thus we get

αa = βa+d and αd = βd.

From αd = βd, we have
α

β
= (ζ

d
g )ℓ for some ℓ ∈ Z.

Then the equality αa = βa+d means that

βd = (
α

β
)a = (ζ

d
g )aℓ = ζ

adℓ
g = ζdsℓ

and hence
β

ζsℓ
= (ζ

d
g )m for some m ∈ Z.

This shows that

β = ζsℓ+tm and hence α = β × ζdℓ/g = ζsℓ+tℓ+tm

as desired.
It is shown that Λ(a, d) is a subset of G×G where G is the cyclic group ⟨ζ⟩. Now, it

is easy to check that Λ(a, d) is a subgroup of G×G. Next, we consider the projection
map

φ : Λ(a, d) → G

from Λ(a, d) to the second factor of G×G. Note that φ is surjective since gcd(s, t) = 1.
Let (α, β) be an element in the kernel of φ. Thus β = 1 and hence αa = αd = 1.

Thus we get αg = 1. This means that α is contained in the cyclic group ⟨ζ
d2

g2 ⟩. Then
the kernel of φ is contained in the group K := ⟨ζ

d2

g2 ⟩ × {1}. On the other hand, every
element in K satisfies the two equations f0 and f1. In consequence, the kernel of φ is
exactly equal to K. This shows that

|Λ(a, d)| = |K| × |G| = d2.

Finally, choose two integers ℓ and m such that sℓ + tm = 1. Then (ζ1+tℓ, ζ) is

an element of Λ which generates a subgroup H of order d2

g
. Also H ∩K = {(1, 1)}.

Therefore Λ ∼= H ×K, which completes the proof.

Corollary 3.2. For each i = 1, 2, 3, let

Λi(a, d) = V (Ii(a, d))− {(0, 0)}.

Then Λ(a, d) is a subgroup of Λ(2a, 2d) with [Λ(2a, 2d) : Λ(a, d)] = 4, and Λi(a, d) for
i = 1, 2, 3 are exactly the other three left cosets of Λ(a, d) in Λ(2a, 2d).
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Proof. Let us denote Λ(a, d) by Λ0(a, d). Using Corollary 2.2, one can observe that
Λi(a, d)∩Λj(a, d) = ∅ for any 0 ≤ i < j ≤ 3. Also, Corollary 2.2 shows that I(2a, 2d)
is generated by the two polynomials

x2a − y2a+2d = f0 × g0 and x2a+2d − y2a+4d = f1 × g1.

In consequence, Λ(2a, 2d) is the disjoint union of Λi(a, d)’s for 0 ≤ i ≤ 3. Also
Theorem 3.1 shows that Λ(2a, 2d) is a group isomorphic to Z 2d2

g

×Z2g. Hence Λ(a, d)

is a subgroup of Λ(2a, 2d) such that [Λ(2a, 2d) : Λ(a, d)] = 4.
It remains to prove that the four left cosets of Λ(a, d) in Λ(2a, 2d) are exactly

Λi(a, d) for 0 ≤ i ≤ 3. To this aim, consider

Φ1 := (ωt, ωt)Λ(a, d), Φ2 := (ωs+t, ωt)Λ(a, d) and Φ3 := (ωs+2t, ωs+t)Λ(a, d).

Then it holds that Φi ⊆ Λi(a, d) for each i = 1, 2, 3. For example,

Φ1 = (ωt, ωt)Λ(a, d)

= {(ω2sℓ+2tm+2tℓ+t, ω2sℓ+2tm+t) | ℓ,m ∈ Z}
= {(ω2sℓ+2tℓ+t(2m+1), ω2sℓ+t(2m+1)) | ℓ,m ∈ Z}
= {(ω2sℓ+2tℓ+tm′

, ω2sℓ+tm′
) | ℓ ∈ Z,m′ ∈ 2Z+ 1}

Then we have Φ1 ⊆ Λ1(a, d) since

g0(ω
2sℓ+2tℓ+tm, ω2sℓ+tm) = (ω2sℓ+2tℓ+tm)a + (ω2sℓ+tm)a+d = 0

and
g1(ω

2sℓ+2tℓ+tm, ω2sℓ+tm) = (ω2sℓ+2tℓ+tm)a+d − (ω2sℓ+tm)a+2d = 0

for all ℓ ∈ Z and m ∈ 2Z+ 1. Then Φi’s, 0 ≤ i ≤ 3, are pairwise disjoint since so are
Λi(a, d)’s, 0 ≤ i ≤ 3. This completes the proof that Λi(a, d) = Φi for all 0 ≤ i ≤ 3 and
hence Λi(a, d)’s for 0 ≤ i ≤ 3 are exactly the four left cosets of Λ(a, d) in Λ(2a, 2d).

4. Local properties of I(a, d) and J(a, d)

In this section, we will see a few basic local properties of the ideals I(a, d) of A =
K[x, y] and J(a, d) of S = K[x, y, z].

To state our results precisely, let Γ(a, d) := V (I(a, d)) ⊂ A2 and let g be the
greatest common divisor of a and d. Theorem 3.1 says that

Λ(a, d) := Γ(a, d)− {(0, 0)}
is a finite abelian group isomorphic to Zd2/g × Zg. In particular, Γ(a, d) consists of
(d2 + 1) distinct points. So, we write Γ(a, d) as

Γ(a, d) = {P0, P1, . . . , Pd2}
where P0 = (0, 0).

Now, let Ω(a, d) := V (J(a, d)) ⊂ P2 and regard Γ(a, d) as a subset of P2. Then it
holds that

Ω(a, d) = Γ(a, d) ∪ {P∞ := [1 : 0 : 0]}
and hence Ω(a, d) has exactly one more point than Γ(a, d).

For each 0 ≤ i ≤ d2, let Pi denote the maximal ideal of A correspond to point Pi.
Now, let

I(a, d) = Q0 ∩ · · · ∩ Qd2
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be the minimal primary decomposition of I(a, d) where Qi is the primary ideal of A
such that

√
Qi = Pi. Thus there exists an isomorphism

A/I(a, d) ∼=
d2∏
i=0

A/Qi.

Along this line, our main result in this section is the following theorem.

Theorem 4.1. Keep the previous notations. Then

(2) dimK A/Qi =

{
a2 + 2ad for i = 0, and

1 for 1 ≤ i ≤ d2.

Therefore Qi = Pi for all 1 ≤ i ≤ d2 and dimK A/I(a, d) = (a+ d)2.

To prove Theorem 4.1, we need the following lemma. Recall that

I(a, d) = ⟨f0 = xa − ya+d, f1 = xa+d − ya+2d⟩
and

J(a, d) = ⟨F0 = xazd − ya+d, F1 = xa+dzd − ya+2d⟩.
Following the notation in [2, Chapter3], we will denote the intersection multiplicity
of F0 and F1 at Pi by I(Pi, F0 ∩ F1).

Lemma 4.2. Keep the previous notations. Then

I(Pi, F0 ∩ F1) =


a2 + 2ad for i = 0,

(a+ d)d for i = ∞, and

1 for 1 ≤ i ≤ d2.

Proof. The dehomogenizations of F0 and F1 with respect to z are respectively f0
and f1. Thus, using the equality xdf0 − f1 = ya+d(yd − xd), we have

I(P0, F0 ∩ F1) = I(P0, (x
df0 − f1) ∩ f0)

= I(P0, y
a+d(yd − xd) ∩ f0)

= (a+ d)I(P0, y ∩ (xa − ya+d)) + I(P0, (y
d − xd) ∩ (xa − ya+d))

= (a+ d)I(P0, y ∩ xa) + I(P0, (y
d − xd) ∩ (xa − ya+d))

= a(a+ d) + I(P0, (y
d − xd) ∩ (xa − ya+d)).

Also, yd − xd and xa − ya+d have not tangent lines in common at P0 and hence

I(P0, (y
d − xd) ∩ (xa − ya+d)) = d× a.

This completes the proof that I(P0, F0 ∩ F1) = a2 + 2ad. Similarly, one can show the
equality I(P∞, F0 ∩ F1) = (a+ d)d. Finally, Bézout’s Theorem says that

(a+ d)(a+ 2d) =
∑

P∈Ω(a,d)

I(P, F0 ∩ F1)

= I(P0, F0 ∩ F1) + I(P∞, F0 ∩ F1) +
∑

1≤i≤d2

I(Pi, F0 ∩ F1).

Thus we have∑
1≤i≤d2

I(Pi, F0 ∩ F1) = (a+ d)(a+ 2d)− (a2 + 2ad)− (a+ d)d = d2.
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Obviously, this implies that I(Pi, F0 ∩ F1) = 1 for all 1 ≤ i ≤ d2.

Now, we will show that Qi = Pi for 1 ≤ i ≤ d2.

Proof of Theorem 4.1. Note that

dimK A/Qi = dimK (A/I(a, d))Pi
= I(Pi, F0 ∩ F1).

Thus the equalities in (2) come immediately from Lemma 4.2. Then it follows also
that

dimK A/I(a, d) =
∑

0≤i≤d2

A/Qi = (a+ d)2.

Now, we will show that Qi = Pi for 1 ≤ i ≤ d2. Indeed,

dimK A/Qi = dimK A/Pi + dimK Pi/Qi

and so dimK Pi/Qi = 0. This completes the proof that Pi = Qi for all 1 ≤ i ≤ d2.

5. The radical ideals of Λ(a, d) and Ω(a, d)

By Corollary 2.2, we have Γ(a, d) = V (f0, f1) and Ω(a, d) = V (F0, F1). Thus it holds
by Hilbert’s Nullstellensatz that

I(Γ(a, d)) =
√
⟨f0, f1⟩ and J(Ω(a, d)) =

√
⟨F0, F1⟩

where for a subset X ⊂ A2 (resp. Y ⊂ P2), we denote by I(X) (resp. J(Y )) the ideal
of X in A = K[x, y] (resp. the homogeneous ideal of Y in S = K[x, y, z]). The goal of
this section is to find generators of the ideals related to Γ(a, d) and Ω(a, d).

The following theorem is our main result in this section.

Theorem 5.1. Let a = dn+ r where n ≥ 0 and 1 ≤ r ≤ d. Then

(a) I(Γ(a, d)) = ⟨xd − yd, (xd−ryr − 1)x, (xd−ryr − 1)y⟩.
(b) I(Λ(a, d)) = ⟨xd − yd, xd−ryr − 1⟩.
(c) J(Ω(a, d)) = ⟨(xd − yd)y, (xd − yd)z, (xd−ryr − zd)x, (xd−ryr − zd)y⟩.
(d) J(Λ(a, d)) = ⟨xd − yd, xd−ryr − zd⟩.

Proof. The proof will proceed in the order (b), (d), (c), (a).
(b) Put M := ⟨xd − yd, xd−ryr − 1⟩. Using Theorem 3.1, we can check easily that
Λ(a, d) is contained in V (M). On the other hand, V (M) contains at most d2 distinct
points by Bézout’s Theorem. This shows that V (M) is equal to Λ(a, d). Now, let Qi,
1 ≤ i ≤ d2, be the primary component of M corresponding to the point Pi in Λ(a, d).
Then, again by Bézout’s Theorem, we have

d2 ≤
∑

Pi∈Λ(a,d)

I(Pi, (x
d − yd) ∩ (xd−ryr − 1)) ≤ deg(xd − yd)× deg(xd−ryr − 1) = d2.

It follows that I(Pi, (x
d − yd)∩ (xd−ryr − 1)) is equal to 1 and hence Qi is a maximal

ideal for all 1 ≤ i ≤ d2. This completes the proof that M is a radical ideal and hence
I(Λ(a, d)) = M .
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(d) By (b), the homogeneous ideal K := ⟨xd − yd, xd−ryr − zd⟩ is contained in
J(Ω(a, d)). Conversely, let F ∈ J(Λ(a, d)) be a form of degree t which is not di-
visible by z. By (b), we can write

F (x, y, 1) = f(x, y)(xd − yd) + g(x, y)(xd−ryr − 1)

for some f, g ∈ A. If f(x, y) = 0 or g(x, y) = 0, then F (x, y, z) is contained in K.
Now, suppose that neither of xd − yd and xd−ryr − zd divides F . Let e and s be
respectively the degrees of f and g. Furthermore, we assume that s is as small as
possible. Write f = fe + f<e and g = gs + g<s. If fe × (xd − yd) + gs × xd−ryr ̸= 0,
then it holds that

F (x, y, z) = zsf(x, y)∗(xd − yd) + zeg(x, y)∗(xd−ryr − zd)

and hence F (x, y, z) is contained in K (cf. [3, Proposition 5, Chapter 2]). On the
other hand, if

fe × (xd − yd) + gs × xd−ryr = 0

then e = s and there exists an element h ∈ A such that fs = xd−ryrh and gs =
−(xd − yd)h. Then

F (x, y, 1) = (xd−ryrh+ f<s)(x
d − yd) + (−(xd − yd)h+ g<s)(x

d−ryr − 1)

= (f<s + h)(xd − yd) + g<s(x
d−ryr − 1).

Since g is chosen so that its degree s is as small as possible, it follows that g<s = 0
and so xd − yd divides F . This is a contradiction. Therefore, the latter case does not
occur. This completes the proof.
(c) Put T := ⟨(xd − yd)y, (xd − yd)z, (xd−ryr − zd)x, (xd−ryr − zd)y⟩. Since

Ω(a, d) = Λ(a, d) ∪ {[0 : 0 : 1]} ∪ {[1 : 0 : 0]},

we have, by (d), the following equality:

J(Ω(a, d)) = ⟨xd − yd, xd−ryr − zd⟩ ∩ ⟨x, y⟩ ∩ ⟨y, z⟩.

In particular, it holds that T ⊆ J(Ω(a, d)). For the converse, we will use the equality
⟨x, y⟩ ∩ ⟨y, z⟩ = ⟨y, xz⟩. Let f ∈ J(Ω(a, d)). Then we can write

(3) f = w1(x
d − yd) + w2(x

d−ryr − zd) = g1y + g2xz

for some w1, w2, g1, g2 ∈ S. If we set x = y = 0 in (3), then we obtain w2(0, 0, z) = 0.
Similarly, we get w1(x, 0, 0) = 0 by sending y and z to 0 in (3). Thus

w2 = h1x+ h2y and w1 = h3y + h4z

for some h1, h2, h3, h4 ∈ S. Then

f = (xd − yd)yh3 + (xd − yd)zh4 + x(xd−ryr − zd)h1 + y(xd−ryr − zd)h2

and so f is contained in T .
(a) Since Γ(a, d) = Ω(a, d) ∩ A2, it holds that I(Γ(a, d)) is equal to J(Ω(a, d))∗, the
dehomogenization of J(Ω(a, d)) with respect to z. Thus we have

I(Γ(a, d)) = J(Ω(a, d))∗ = ⟨xd − yd, (xd−ryr − 1)x, (xd−ryr − 1)y⟩.

This completes the proof.
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6. Regularity, normality, multi-secant line and minimal graded free res-
olution of S/J(Ω(a, d))

We fix a few notations, which are used in this section.

Definition and Remark 6.1. Let Γ ⊆ P2 be a finite set of d points and non-
degenerate.

(a) Suppose S(Γ) := S/J(Γ) has a minimal graded free resolution

0 → · · · → Fi → Fi−1 → · · · → F0 → S → S(Γ) → 0

with Fi =
∑

j S(−ai,j). The Castelnuovo-Mumford regularity of Γ is reg(Γ):=max

{ai,j − i|i, j ≥ 0}.
(b) We say that Γ is k-normal when the natural restriction map S(Γ)k → F(Γ,K)

is a surjective map where F(Γ,K) = {f : Γ → K|f is a function} is the set of
all K-linear maps. We denote by N(Γ) the smallest integer k such that Γ is
k-normal.

(c) Let hΓ(t) be the Hilbert function of Γ in P2. Then the sequence hΓ(0), hΓ(1), hΓ(2), hΓ(3), · · ·
is monotone increasing and bounded above by d. So, Γ is k-normal if dimK S(Γ)k =
hΓ(k) = d.

(d) Let m(Γ) be the minimum k such that J(Γ) is generated by polynomials of
degree k or less.

(e) Letting ℓ(Γ) denote the largest integer ℓ such that Γ admits a proper ℓ-secant
line, then Γ always satisfies the following inequality, reg(Γ) ≥ m(Γ) ≥ ℓ(Γ).

Note that since there are two generators of J(Λ(a, d)), the finite minimal graded
free resolution of S(Λ(a, d)) := S/J(Λ(a, d)) is well described in [2, Exercises 1C.1],
so it is omitted.

Theorem 6.2. Keep the notation in Theorem 5.1, let S(Ω(a, d)) := S/J(Ω(a, d)).
Then,

(a) S(Ω(a, d)) has a finite minimal graded free resolution as follows:
If d = 1, then

(4)
φ2 φ1

0 → S2(−3) → S3(−2) → S → S(Ω(a, 1)) → 0

with

φ2 =

 z y
−y −y
−z −x

 and φ1 =
(
xy − yz xz − yz y2 − yz

)
.

And if d ≥ 2, then
(5)

φ2 φ1

0 → S(−2d)⊕ S2(−d− 2) → S4(−d− 1) → S → S(Ω(a, d)) → 0

with

φ1 =
(
(xd − yd)y (xd − yd)z (xd−ryr − zd)x (xd−ryr − zd)y

)
and
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φ2 =


−xd−ryr−1 z 0

zd−1 −y 0
xd−1 0 −y
−yd−1 0 x

 .

(b) The hilbert function hΩ(a,d)(t) is given as follows:
If 1 ≤ t ≤ d,

hΩ(a,d)(t) =
(t+ 1)(t+ 2)

2
and if d+ 1 ≤ t ≤ 2d− 2,

hΩ(a,d)(t) = d2 + 1− (t− 2d)(t− 2d+ 3)

2
.

In particular, hΩ(a,d)(2d− 2) = d2 + 2 and hence

h(Ω(a,d))(t) = d2 + 2

for all t ≥ 2d− 2.
(c) If d = 1, then Castelnuovo-Mumford regularity reg(Ω(a, 1)) = 2 and if d ≥ 2,

then reg(Ω(a, d)) = 2d− 1.
(d) If d = 1, then N(Ω(a, 1)) = 1,m(Ω(a, 1)) = 2 and ℓ(Ω(a, 1)) = 2. And if d ≥ 2,

then N(Ω(a, d)) = 2d− 2,m(Ω(a, d)) = d+ 1 and ℓ(Ω(a, d)) = d+ 1.

Proof. (a) Case1. d = 1.
From Theorem 5.1, if d = 1, then r = 1. So we have

(6) J(Ω(a, 1)) = ⟨(x−y)y, (x−y)z, (y−z)x, (y−z)y⟩ = ⟨(x−z)y, (x−y)z, (y−z)y⟩.
From (6), we can get φ1. Now we only need to see

Ker(φ1) = ⟨(z,−y,−z), (y,−y, x)⟩.
Obviously, (z,−y,−z), (y,−y, x) is contained in Ker(φ1). Conversely, let (f, g, h) ∈
Ker(φ1), then we get the equality

(7) φ1(f, g, h) = f(xy − yz) + g(xz − yz) + h(y2 − yz) = 0.

Now, Sending y to 0 in (7), we obtain

g(x, 0, z)xz = 0.

So we can write g = λy for some λ ∈ S. Substituting this to (7), we get the equation,

fy(x− z) + λy(xz − yz) + hy(y − z) = 0

and hence,

(8) f(x− z) + λ(xz − yz) + h(y − z) = 0.

Again sending z to 0 in (8), we have

fx+ hy = 0.

We will prove this in two cases.
Case 1-1. If f, h do not have z as a factor.
In this case, we can write f = λ0y, h = −λ0x for some λ0 ∈ S. Substituting this to
(8), we have

(9) λ0y(x− z) + λ(xz − yz)− λ0x(y − z) = 0.
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Again sending x to 0 in (9), we have −λ0yz − λyz = 0, and hence, λ = −λ0. Finally
we can write

(f, g, h) = (λ0y,−λ0y,−λ0x) = λ0(y,−y,−x).

Case 1-2. If f, h has z as a factor.
In this case, we can write f = λ0z, h = λ1z for some λ0, λ1 ∈ S. Substituting this to
(8), we have λ0z(x− z) + λz(x− y) + λ1z(y − z) = 0, and hence

(10) λ0(x− z) + λ(x− y) + λ1(y − z) = 0.

Sending x to 0 in (10), we get

(11) −λ0z − λy + λ1(y − z) = 0.

If we send y to 0 in (11), we get −λ0z − λ1z = 0, and hence λ1 = −λ0. On the other
hand, if we send z to 0 in (11), we get −λy + λ1y = 0, and hence λ = λ1. Finally we
can write

(f, g, h) = (λ0z,−λ0y,−λ0z) = λ0(z,−y,−z).

This concludes the proof of the first case.

Case2. d ≥ 2.
φ1 can be obtained from Theorem 5.1. So, we need to show that

Ker(φ1) = ⟨(−xd−ryr−1, zd−1, xd−1,−yd−1), (z,−y, 0, 0), (0, 0,−y, x)⟩.
Obviously, (−xd−ryr−1, zd−1, xd−1,−yd−1), (z,−y, 0, 0), (0, 0,−y, x) is contained in Ker(φ1).
Conversely, let (f, g, h, w) ∈ Ker(φ1).
First, we will show that if f = 0, then g = 0 and (f, g, h, w) = −λ(0, 0,−y, x) for
some −λ ∈ S.
If f = 0, then we have a equation,

(12) φ1(f, g, h, w) = g(xd − yd)z + h(xd−ryr − zd)x+ w(xd−ryr − zd)y = 0.

Sending y to 0 in (12), we get

g(x, 0, z)xdz − h(x, 0, z)zdx = 0.

We will prove this in two cases.
Case2-1-1. If g, h do not have y as a factor.
In this case, we can write g = λ0z

d−1, h = λ0x
d−1 for some λ0 ∈ S.

Substituting this to (12), we have

(13) λ0(x
d − yd)zd + λ0(x

d−ryr − zd)xd + w(xd−ryr − zd)y = 0.

Again sending z to 0 in (13), we have λ0x
2d−ryr + wxd−ryr+1 = 0, and hence,

xd−ryr(λ0x
d + wy) = 0. This implies that λ0x

d = −wy, and therefore, λ0 has y
as a factor, and g also has y as a factor. Hence, this is a contradiction.
Case2-1-2. If g, h has y as a factor.
In this case, we can write g = λ0y, h = λ1y for some λ0, λ1 ∈ S. Substituting this to
(12), we have λ0y(x

d − yd)z + λ1y(x
d−ryr − zd)x+ wy(xd−ryr − zd) = 0, and hence

(14) λ0(x
d − yd)z + λ1(x

d−ryr − zd)x+ w(xd−ryr − zd) = 0.

Again sending z to 0 in (14), then we have λ1x
d−r+1yr+wxd−ryr = 0, so we can write

w = −λ1x. Substituting this to (12), finally we get

λ0y(x
d − yd)z = 0.
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This implies that λ0 = 0, and therefore, g = 0. So we can write

(f, g, h, w) = (0, 0, λ1y,−λ1x) = −λ1(0, 0,−y, x).

In the case where g = 0, by a similar method, we can show that f = 0 and (f, g, h, w) =
λ(0, 0,−y, x) for some λ ∈ S.
Symmetrically, we will show that if h = 0 or w = 0, we get (z,−y, 0, 0). If w = 0,
then we have an equation,

(15) φ1(f, g, h, w) = f(xd − yd)y + g(xd − yd)z + h(xd−ryr − zd)x = 0

and by sending x to 0 in (15), we get

f(0, y, z)yd+1 + g(0, y, z)ydz = 0.

So, we can write f = λz, g = −λy for some λ ∈ S. Note that We can also write this in
the case where f, g have x as factors, and the following assertion holds. Substituting
f, g to (15), we get

h(xd−ryr − z) = 0.

This implies h = 0. So finally we can write,

(f, g, h, w) = (λz,−λy, 0, 0) = λ(z,−y, 0, 0).

In the case where h = 0, by a similar method, we can show that w = 0 and
(f, g, h, w) = λ(z,−y, 0, 0) for some λ ∈ S.

Now, let’s assume that f, g, h, w are not all 0. Then we get the equality

(16) φ1(f, g, h, w) = f(xd−yd)y+g(xd−yd)z+h(xd−ryr−zd)x+w(xd−ryr−zd)y = 0.

We may assume that g, h do not have y factors, since if g = g1y + g2, h = h1y + h2

with g2, h2 have no y factors. Substituting this to (16), we get the equation,

(f + g1z)(x
d − yd)y + g2(x

d − yd)z + h2(x
d−ryr − zd)x+ (w+ h1x)(x

d−ryr − zd)y = 0.

Observe that g2, h2 have a no y factors, so we may assume that g, h have no y factors.
Now, Sending y to 0 in (16), we obtain

g(x, 0, z)xdz − h(x, 0, z)zdx = 0.

Since g, h don’t have y factors, we can write

g = λzd−1, h = λxd−1

for some λ ∈ S. Substituting this to (16) and sending x to 0 in (16), we obtain

(17) −f(0, y, z)yd+1 − λzdyd − w(0, y, z)zdy = 0.

We may assume that f has x factors, because if f has no x factors then

−fyd+1 = λzdyd + wzdy = zd(λyd + wy)

then f has factor zd and sending z to 0 in (16) and replace h to λxd−1, then we have

w = −λxdy−1.

This means that λ has y factors and so do h. This is contradiction to h has no y
factors. So, we may assume that f has x factors.
We will prove this in two cases.
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Case 2-2-1. w has x factors.
This case we obtain λ = 0 by (17), so we get the equation from (16),

f(xd − yd)y + w(xd−ryr − zd)y = 0

and hence,

f = −µ(xd−ryr − zd), w = µ(xd − yd)

for some µ ∈ S. So we can express (f, g, h, w) by

(f, g, h, w) = −µy(−xd−ryr−1, zd−1, xd−1,−yd−1)−µzd−1(z,−y, 0, 0)−µxd−1(0, 0,−y, x).

So we can get the result we want.
Case 2-2-2. w has no x factors.
In this case we have

w = −λyd−1

by (17). Replace g, h, w in (16), we can compute

f = −λxd−ryr−1.

Hence,

(f, g, h, w) = λ(−xd−ryr−1, zd−1, xd−1,−yd−1).

We complete the first assertion.

(b) Hilbert function of S(Ω(a, d)) is calculated by applying [2, Corollary 1.2] to (5),
we can get the Hilbert function hΩ(a,d)(t).

(c) Castelnuovo-Mumford regularity reg(Ω(a, 1)) = 2 and reg(Ω(a, d)) = 2d − 1 for
d ≥ 2 can be obtained from (4) and (5), respectively.

(d) N(Ω(a, 1)) = 1 and N(Ω(a, d)) = 2d − 2 for all d ≥ 2 can be obtained from (b)
and m(Ω(a, d)) = d+ 1 for all d ≥ 1 can be obtained from Theorem 5.1.
We know that Ω(a, d) = Λ(a, d) ∪ {[0, 0, 1], [1, 0, 0]} and by theorem 5.1 we have

I(Λ(a, d)) = ⟨xd − yd, xd−ryr − zd⟩

where a = dn+ r for 1 ≤ r ≤ d.
Let g := xd − yd and h := xd−ryr − zd. It can be factorized as g = L1 · · ·Ld where
Li’s are linear equations for 1 ≤ r ≤ d. And since for each i, Li and h meet at
most d points, so g and h meet at most d2 points. However, since |Λ(a, d)| = d2, we
can see that for each i, Li and h meet at d different points. Therefore, we can get
ℓ(Λ(a, d)) = d. And Li’s meet at [0, 0, 1] for all i, we deduce that ℓ(Ω(a, d)) = d+1.

Generally, it is known that reg(Ω(a, d)) ≥ m(Ω(a, d)) ≥ ℓ(Ω(a, d)) (see e.g. in-
equality (1.1) in [5]), but this paper reveals the following relationship.
If d = 1, then reg(Ω(a, 1)) = m(Ω(a, 1)) = ℓ(Ω(a, 1)) = 2. And if d ≥ 2, then

reg(Ω(a, d)) ≥ m(Ω(a, d)) = ℓ(Ω(a, d))
∥ ∥ ∥

2d− 1 d+ 1 d+ 1.
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Remark 6.3. By plugging U = S(Λ(a, d)), R = S in [6, Theorem 16.2], and using
Theorem 6.2, we can obtain the Hilbert series of S(Ω(a, d)) as follows.

(18) HilbS(Ω(a,1))(t) =
2t3 − 3t2 + 1

(1− t)3
, (d = 1)

(19) HilbS(Ω(a,d))(t) =
t2d + 2td+2 − 4td+1 + 1

(1− t)3
, (d ≥ 2)
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