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A CHARACTERIZATION OF S1-PROJECTIVE MODULES

Hwankoo Kim∗,†, Najib Mahdou, and El Houssaine Oubouhou

Abstract. Recently, Zhao, Pu, Chen, and Xiao introduced and investigated novel
concepts regarding S-torsion exact sequences, S-torsion commutative diagrams, and
Si-projective modules (for i = 1, 2) in the context of a commutative ring R and
a multiplicative subset S of R. Their research included various results, such as
proving that an R-module is S1-projective if it is S-torsion isomorphic to a projective
module. In this paper, we further examine properties of S-torsion exact sequences
and S-torsion commutative diagrams, and we establish the equivalence between an
R-module being S1-projective and its S-torsion isomorphism to a projective module.

1. Introduction

In this paper, we assume that all rings are commutative with a non-zero identity
and that all modules are unitary. For a ring R, we denote by Nil(R) the ideal of all
nilpotent elements of R, and by Z(R) the set of all zero-divisors of R. A ring R is
called a PN-ring if Nil(R) is a prime ideal of R, and a ZN-ring if Z(R) = Nil(R). An
ideal I of R is said to be nonnil if I ⊈ Nil(R). A nonempty subset S of R is said to
be a multiplicative subset if 1 ∈ S, 0 /∈ S, and for each a, b ∈ S, we have ab ∈ S.

Recall from [2] that a prime ideal P of R is said to be divided if it is comparable
to any ideal of R. Set

H := {R | R is a commutative ring, and Nil(R) is a divided prime ideal of R} .
If R ∈ H, then R is called a ϕ-ring. A ϕ-ring is called a strongly ϕ-ring if it is also a
ZN-ring. Recall from [1] that for a ϕ-ring R with total ring of quotients T (R), the map
ϕ : T (R) → RNil(R) defined by ϕ

(
b
a

)
= b

a
is a ring homomorphism, and the image of

R, denoted by ϕ(R), is a strongly ϕ-ring. The classes of ϕ-rings and strongly ϕ-rings
provide useful extensions of integral domains to commutative rings with zero divisors.
In 2002, Badawi [3] generalized the notion of Noetherian rings to that of nonnil-
Noetherian rings, in which all nonnil ideals are finitely generated. He showed that a
ϕ-ring R is nonnil-Noetherian if and only if ϕ(R) is nonnil-Noetherian, if and only
if R/Nil(R) is a Noetherian domain. Many well-known notions of integral domains
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have the corresponding analogues in the class of ϕ-rings, such as valuation domains,
Dedekind domains, Prüfer domains, Noetherian domains, coherent domains, Bézout
domains and Krull domains. For more on ϕ-rings, see Badawi’s survey article [4]. For
further study of ring-theoretic characterizations of ϕ-rings. To study module-theoretic
characterizations over ϕ-rings, the authors of [6,9,12,15,16,18,20] introduced nonnil-
injective modules, ϕ-projective modules, and ϕ-flat modules, and characterized nonnil-
Noetherian rings, ϕ-von Neumann regular rings, nonnil-coherent rings, ϕ-coherent
rings, ϕ-Dedekind rings, and ϕ-Prüfer rings. Additional information about ϕ-rings
from a module-theoretic point of view can be found in the interesting survey article [7].

Let M be an R-module and S a multiplicative subset of R. Define

torS(M) := {x ∈M | sx = 0 for some s ∈ S}.

If torS(M) = M , then M is called an S-torsion module; if torS(M) = 0, then M
is called an S-torsion-free module. Denote by T (resp., F) the class of all S-torsion
modules (resp., S-torsion-free modules). Then (T ,F) forms a hereditary torsion the-
ory.

Recall that the authors of [11, 17] defined a ring homomorphism ϕ : R → RS by
ϕ(r) = r

1
for every r ∈ R and a module homomorphism ψ :M →MS by ψ(x) = x

1
for

every x ∈M . Then ψ(M) is a ϕ(R)-module. If f :M → N is a homomorphism of R-

modules, then f naturally induces a ϕ(R)-homomorphism f̃ : ψ(M) → ψ(N) such that

f̃
(
x
1

)
= f(x)

1
for x ∈M . A sequence A

f→ B
g→ C of R-modules and homomorphisms

is called S-torsion exact if the ϕ(R)-sequence ψ(A)
f̃→ ψ(B)

g̃→ ψ(C) is exact. An
R-module P is said to be S2-projective (resp., S2-free) if ψ(P ) is projective (resp.,
free) as a ϕ(R)-module.

Note that if R is a PN-ring, then the notion of ϕ-projective modules introduced
in [17,19] coincides with that of S2-projective modules when S := R \ Nil(R).

Let R be a ring, S a multiplicative subset of R, and f : A → B a homomorphism
of R-modules. Define

KerS(f) := {a ∈ A | sf(a) = 0 for some s ∈ S} and

Im S(f) := {b ∈ B | sb = sf(a) for some a ∈ A and s ∈ S}.
Note that KerS(f) is a submodule of A, called the S-kernel of f , and Im S(f) is a
submodule of B, called the S-image of f . We set CokerS(f) := B/Im S(f). It is easy
to verify that Ker(f) + torS(A) ⊆ KerS(f) and Im(f) + torS(B) = Im S(f).

Let A,B,C, and D be R-modules, and let f : A→ B, g : B → D, h : A→ C, and
k : C → D be homomorphisms of R-modules. Then the following diagram:

A
f−−−→ B

h

y g

y
C

k−−−→ D

is said to be S-torsion commutative if Im S(gf − kh) = torS(D), equivalently, A =

KerS(gf − kh). A sequence A
f→ B

g→ C of R-modules and homomorphisms is called
an S-torsion complex (resp., an S-torsion exact sequence) if and only if Im S(f) ⊆
KerS(g) (resp., Im S(f) = KerS(g)) according to [11, Theorem 2.4]. A homomorphism
f : A→ B of R-modules is called an S-torsion monomorphism if KerS(f) = torS(A),
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equivalently, 0 → A
f→ B is an S-torsion exact sequence. The homomorphism f is

called an S-torsion epimorphism if Im S(f) = B (i.e., CokerS(f) = 0), equivalently,

A
f→ B → 0 is an S-torsion exact sequence. Moreover, f is called an S-torsion

isomorphism if there exists a homomorphism g : B → A such that Im S (1A − gf) =
torS(A) and Im S (1B − fg) = torS(B). If there exists an S-torsion isomorphism

f : A→ B, we say that A and B are S-torsion isomorphic, denoted by A
S≃ B.

Note that if f : A → B is an S-torsion isomorphism, then f is both an S-torsion
monomorphism and an S-torsion epimorphism. It is interesting to note that although
a homomorphism f of R-modules is both an S-torsion monomorphism and an S-
torsion epimorphism, f is not necessarily an S-torsion isomorphism (see [11]).

According to [11], an R-module P is said to be S1-projective if for any diagram of
module homomorphisms

P
h

��
f
��

B
g // C // 0

with the bottom row S-torsion exact, there exists a homomorphism h : P → B that
makes this diagram S-torsion commutative. Also, an R-module F0 is said to be S1-free
if it is S-torsion isomorphic to a free module.

Note that if R is a PN -ring, then the notion of nonnil-projective modules intro-
duced in [10] and that of S1-projective modules are the same where S = R \Nil(R).
Let S ⊆ T be two multiplicative subsets of R. Then every S1-projective module is a
T1-projective module, and we have equivalence in the case where S and T have the
same saturation. In particular, if S∗ is the saturation of S in R, then an R-module P
is S1-projective if and only if it is S∗

1 -projective.
Note that if there exists s ∈ S ∩Nil(R), then there exists a positive integer n such

that 0 = sn ∈ S, which is a contradiction. Hence, we always have S ∩ Nil(R) = ∅.
Therefore, if R is a PN-ring, then every S1-projective module is nonnil-projective.

According to [11, Theorem 3.7], an R-module is S1-projective if and only if it is a
direct summand of an S1-free module. If an R-module P is S-torsion isomorphic to
a projective module, then P is S1-projective (cf. [10, Corollary 3.9]). However, they
did not show that an S1-projective module and a module that is S-torsion isomorphic
to a projective module are necessarily the same, nor did they provide examples to
distinguish them. One of the main goals of this paper is to address this question.

In Section 2, we study some new properties of S-torsion commutative diagrams
and S-torsion exact sequences. In the final section, we prove that an R-module is
S1-projective if and only if it is S-torsion isomorphic to a projective module.

2. On S-exacte sequences

Let R be a ring and S a multiplicative subset of R. Define

IS(R) := {I | I is an ideal of R such that I ∩ S ̸= ∅}

and

If
S(R) := {I | I is a finitely generated ideal of R such that I ∩ S ̸= ∅}.
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We begin this article with the following theorem, which characterizes when an R-
module is S-torsion-free.

Theorem 2.1. Let R be a commutative ring, S a multiplicative subset of R, and
M an R-module. Then the following statements are equivalent.

1. M is S-torsion-free.
2. HomR(R/J,M) = 0 for any J ∈ IS(R).

3. HomR(R/J,M) = 0 for any J ∈ If
S(R).

4. The natural homomorphism:

λ :M → HomR(J,M) defined by λ(x)(r) = rx,

for x ∈M and r ∈ J , is a monomorphism for any J ∈ IS(R) (or J ∈ If
S(R)).

5. HomR(B,M) = 0 for any R/J-module B, where J ∈ IS(R) (or J ∈ If
S(R)).

Proof. (1) ⇒ (2) Assume that M is S-torsion-free. If f ∈ HomR(R/J,M), then
set x := f(1). Thus Jx = 0, and so x = 0. Therefore, f = 0 and consequently
HomR(R/J,M) = 0.

(2) ⇒ (3) This is straightforward.
(3) ⇒ (1) Let x ∈ M and I ∈ IS(R) such that Ix = 0. Then there exists a

J ∈ If
S(R) such that J ⊆ I and Jx = 0. The map f : R/J → M defined by

f(r) = rx for r ∈ R, is well-defined. If HomR(R/J,M) = 0 for any J ∈ If
S(R), then

x = f(1) = 0.
(2) ⇔ (4) Consider the exact sequence of R-modules:

0 → HomR(R/J,M) → HomR(R,M) =M → HomR(J,M).

Then λ is a monomorphism if and only if HomR(R/J,M) = 0.
(4) ⇒ (5) Let F be a free R/J-module such that δ : F → B is an epimor-

phism. Then there is an exact sequence 0 → HomR(B,M) → HomR(F,M). Since
HomR(F,M) ∼=

∏
HomR(R/J,M) = 0, it follows that HomR(B,M) = 0.

(5) ⇒ (2) This follows by setting B := R/J .

Let N be an R-module. Then for any family {Mi} of R-modules, we have the
following natural homomorphisms from [13]:

θ1 :
∏
i∈Γ

HomR(N,Mi) → HomR

(
N,
∏
i∈Γ

Mi

)
,

θ1 ([fi]) (x) = [fi(x)] for x ∈ N and fi ∈ HomR(N,Mi)

and

θ2 :
⊕
i∈Γ

HomR(N,Mi) ∼= HomR

(
N,
⊕
i∈Γ

Mi

)
,

θ2 ([fi]) (x) = [fi(x)] for x ∈ N and finite non-zero fi ∈ HomR(N,Mi).

1. If N is finitely generated, then θ1 is an isomorphism.
2. If N is finitely presented, then θ2 is an isomorphism.

Considering N := R/J for J ∈ If
S(R) in the above homomorphisms, we obtain the

following result.
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Corollary 2.2. Let R be a commutative ring, S a multiplicative subset of R,
and {Mi | i ∈ Γ} a family of R-modules. Then

∏
i∈ΓMi is S-torsion-free if and only

if all Mi are S-torsion-free, if and only if
⊕

i∈ΓMi is S-torsion-free.

Proposition 2.3. An R-module M is S-torsion if and only if AnnR(x) ∈ IS(R)
for all x ∈M .

Proof. Since M is S-torsion if and only if for any x ∈ M there exists s ∈ S such
that sx = 0, we can conclude the result immediately.

The following result follows directly from the fact that (T ,F) is a (hereditary)
torsion theory. For completeness, however, we provide its proof.

Theorem 2.4. 1. A module M is S-torsion if and only if HomR(M,N) = 0 for
any S-torsion-free module N .

2. A module N is S-torsion-free if and only if HomR(M,N) = 0 for any S-torsion
module M .

Proof. (1) Assume that M is S-torsion and let f ∈ HomR(M,N). Then Im(f) is
an S-torsion submodule of N . Since N is S-torsion-free, we have f(M) = 0, and
hence f = 0. Conversely, set T := torS(M) and N := M/T . Then N is S-torsion-
free. Thus the natural homomorphism π : M → N is the zero homomorphism since
HomR(M,N) = 0. Therefore, N = 0, that is, M = torS(M), and so M is S-torsion.

(2) Assume that N is S-torsion-free. By (1), we have HomR(M,N) = 0 for any
S-torsion module M . Conversely, set M := torS(N). Then HomR(M,N) = 0. Thus
the inclusion homomorphism M → N is the zero homomorphism. Therefore, M = 0,
and so N is S-torsion-free.

Corollary 2.5. Let R be a commutative ring, S a multiplicative subset of R,
and {Mi | i ∈ Γ} a family of S-torsion modules. Then

⊕
i∈ΓMi is S-torsion.

Proof. This follows immediately by Theorem 2.4 using the following isomorphism

HomR

(⊕
i∈Γ

Mi, N

)
∼=
∏
i∈Γ

HomR (Mi, N)

for any R-module N .

Proposition 2.6. Let R and T be rings, f : R → T a monomorphism of rings,
and S a multiplicative subset of R. If M is an S-torsion R-module, then M ⊗R T is
an f(S)-torsion T -module.

Proof. Note that if I ∈ IS(R), then f(I) ∈ If(S)(T ). So we can easily deduce the
result using Proposition 2.3.

Corollary 2.7. If M is an S-torsion R-module, then M [x] = M ⊗R R[x] as an
R[x]-module is also an S-torsion module.

We now give an analog of the Five Lemma in S-torsion theory.

Theorem 2.8. Consider the following S-torsion commutative diagram with exact
rows:

D
h−−−→ A

f−−−→ B
g−−−→ C

k−−−→ E

δ

y α

y β

y γ

y µ

y
D′ h′

−−−→ A′ f ′
−−−→ B′ g′−−−→ C ′ k′−−−→ E ′
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1. If α and γ are S-torsion monomorphisms and δ is an S-torsion epimorphism,
then β is an S-torsion monomorphism.

2. If α and γ are S-torsion epimorphisms and µ is an S-torsion monomorphism,
then β is an S-torsion epimorphism.

Proof. (1) Let b ∈ KerS(β). Then there exists t1 ∈ S such that t1β(b) = 0. On the
other hand, there exists t2 ∈ S such that t2γ ◦ g(b) = t2g

′ ◦ β(b). Hence t1t2γ ◦ g(b) =
t2g

′(t1β(b)) = 0. Therefore, g(b) ∈ KerS(γ). Since γ is an S-torsion monomorphism,
there exists t3 ∈ S such that t3g(b) = 0, and so b ∈ KerS(g) = Im S(f). Then
t4b = t4f(a) for some a ∈ A and t4 ∈ S. Hence

t4(β ◦ f(a)− f ′ ◦ α(a)) = t4(β(b)− f ′(α(a))).

Since a ∈ A, it follows that t5(f
′ ◦ α(a)− β ◦ f(a)) = 0 for some t5 ∈ S. Therefore,

0 = t1t4t5(f
′ ◦ α(a)− β ◦ f(a))

= −t1t5t4(β(b) + f ′ ◦ α(a))
= −t5t4β(t1b) + t1t4t5f

′ ◦ α(a)
= t1t4t5f

′ ◦ α(a).

Hence α(a) ∈ KerS(f
′) = Im S(h), and so t6α(a) = t6h

′(x′) for some t6 ∈ S and
x′ ∈ D′. Since δ is an S-torsion epimorphism, there exist x ∈ D and t7 ∈ S such that
t7δ(x) = t7x

′. Hence

t6t7α(a) = t7t6h
′(x′)

= t6h
′(t7x

′)

= t6h
′(t7δ(x))

= t6t7h
′ ◦ δ(x).

On the other hand, since x ∈ D, it follows that t8h
′δ(x) = t8αh(x) for some t8 ∈ S.

So t6t7t8α(a) = t6t7t8h
′ ◦ δ(x) = t6t7t8α ◦ h(x), and hence t6t7t8α(a − h(x)) = 0.

Therefore, a − h(x) ∈ KerS(α) = torS(A), and hence there exists t9 ∈ S such that
t9a = t9h(x). Since h(x) ∈ Im (h) ⊆ Im S(h) = KerS(f), we get t10f ◦ h(x) = 0 for
some t10 ∈ S. Then

t4t9t10b = t9t10t4f(a)

= t10t4f(t9h(a))

= t4t9t10f ◦ h(a) = 0.

Therefore, tb = 0 with t := t4t9t10 ∈ S, and so b ∈ torS(B). Thus β is an S-torsion
monomorphism.

(2) Let b′ ∈ B′. Since γ is an S-torsion epimorphism, there exist c ∈ C and t1 ∈ S
such that t1γ(c) = t1g

′(b′). The S-torsion commutativity of the right square gives
t2µ ◦ k(c) = t2k

′ ◦ γ(c) for some t2 ∈ S. Then

t1t2µ ◦ k(c) = t2k
′(t1γ(c))

= t2k
′(t1g

′(b′))

= t1t2k
′ ◦ g′(b′).
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Since g′(b′) ∈ Im (g′) ⊆ Im S(g
′) = KerS(k

′), there exists t3 ∈ S such that
t3k

′ ◦ g′(b′) = 0, and so t1t2t3µ ◦ k(c) = 0. Therefore, k(c) ∈ KerS(µ) = torS(E). Con-
sequently, there exists t4 ∈ S such that t4k(c) = 0, and hence c ∈ KerS(k) = Im S(g),
that is, t5c = t5g(b) for some t5 ∈ S and b ∈ B.

On the other hand, since b ∈ B, there exists t6 ∈ S such that t6γ ◦g(b) = t6g
′◦β(b).

Then

t1t5t6g
′(b′) = t1t5t6γ(c)

= t1t6γ(t5g(b))

= t1t5t6g
′ ◦ β(b).

Thus t1t5t6g
′(b′ − β(b)) = 0, and so b′ − β(b) ∈ KerS(g

′) = Im S(f
′). Hence there

exist t7 ∈ S and a′ ∈ A′ such that t7(b
′ − β(b)) = t7f

′(a′). Since α is an S-torsion
epimorphism, there exist a ∈ A and t8 ∈ S such that t8α(a) = t8a

′. Hence

t8t7(b
′ − β(b)) = t8t7f

′(a′) = t7t8f
′ ◦ α(a).

Since a ∈ A, there exists t9 ∈ S such that t9f
′ ◦ α(a) = t9β ◦ f(a), and so

t9t8t7(b
′ − β(b)) = t7t8t9β ◦ f(a).

Thus tb′ = tβ(b + f(a)) with t := t7t8t9 ∈ S. Consequently, β is an S-torsion
epimorphism.

Let M be an R-module. Define ψ :M →MS by ψ(x) = x
1
for every x ∈M .

Proposition 2.9. Let f : A → B be an R-module homomorphism. Then
A/KerS(f) ∼= ψ(Im (f)).

Proof. Let x, y ∈ A. Then we have:

f(x)

1
=
f(y)

1
∈ ψ(Im (f)) ⇐⇒ ∃s ∈ S : sf(x) = sf(y)

⇐⇒ ∃s ∈ S : sf(x− y) = 0

⇐⇒ x− y ∈ KerS(f)

⇐⇒ x = y ∈ A/KerS(f).

Hence the homomorphism:

g : A/KerS(f) → ψ(Im (f)) defined by

x 7→ g(x) =
f(x)

1
is an isomorphism.

Let p be a prime ideal of R. We say that an R-module homomorphism f :M → N
is a p-torsion epimorphism (resp., p-torsion monomorphism, p-torsion isomorphism)
if it is an (R \ p)-torsion epimorphism (resp., (R \ p)-torsion monomorphism, (R \ p)-
torsion isomorphism).

Proposition 2.10. Let f : M → N be an R-module homomorphism. Then the
following statements are equivalent.

1. f is an epimorphism.
2. f is a p-torsion epimorphism for any prime ideal p of R.
3. f is an m-torsion epimorphism for any maximal ideal m of R.
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Proof. (1) ⇒ (2) and (2) ⇒ (3) These are straightforward.
(3) ⇒ (1) Let y ∈ N . Since f is an m-torsion epimorphism for every maximal

ideal m of R, there exist sm ∈ R \ m and xm ∈ M such that smf(xm) = smy. Since
the ideal generated by all sm is equal to R, there exist maximal ideals m1, . . . ,mk and
α1, . . . , αk ∈ R such that α1sm1 + · · ·+ αksmk

= 1. Thus

y = (α1sm1 + · · ·+ αksmk
)y = α1sm1f(xm1) + · · ·+ αksmk

f(xmk
) ∈ Im (f).

So f is an epimorphism.

Proposition 2.11. Let f : M → N be an R-module homomorphism. Then the
following statements are equivalent.

1. f is a monomorphism.
2. f is a p-torsion monomorphism for any prime ideal p of R.
3. f is an m-torsion monomorphism for any maximal ideal m of R.

Proof. (1) ⇒ (2) and (2) ⇒ (3) These are straightforward.
(3) ⇒ (1) Let x ∈ Ker(f) and set Sm := R \m for any maximal ideal m of R. Then

x ∈ KerSm(f) = torSm(M) for any maximal ideal m of R. Hence there exists sm ∈ Sm

such that smx = 0 for every maximal ideal m of R. Since the ideal generated by all
sm is equal to R, there exist maximal ideals m1, . . . ,mk and α1, . . . , αk ∈ R such that
α1sm1 + · · ·+ αksmk

= 1. Thus

x = (α1sm1 + · · ·+ αksmk
)x = α1sm1x+ · · ·+ αksmk

x = 0.

Consequently, f is a monomorphism.

Corollary 2.12. Let f : M → N be an R-module homomorphism. Then the
following statements are equivalent.

1. f is an isomorphism.
2. f is a p-torsion isomorphism for any prime ideal p of R.
3. f is a p-torsion monomorphism and p-torsion epimorphism for any prime ideal

p of R.
4. f is an m-torsion isomorphism for any maximal ideal m of R.
5. f is an m-torsion monomorphism and m-torsion epimorphism for any maximal

ideal m of R.

Proposition 2.13. Let A,B,C, and D be R-modules, and f : A→ B, g : B → D,
h : A → C, and k : C → D be homomorphisms of R-modules. Then the following
diagram:

A
f−−−→ B

h

y g

y
C

k−−−→ D
is commutative if and only if it is p-torsion (resp., m-torsion) commutative for any
prime (resp., maximal) ideal p (resp., m) of R.

Proof. It is clear that every commutative diagram is p-torsion (resp., m-torsion)
commutative for any prime (resp., maximal) ideal p (resp., m) of R.

Conversely, suppose that the above diagram is m-torsion commutative for any
maximal ideal m of R. Then for every a ∈ A and every maximal ideal m of R,
there exists sm ∈ R \ m such that smgf(a) = smkh(a). Since the ideal generated by
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all sm is equal to R, there exist maximal ideals m1, . . . ,mk and α1, . . . , αk ∈ R such
that α1sm1 + · · ·+ αksmk

= 1. Thus

gf(a) = (α1sm1 + · · ·+ αksmk
)gf(a) = α1sm1kh(a) + · · ·+ αksmk

kh(a) = kh(a).

Therefore, the above diagram is commutative.

Proposition 2.14. Let R be a ring and (∗) A f→ B
g→ C be a sequence of R-

modules and homomorphisms. Then the following statements are equivalent.

1. (∗) is a complex (resp., an exact sequence).
2. (∗) is a p-torsion complex (resp., p-torsion exact sequence) for any prime ideal

p of R.
3. (∗) is an m-torsion complex (resp., m-torsion exact sequence) for any maximal

ideal m of R.

Proof. This is analogous to Proposition 2.13.

We end this section with the following theorem, which characterizes when every
S-torsion commutative diagram (resp., S-torsion exact sequence, S-torsion monomor-
phism, S-torsion epimorphism, S-torsion isomorphism) is commutative (resp., exact,
monomorphism, epimorphism, isomorphism).

Proposition 2.15. The following conditions are equivalent for a ring R.

1. Every S-torsion commutative diagram is commutative.
2. Every S-torsion exact sequence is exact.
3. Every S-torsion monomorphism is a monomorphism.
4. Every S-torsion epimorphism is an epimorphism.
5. Every S-torsion isomorphism is an isomorphism.
6. Every element of S is a unit.

Proof. (1) ⇒ (5), (2) ⇒ (3) and (5), and (6) ⇒ (1), (2), (3) and (4) are straight-
forward.

(3) ⇒ (6) Let a ∈ S and consider the homomorphism f : R/Ra → 0. Since
torS(R/Ra) = R/Ra, it follows that R/Ra = torS(R/Ra) ⊆ KerS(f) ⊆ R/Ra, and
so KerS(f) = torS(R/Ra). Hence f is an S-torsion monomorphism, and so it is a
monomorphism by (3). Then R/Ra = Ker(f) = 0, and so a is a unit.

(4) ⇒ (6) Let a ∈ S and consider the homomorphism f : 0 → R/Ra. Since
torS(R/Ra) = R/Ra, it follows that Im S(f) = Im (f) + torS(R/Ra) = 0 + R/Ra =
R/Ra. Hence f is an S-torsion epimorphism, and so it is an epimorphism. Conse-
quently, 0 = Im (f) = R/Ra, and so a is a unit.

(5) ⇒ (6) Let a ∈ S. Since a(R/Ra) = 0, it is easy to verify that R/Ra
S≃ 0 (see

Lemma 3.3), and so R/Ra = 0 by (5). Therefore, a is a unit.

3. Characterization of S1-projective modules using projective modules

The S1-projective module was studied in [11] using an S1-free module, a right S-
torsion split sequence, and an S-torsion projective basis. In particular, if an R-module
P is S-torsion isomorphic to a projective module, then P is S1-projective. However,
they did not show that these two versions, the S1-projective module and the module
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that is S-torsion isomorphic to a projective module, coincide, nor did they provide
any examples to distinguish them. We will address this question in this section.

It is noteworthy that, in the same context, Pu, Wang, and Zhao introduced and
studied new concepts of nonnil-commutative diagrams and nonnil-projective modules
in [10]. Among other results, they proved that an R-module nonnil-isomorphic to a
projective module is nonnil-projective and proposed the following problem: Is every
nonnil-projective module nonnil-isomorphic to some projective module? This problem
was resolved affirmatively by the authors in [5].

Similarly, Zhang and Qi introduced and studied the concept of u(niformly)-S-
projective modules in [14], where S denotes a multiplicative subset of a ring. In
particular, they proved that an R-module u-S-isomorphic to a projective module is
u-S-projective. Furthermore, H. Kim et al. demonstrated that the converse holds if
S is regular [8, Theorem 2.11].

These results establish a robust foundation for understanding projective modules,
underscoring their significance within the broader framework of generalized projectiv-
ity.

The following theorem resolves this issue by stating that an R-module is S1-
projective if and only if it is S-torsion isomorphic to a projective module.

Theorem 3.1. Every S1-projective module is S-torsion isomorphic to some pro-
jective module.

We need the following lemmas to prove Theorem 3.1.

Lemma 3.2. If A1
S≃ B1 and A2

S≃ B2, then A1 ⊕ A2
S≃ B1 ⊕B2.

Proof. Let f1 : A1 → B1 and f2 : A2 → B2 be two S-torsion isomorphisms.
Then there exist two homomorphisms g1 : B1 → A1 and g2 : B2 → A2 such that
Im S(1A1 − f1 ◦ g1) = torS(A1), Im S(1B1 − g1 ◦ f1) = torS(B1), Im S(1A2 − f2 ◦ g2) =
torS(A2), and Im S(1B2 − g2 ◦ f2) = torS(B2). Define

f : A1 ⊕ A2 → B1 ⊕B2 by

(x1, x2) 7→ f(x1, x2) = (f1(x1), f2(x2))

and
g : B1 ⊕B2 → A1 ⊕ A2 by

(x1, x2) 7→ g(x1, x2) = (g1(x1), g2(x2)).

Then it is easy to verify that:

Im S(1A1⊕A2 − f ◦ g) = Im S(1A1 − f1 ◦ g1)⊕ Im S(1A2 − f2 ◦ g2)
= torS(A1)⊕ torS(A2)

= torS(A1 ⊕ A2)

and

Im S(1B1⊕B2 − g ◦ f) = Im S(1B1 − g1 ◦ f1)⊕ Im S(1B2 − g2 ◦ f2)
= torS(B1)⊕ torS(B2)

= torS(B1 ⊕B2).

Hence A1 ⊕ A2
S≃ B1 ⊕B2.
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Lemma 3.3. Let M be an R-module. Then M
S≃ 0 if and only if M is an S-torsion

R-module.

Proof. Let f : M → 0 be an S-torsion isomorphism. Then Im S(1M − f ◦ 0) =
torS(M). Since Im S(1M − f ◦ 0) = Im S(1M) =M , we get M = torS(M).

Conversely, assume that M = torS(M). Then f : M → 0 is an S-torsion isomor-
phism since Im S(1M) =M = torS(M).

For any submodule N of an R-module M and any multiplicative subset S of R, we
define

SM(N) := {x ∈M | sx ∈ N for some s ∈ S},
called the S-component of N in M . If there is no confusion, we will also write S(N)
instead of SM(N).

Lemma 3.4. Let f : A → B be an S-torsion isomorphism and N be a submodule

of A. Then S(N)
S≃ f(S(N)).

Proof. Let g : B → A be a homomorphism such that Im S(1A − g ◦ f) = torS(A)
and Im S(1B − f ◦ g) = torS(B). Define fS(N) : S(N) → f(S(N)) as the restriction
of f on S(N). Let y = f(n′) ∈ f(S(N)) with n′ ∈ N . Then there exists t1 ∈ S
such that t1n

′ ∈ N . On the other hand, since Im S(1A − g ◦ f) = torS(A), we
get n′ − (g ◦ f)(n′) ∈ torS(A). Then t2n

′ = t2(f ◦ g)(n′) for some t2 ∈ S, and
hence t2t1g(y) = t2t1n

′ ∈ N . Therefore, f(y) ∈ S(N), and it is easy to verify that
Im S(1S(N) − gf(S(N)) ◦ fS(N)) = torS(S(N)) and Im S(1f(S(N)) − fS(N) ◦ gf(S(N))) =

torS(f(S(N))). Hence S(N)
S≃ f(S(N)).

Lemma 3.5. If N is a direct summand of A, then S(N)
S≃ N .

Proof. Let A = N⊕L for some submodule L of A. Let x = n+l ∈ S(N) with n ∈ N
and l ∈ L. Then tx = tn + tl ∈ N for some t ∈ S. Thus, tl = tx − tn ∈ N ∩ L = 0,
and so tl = 0, i.e., l ∈ torS(L). Therefore, S(N) ⊆ N ⊕ torS(L).

Conversely, let x = n + l ∈ N ⊕ torS(L). Then tl = 0 for some t ∈ S. Hence

tx = tn ∈ N , and so x ∈ S(N). Consequently, S(N) = N⊕torS(L). Since torS(L)
S≃ 0

by Lemma 3.3, we have S(N)
S≃ N by Lemma 3.2.

Proof of Theorem 3.1
Let P be an S1-projective module. Then by [10, Theorem 3.7], P is a direct

summand of an S1-free module. Hence there exists a free R-module F such that
A = P ⊕L is S-torsion isomorphic to F . Let f : A→ F be an S-torsion isomorphism.
We want to show that F = f(P )⊕ f(L). For this, let g : F → A be a homomorphism
such that Im S(1A−g ◦f) = torS(A) and Im S(1F −f ◦g) = torS(F ). Since F is a free
R-module, torS(F ) = 0, and hence Im (1F − f ◦ g) ⊆ Im S(1F − f ◦ g) = torS(F ) = 0.
Therefore, f is an epimorphism, i.e., F = f(A). Consequently, F = f(P ) + f(L).

Let y ∈ f(P )∩ f(L). Then there exist x ∈ P and l ∈ L such that y = f(x) = f(l).
Thus f(x− l) = 0, and so x− l ∈ Ker(f) ⊆ KerS(f) = torS(A). Then tx = tl for some
t ∈ S. Since tx = tl ∈ P∩L = 0, it follows that tx = 0, so ty = f(tx) = 0. Then y = 0
since F is a free R-module. Thus F = f(P )⊕f(L). Therefore, f(P ) is a projective R-

module. By Lemma 3.5, P
S≃ S(P ), and then P

S≃ f(S(P )) by Lemma 3.4. Note that
f(S(P )) = f(P ⊕ torS(L)) = f(P ) + f(torS(L)). Since f(torS(L)) ⊆ torS(F ) = 0, we



32 Kim, Mahdou, and Oubouhou

get f(S(P )) = f(P ). So P
S≃ f(P ) and f(P ) is a projective R-module.

Note that Lemma 3.2 can be used to provide another demonstration of [11, Corol-
lary 3.9], as shown below.

Remark 3.6. If P is S-torsion isomorphic to a projective module, then P is S1-
projective.

Proof. Let K be a projective module such that P
S≃ K. Since K is projective, it is

a direct summand of a free module F , and so F = K ⊕ L for some L. Since P
S≃ K,

it follows from Lemma 3.2 that P ⊕ L
S≃ K ⊕ L = F . Hence P is a direct summand

of an S1-free module. Thus, P is an S1-projective module by [10, Theorem 3.7].

Corollary 3.7. Let P1 and P2 be S1-projective R-modules. Then P1 ⊗ P2 is
S1-projective.

Proof. Let P ′
1 and P

′
2 be projective modules such that P1

S≃ P ′
1 and P2

S≃ P ′
2. Then

it is easy to show that P1 ⊗ P2
S≃ P ′

1 ⊗ P ′
2. Since P ′

1 and P ′
2 are projective modules,

P ′
1 ⊗ P ′

2 is projective by [13, Theorem 2.3.8]. Hence P1 ⊗ P2 is S1-projective.

Corollary 3.8. Let R be a local ring. Then every S1-projective module is S1-free.

Proof. Let P be an S1-projective R-module. Then there exists a projective R-

module P0 such that P
S≃ P0. Since R is a local ring, P is free by [13, Theorem

2.3.17]. Hence P is S1-isomorphic to a free R-module, so P is S1-free.

Let M be an R-module. Then M is said to be S-finitely generated if ψS(M) is a
finitely generated ϕS(R)-module. It is easy to verify that an R-moduleM is S-finitely
generated if and only if there exists a finite set {x1, . . . , xn} ⊆M such that for every
element x ∈M , tx = t(α1x1 + · · ·+ αnxn) for some t ∈ S and αi ∈ R.

Theorem 3.9. Let R be a ring and I be an S1-projective ideal of R such that
S ∩ I ̸= ∅. Then I is S1-finitely generated.

Proof. Let I be an S1-projective ideal of R such that S ∩ I ̸= ∅. Then by [11,
Theorem 3.8], there exist elements {xi | i ∈ Γ} ⊆ I and R-homomorphisms {fi | i ∈
Γ} ⊆ HomR(I, R) such that:

1. If x ∈ I, then almost all fi(x) = 0.
2. If x ∈ I, then there exists an element s ∈ S such that sx = s

∑
i fi(x)xi.

Let a ∈ I ∩ S. Then there exists a finite subset K of Γ such that fi(a) = 0 for
all i ∈ Γ \ K. Now let x ∈ I. Then there exists an element s ∈ S such that
sx = s

∑
i fi(x)xi. Hence

asx = as
∑
i

fi(x)xi = s
∑
i

xfi(a)xi = s
∑
k

xfk(a)xk = sa
∑
k

fk(x)xk ∈ saF

with F =
∑

k Rxk. Therefore, I is S1-finitely generated.

Let M be an S-torsion-free R-module. Then M is S1-finitely generated if and
only if it is finitely generated, and M is S1-projective if and only if it is projective
by [11, Lemma 4.1]. In particular, if S is a regular multiplicative subset of R and I
is an ideal of R, then I is S1-finitely generated if and only if it is finitely generated,
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and I is S1-projective if and only if it is projective. It is well known that every
projective ideal is finitely generated in an integral domain. The following result is a
generalization of this fact.

Corollary 3.10. Let R be a ring, then every regular projective ideal of R is
finitely generated.

Recall from [17] that an element r of a ring R is said to be S-regular if ϕS(r) is
a regular element of ϕS(R). An ideal I of a ring R is said to be S-regular if ϕS(I)
is a regular ideal of ϕS(R). Every regular element of a ring R is S-regular for any
multiplicative subset S of R. Furthermore, each element in S is S-regular. It is also
clear that each regular ideal of a ring R is S-regular for any multiplicative subset S
of R. Moreover, an ideal I of R that meets S, i.e., I ∩ S ̸= ∅, is S-regular for any
multiplicative subset S of R. Note that if R is a domain, then any S-regular element
of R is regular, and any S-regular ideal of R is regular for any multiplicative subset
S of R.

An R-submodule A of RS is called an S-fractional ideal if there exists an element
d in S such that dA is a regular ideal of ϕS(R). We denote by FS(R) the set of all
S-fractional ideals of R. We have ϕS(R) ∈ FS(R) and ϕS(I) ∈ FS(R) for every S-
regular ideal I of R. Also, an S-fractional ideal A of a ring R is said to be S-invertible
if there exists an S-fractional ideal B of R such that AB = ϕS(R). An ideal I of a
ring R is said to be S-invertible if there exists an S-fractional ideal C of R such that
ϕS(I)C = ϕS(R).

Let I be an ideal of a ring R. Set

I−1
S := {x ∈ RS | Ix ⊆ ϕS(R)} .

Then I is S-invertible if and only if II−1
S = ϕS(R). Note that if I is an S-regular

ideal, then I−1
S is also an S-fractional ideal of R.

Theorem 3.11. Let R be a ring and I be an ideal of R generated by finitely many
elements in S. Then I is S2-projective if and only if I is S-invertible.

Proof. Assume that I is generated by elements r1, r2, . . . , rn in S. Set

xi := ϕS(ri) =
ri
1
∈ ϕS(I), 1 ⩽ i ⩽ n.

If I is S-invertible, then II−1
S = ϕS(R). Thus we have

1

1
=

n∑
i=1

rihi =
n∑

i=1

xihi for some hi ∈ I−1
S .

Set

I∗S := HomϕS(R) (ϕS(I), ϕS(R)) ,

and consider the following homomorphism:

φS : I−1
S → I∗S

such that φS(x)(a) = ax, where x ∈ I−1
S and a ∈ ϕS(I). Then φS is an isomorphism

of R-modules according to [17, Theorem 2.5]. Set fi := φS(hi). Then

ϕS(x) =
x

1
=

n∑
i=1

xihi
x

1
=

n∑
i=1

fi (ϕS(x))xi
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for all x ∈ I. Therefore, ϕS(I) has a projective basis {xi, fi | 1 ⩽ i ⩽ n}.
Conversely, if I has an S-projective basis {xi, fi | i ∈ Γ} such that ϕS(x) =

∑
i∈Γ fi (ϕS(x))xi

is a finite sum for all x ∈ I ∩ S, set

ai :=
fi
(
x
1

)
x

∈ RS.

Then aix = fi
(
x
1

)
∈ ϕS(R). If a ∈ I, then a =

∑n
i=1 riti for some ti ∈ R, 1 ⩽ i ⩽ n,

where all ri are in S ∩ I. Thus

aai =
n∑

i=1

(riai) ti ∈ ϕS(R),

and so aiI ⊆ ϕS(R) and aiϕS(I) ⊆ ϕS(R). Hence

ai ∈ I−1
S and ϕS(x) =

x

1
=

n∑
i=1

aixi
x

1
.

Therefore, 1 =
∑n

i=1 aixi and I is an S-invertible ideal of R.
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