GENERALIZED HILBERT OPERATOR ON BERGMAN SPACES

Simi Bhuyan and Sunanda Naik*

ABSTRACT. We consider the generalized Hilbert operator \mathcal{H}_{β} for $\beta \geq 0$ and find the condition on the parameter β for which the operator \mathcal{H}_{β} is bounded on the Bergman space A^p for $2 . Also, we estimates the upper bound of the norm on <math>A^p$. Further shows that \mathcal{H}_{β} is not bounded on A^2 for $0 \leq \beta < 1$.

1. Introduction

We denote \mathbb{D} as the unit disc in the complex plane \mathbb{C} . We consider the generalized Hilbert's inequality, as stated in [7] gives that for $\beta \geq 0$, if $1 and <math>(a_k)_{k \in N_0} \in \ell^p$ then the following inequality holds:

$$\left(\sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty}\frac{\Gamma(n+\beta+1)\Gamma(n+k+1)}{\Gamma(n+1)\Gamma(n+k+\beta+2)}a_k\right|^p\right)^{\frac{1}{p}} \le \frac{\Gamma(\frac{1}{p})\Gamma(\frac{1}{q}+\beta)}{\Gamma(1+\beta)}\left(\sum_{k=0}^{\infty}|a_k|^p\right)^{\frac{1}{p}}.$$

We call this as generalized Hilbert inequality, since when $\beta = 0$, it is the well-known Hilbert inequality

$$\left(\sum_{n=0}^{\infty} \left|\sum_{k=0}^{\infty} \frac{a_k}{n+k+1}\right|^p\right)^{\frac{1}{p}} \le \frac{\pi}{\sin(\pi/p)} \left(\sum_{k=0}^{\infty} |a_k|^p\right)^{\frac{1}{p}}.$$

The constant $\frac{\pi}{\sin(\pi/p)}$ is best possible (see [4]). Thus the so-called generalized Hilbert matrix for $\beta \ge 0$, $H_{\beta} = \left(\frac{\Gamma(n+\beta+1)\Gamma(n+k+1)}{\Gamma(n+1)\Gamma(n+k+\beta+2)}\right)$, n, k = 0, 1, 2... can be viewed as an operator on spaces of analytic functions by its action on the Taylor coefficients. If f is analytic on \mathbb{D} with $f(z) = \sum_{n=0}^{\infty} a_n z^n$, then for $\beta \ge 0$, so-called generalized Hilbert operator denoted by \mathcal{H}_{β} is defined by

$$\mathcal{H}_{\beta}f(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \frac{\Gamma(n+\beta+1)\Gamma(n+k+1)}{\Gamma(n+1)\Gamma(n+k+\beta+2)} a_k\right) z^n.$$

The operator \mathcal{H}_{β} was introduce in [6]. In particular $\beta = 0$, gives the classical Hilbert operator \mathcal{H} . In [12], we proved that the operator \mathcal{H}_{β} is bounded on Hardy space H^p

Received November 23, 2024. Revised February 11, 2025. Accepted February 15, 2025.

²⁰¹⁰ Mathematics Subject Classification: 30E20, 30H20, 31B10, 33C05.

Key words and phrases: Hilbert Operator, Bergman Spaces, Hypergeometric Functions.

^{*} Corresponding author.

⁽c) The Kangwon-Kyungki Mathematical Society, 2025.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

for $2 \le p < \infty$ and found the upper bound for its norm see ([12], Corollary 3) as given below:

$$||\mathcal{H}_{\beta}||_{H^p} \leq \frac{\Gamma\left(\frac{1}{p}\right)\Gamma\left(1-\frac{1}{p}+\beta\right)}{\Gamma(1+\beta)}.$$

We also the proved the above inequality holds for analytic functions f on \mathbb{D} for $1 . Also in [13] obtained that the operator <math>\mathcal{H}_{\beta}$ is bounded on Dirichlet spaces.

Motivated by [3], in this article, we proved that \mathcal{H}_{β} is a bounded operator on the Bergman spaces A^p for 2 , which consist of analytic functions <math>f on \mathbb{D} for which

$$\parallel f \parallel_{A^p}^p = \int_{\mathbb{D}} |f(z)|^p dm(z) < \infty,$$

where $dm(z) = \frac{1}{\pi} dx dy$ is the normalized Lebesgue measure on \mathbb{D} . We also found norm estimates of \mathcal{H}_{β} on A^p spaces for 2 .

2. Preliminaries

In this section, we shall discuss few results which we will use to proof our main results. First, we will find an integral form of \mathcal{H}_{β} . We provide an representation of \mathcal{H}_{β} involving weighted composition operators for which we estimate A^p space norm. This representation is similar to the one use to prove the boundedness of generalized Cesàro operators, Cesàro operator on the Hardy spacess, Bergman spaces and Dirichlet spaces (see [8, 9, 14, 15]). Further in [10, 11], this representation is used to proof the boundedness of generalized Cesàro operator on BMOA and Bloch type spaces.

LEMMA 2.1. Let $f \in A^p$ for p > 2. Then

$$\mathcal{H}_{\beta}(f)(z) = \int_{0}^{1} \frac{f(t)(1-t)^{\beta}}{(1-tz)^{\beta+1}} dt$$

and $\mathcal{H}_{\beta}f \in A^p$.

Proof. Let us consider the operator

$$S_{\beta}(f)(z) = \int_{0}^{1} \frac{f(t)(1-t)^{\beta}}{(1-tz)^{\beta+1}} dt$$

The convergence of the above integral is ensured by the Fejer-Riesz inequality.

Let $f \in A^p$ for p > 2. From ([16], Corollary, p.755), we have

(1)
$$|f(z)| \le \left(\frac{1}{1-|z|^2}\right)^{\frac{2}{p}} ||f||_{A^p}.$$

Since $\beta \geq 0$, we get

$$\begin{aligned} |\mathcal{S}_{\beta}(f)(z)| &\leq ||f||_{A^{p}} \int_{0}^{1} \frac{(1-t)^{\beta}}{(1-t)^{\frac{2}{p}} |1-tz|^{\beta+1}} dt \\ &\leq ||f||_{A^{p}} \int_{0}^{1} \frac{\frac{1}{(1-t)^{\frac{2}{p}}} dt}{1-|z|} < \infty, \end{aligned}$$

which shows that the operator S_{β} is well defined on A^p spaces. Now, given $f(z) = \sum_{n=0}^{\infty} a_n z^n \in A^p$, let $f_N(z) = \sum_{n=0}^{N} a_n z^n$, we obtain $\mathcal{H}_{\beta}(f_N)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{N} \frac{\Gamma(n+\beta+1)\Gamma(n+k+1)}{\Gamma(n+1)\Gamma(n+k+\beta+2)} a_k z^n \right)$ $= \frac{1}{\Gamma(\beta+1)} \sum_{n=0}^{\infty} \frac{\Gamma(n+\beta+1)}{\Gamma(n+1)} \left(\sum_{k=0}^{N} \int_{0}^{1} (t^{n+k}(1-t)^{\beta} dt) a_k z^n \right)$ $= \frac{1}{\Gamma(\beta+1)} \sum_{n=0}^{\infty} \frac{\Gamma(n+\beta+1)}{\Gamma(n+1)} \left(\int_{0}^{1} f_N(t)(tz)^n (1-t)^{\beta} dt \right)$ $= \int_{0}^{1} f_N(t)(1-t)^{\beta} \sum_{n=0}^{\infty} \frac{(\beta+1,n)(1,n)}{(1,n)(1,n)} (tz)^n dt$ $= \int_{0}^{1} \frac{f_N(t)(1-t)^{\beta}F(\beta+1,1;1;tz)}{(1-tz)^{\beta+1}}$ $= S_{\beta}f_N(z).$

Therefore, \mathcal{H}_{β} is well defined on polynomials. Also, for $z \in \mathbb{D}$ and p > 2, we see that

$$\left|\mathcal{S}_{\beta}(f)(z) - \mathcal{H}_{\beta}(f_{N})(z)\right| \leq \int_{0}^{1} \frac{|f(t) - f_{N}(t)|}{1 - |z|} dt \leq ||f - f_{N}||_{A^{p}} \int_{0}^{1} \frac{(1 - t)^{\frac{-2}{p}}}{1 - |z|} dt.$$

Thus the series

$$\sum_{n=0}^{\infty} \sum_{k=0}^{N} \frac{\Gamma(n+\beta+1)\Gamma(n+k+1)}{\Gamma(n+1)\Gamma(n+k+\beta+1)} a_k z^n$$

converges as $N \to \infty$ and defines an analytic function given by

$$\mathcal{H}_{\beta}(f)(z) = \mathcal{S}_{\beta}(f)(z) = \int_{0}^{1} \frac{f(t)(1-t)^{\beta}}{(1-tz)^{\beta+1}} dt,$$

which belongs to the Bergman Spaces A^P for p > 2.

Next result demonstrates how \mathcal{H}_{β} can be expressed as the average of certain weighted composition operator.

Every analytic function $\phi : \mathbb{D} \to \mathbb{D}$ defines a bounded composition operator C_{ϕ} : $f \to f \circ \phi$ on A^p for $1 \le p \le \infty$. The norm of this operator satisfies the inequality (as shown in [2], p.127)

(2)
$$|| C_{\phi} ||_{A^p} \leq \left(\frac{1+|\phi(0)|}{1-|\phi(0)|}\right)^{\frac{2}{p}}$$

Furthermore, if w(z) is bounded analytic function, the corresponding weighted composition operator

$$C_{\omega,\phi}(f)(z) = \omega(z)f(\phi(z))$$

is bounded on each A^p . This is the only property of the operator that will be relevant for our purposes.

The relationship between the Hilbert matrix and composition operators is established as follows:

The operator \mathcal{H}_{β} can be written in terms of composition operators.

LEMMA 2.2. Let f be analytic in the \mathbb{D} . Suppose $z \in \mathbb{D}$ and 0 < r < 1. Then

$$\mathcal{H}_{\beta}f(z) = \int_{0}^{1} T_{t}(f)(z)dt,$$

where

$$\begin{aligned}
T_t(f)(z) &= \omega_t(z) f(\phi_t(z)) (1-t)^{\beta}, \\
\omega_t(z) &= \frac{1}{(t-1)z+1} \quad \text{and} \quad \phi_t(z) &= \frac{t}{(t-1)z+1}.
\end{aligned}$$

Proof. We define

(3)
$$C_r(f)(z) = \int_0^r f(t) \frac{(1-t)^{\beta}}{(1-tz)^{\beta+1}} dt.$$

Then, we have

$$\mathcal{H}_{\beta}(f)(z) = \lim_{r \to 1} C_r(f)(z)$$

Given $z \in \mathbb{D}$, we choose the path of integration as follows: $t(s) = t_z(s) = \frac{rs}{r(s-1)z+1} dt, \ 0 \le s \le 1$. By changing variable in (3), we obtain

$$C_r(f)(z) = \int_0^1 \frac{f(t(s))(1-t(s))^\beta}{(1-t(s)z)^{\beta+1}} t'(s) ds$$
$$= \int_0^1 \frac{r(r(s-1)z+1-rs)^\beta f(t(s)) ds}{(1-rz)^\beta (r(s-1)z+1)}$$

Now, suppose $f \in A^P$ where p > 2. For every $z \in \mathbb{D}$ and $0 \le s \le 1$, define

$$h_r(s) = \frac{r(r(s-1)z+1-rs)^{\beta}}{(1-rz)^{\beta}(r(s-1)z+1)} f\left(\frac{rs}{r(s-1)z+1}\right)$$

Generalized Hilbert Operator on Bergman Spaces

$$=\frac{r(r(s-1)z+1-rs)^{\beta}}{(1-rz)^{\beta}(r(s-1)z+1)}f\bigg(\phi_{r,s}(z)\bigg),$$

where $\phi_{r,s}(z) = \frac{rs}{r(s-1)z+1}$, which is an analytic self-map on \mathbb{D} . Since, $|r(s-1)z+1| \ge 1 - |z|$, for $0 \le s, r \le 1$, and $|r(s-1)z+1-rs|^{\beta} \le 2^{\beta}$ as

 $\beta \geq 0$, we find

$$\frac{r|r(s-1)z+1-rs|^{\beta}}{|(r(s-1)z+1)(1-rz)|^{\beta}} \le \frac{2^{2\beta+1}}{(1-|z|^2)^{\beta+1}}$$

Thus, from (1), we obtain

$$|f \circ \phi_{r,s}(z)| \le \frac{1}{(1-|z|^2)^{\frac{2}{p}}} \parallel f \circ \phi_{r,s}(z) \parallel_{A^p}$$

and from equation (2), we obtain

$$\| f \circ \phi_{r,s}(z) \|_{A^p} \leq \left(\frac{1 + |\phi_{r,s}(0)|}{1 - |\phi_{r,s}(0)|} \right)^{\frac{2}{p}} \| f \|_{A^p}$$
$$\leq \left(\frac{1 + s}{1 - s} \right)^{\frac{2}{p}} \| f \|_{A^p}.$$

The above estimates lead to

$$|h_r(s)| \le \frac{2^{2\beta+1}}{(1-|z|^2)^{\beta+1+\frac{2}{p}}} \left(\frac{1+s}{1-s}\right)^{\frac{2}{p}} \| f \|_{A^p}.$$

For p > 2, the expression on the right hand side is an integrable function of s, so by applying Lebesgue's dominated convergence theorem, we can conclude that

$$\mathcal{H}_{\beta}(f)(z) = \lim_{r \to 1} \int_{0}^{r} \frac{r(r(s-1)z+1-rs)^{\beta}}{(1-rz)^{\beta}(r(s-1)z+1)} f\left(\frac{rs}{r(s-1)z+1}\right) ds$$
$$= \int_{0}^{1} \frac{(1-s)^{\beta}}{(s-1)z+1} f\left(\frac{s}{(s-1)z+1}\right) ds.$$

In other words, we can represent \mathcal{H}_{β} as:

$$\mathcal{H}_{\beta}f(z) = \int_{0}^{1} T_{t}(f)(z) \, dt$$

of the family of weighted composition operator

$$T_t(f)(z) = \omega_t(z)f(\phi_t(z))(1-t)^{\beta}$$

where $\omega_t(z), \phi_t(z)$ as defined in the hypothesis.

Thus, it is easy to observe that ω_t is a bounded function for 0 < t < 1 and that ϕ_t is a self map of unit disc \mathbb{D} . Consequently the operator $T_t: A^p \to A^p, 1 \leq p \leq \infty$, is bounded on A^p for every 0 < t < 1.

 \square

LEMMA 2.3. For every analytic function f,

$$\int_{\mathbb{D}} |f(z)|^p dm(z) \le \left(\frac{p}{2} + 1\right) \int_{\mathbb{D}} |zf(z)|^p dm(z).$$

3. Main Results

In this section we state and prove the main results of this article. We first find estimates for the norms of the weighted composition operators T_t and then we demonstrated that \mathcal{H}_{β} is bounded on Bergman spaces A^p and we also give norm estimates.

PROPOSITION 3.1. Suppose 2 , then $(i) If <math>4 \le p < \infty$ and $f \in A^p$, then

$$|| T_t(f) ||_{A^p} \le \frac{t^{\frac{2}{p}-1}}{(1-t)^{\frac{2}{p}-\frac{\beta}{p}}} || f ||_{A^p}.$$

(ii) If $2 and <math>f \in A^P$, then

$$|| T_t(f) ||_{A^p} \le \left(\frac{2^{7-p}}{9(p-2)} + 2^{4-p}\right)^{\frac{1}{p}} \frac{t^{\frac{2}{p}-1}}{(1-t)^{\frac{2}{p}-\frac{\beta}{p}}} || f ||_{A^p}.$$

Proof. Let $f \in A^p$ where p > 2. A simple calculation gives

$$\omega_t(z)^2 = \frac{1}{t(1-t)}\phi'_t(z).$$

Using the above equation, since $p \ge 4$ and $|\omega_t(z)| \le \frac{1}{t}$ we get

$$\| T_t(f) \|_{A^p}^p = \int_{\mathbb{D}} |\omega_t(z)|^p |f(\phi_t(z))|^p (1-t)^\beta dm(z)$$

= $(1-t)^\beta \int_{\mathbb{D}} |\omega_t(z)|^p |f(\phi_t(z))|^p |\phi_t'(z)|^{-2} dm(\phi_t(z))$
 $\leq \frac{(1-t)^\beta}{t^{p-2}(1-t)^2} \int_{\phi_t(\mathbb{D})} |f(z)|^p dm(z)$
 $\leq \frac{\| f \|_{A^p}^p}{t^{p-2}(1-t)^{2-\beta}}.$

We compute the inverse of ϕ_t :

$$\phi_t^{-1}(z) = \frac{z - t}{(1 - t)z}$$

and

$$\omega_t(\phi_t^{-1}(z) = \frac{1}{(t-1)\phi_t^{-1}(z) + 1} = \frac{z}{t}.$$

For the case 2 . We have

$$\| T_t(f) \|_{A^p}^p = \frac{(1-t)^{\beta}}{t^2(1-t)^2} \int_{\phi_t(\mathbb{D})} \left| \omega_t \left(\phi_t^{-1}(\omega) \right) \right|^{p-4} |f(\omega)|^p dm(\omega)$$

$$= \frac{(1-t)^{\beta}}{t^2(1-t)^2} \int_{\phi_t(\mathbb{D})} \left| \frac{\omega}{t} \right|^{p-4} |f(\omega)|^p dm(\omega)$$

$$\le \frac{1}{t^{p-2}(1-t)^{2-\beta}} \int_{\mathbb{D}} |\omega|^{p-4} |f(\omega)|^p dm(\omega).$$

Now, if we proceed similar to the proof of the Lemma 2(ii) in [3]. We conclude that for 2 ,

$$I \le \left(\frac{2^{7-p}}{9(p-2)} + 2^{4-p}\right) \frac{t^{2-p}}{(1-t)^{2-\beta}} \parallel f \parallel_{A^p}^p.$$

Thus, we have the estimate. This complete the proof.

Now we can state and proof the main results.

THEOREM 3.2. The operator \mathcal{H}_{β} is bounded on Bergman spaces $A^p, 2 .$ $Further, if <math>\beta \geq 0$ satisfies the following inequalities:

(i) If $4 \le p < \infty$ and $f \in A^p$, then

$$\parallel \mathcal{H}_{\beta}(f) \parallel_{A^{p}} \leq \frac{\Gamma(\frac{2}{p})\Gamma(\frac{\beta-2}{p}+1)}{\Gamma(\frac{\beta}{p}+1)} \parallel f \parallel_{A^{p}}.$$

(ii) If $2 and <math>f \in A^p$, then

$$\| \mathcal{H}_{\beta}(f) \|_{A^{p}} \leq \left(\frac{2^{7-p}}{9(p-2)} + 2^{4-p} \right)^{\frac{1}{p}} \frac{\Gamma\left(\frac{2}{p}\right)\Gamma\left(\frac{\beta-2}{p}+1\right)}{\Gamma\left(\frac{\beta}{p}+1\right)} \| f \|_{A^{p}}.$$

(iii) If $2 and <math>f \in A^p$ with f(0) = 0, then

$$\| \mathcal{H}_{\beta}(f) \|_{A^p} \leq \left(\frac{p}{2} + 1\right)^{\frac{1}{p}} \frac{\Gamma(\frac{2}{p})\Gamma(\beta + 1 - \frac{2}{p})}{\Gamma(\beta + 1)} \| f \|_{A^p}.$$

Proof. Let $f \in A^P$. By applying Minkowski's inequality, we have

$$\| \mathcal{H}_{\beta}(f) \|_{A^{p}} = \left(\int_{\mathbb{D}} \left| \mathcal{H}_{\beta}(f)(z) \right|^{p} dm(z) \right)^{\frac{1}{p}}$$
$$= \left(\int_{\mathbb{D}} \left| \int_{0}^{1} T_{t}(f)(z) \right|^{p} dm(z) \right)^{\frac{1}{p}}$$
$$\leq \int_{0}^{1} \left(\int_{\mathbb{D}} \left| T_{t}(f)(z) \right|^{p} dm(z) \right)^{\frac{1}{p}} dt$$
$$= \int_{0}^{1} \| T_{t}(f) \|_{A^{p}} dt.$$

Using Lemma 2 for $p \ge 4$ we conclude

$$\| \mathcal{H}_{\beta}(f) \|_{A^{p}} \leq \int_{0}^{1} t^{\frac{2}{p}-1} (1-t)^{\frac{\beta}{p}-\frac{2}{p}} dt \| f \|_{A^{p}}$$

$$= \beta \left(\frac{2}{p}, \frac{\beta-2}{p}+1\right) \| f \|_{A^{p}}$$

$$= \frac{\Gamma(\frac{2}{p})\Gamma(\frac{\beta-2}{p}+1)}{\Gamma(\frac{\beta}{p}+1)} \| f \|_{A^{p}} .$$

Similarly, for $2 and <math>f \in A^p$ we have

$$\| \mathcal{H}_{\beta}(f) \|_{A^{p}} \leq \left(\frac{2^{7-p}}{9(p-2)} + 2^{4-p} \right)^{\frac{1}{p}} \int_{0}^{1} \frac{t^{\frac{2}{p}-1}}{(1-t)^{\frac{2}{p}-\frac{\beta}{p}}} \| f \|_{A^{p}}$$
$$= \left(\frac{2^{7-p}}{9(p-2)} + 2^{4-p} \right)^{\frac{1}{p}} \frac{\Gamma\left(\frac{2}{p}\right)\Gamma\left(\frac{\beta-2}{p}+1\right)}{\Gamma\left(\frac{\beta}{p}+1\right)} \| f \|_{A^{p}} .$$

For the proof of case(iii), let $f \in A^p$ where 2 with <math>f(0) = 0, and express $f(z)=zf_0(z)$. Using Lemma 3 we get function f_0 belongs to the Bergman space and satisfies the inequality

$$|| f_0 ||_{A^p} \le \left(\frac{p}{2} + 1\right)^{\frac{1}{p}} || f ||_{A^p}.$$

Indeed, this estimate is a special case of a results concerning A^p inner functions ([5], Corollary 3.23).

Now we compute

$$\begin{aligned} \mathcal{H}_{\beta}(f)(z) &= \int_{0}^{1} \frac{(1-t)^{\beta}}{(t-1)z+1} f\left(\frac{t}{(t-1)z+1}\right) dt \\ &= \int_{0}^{1} \frac{(1-t)^{\beta}t}{((t-1)z+1)^{2}} f_{0}\left(\frac{t}{(t-1)z+1}\right) dt \\ &= \int_{0}^{1} \frac{(1-t)^{\beta}}{t} \phi_{t}(z)^{2} f_{0}(\phi_{t}(z)) dt \\ &= \int_{0}^{1} \mathcal{S}_{t}(f_{0})(z) dt, \end{aligned}$$

where $S_t(g)(z) = \frac{(1-t)^{\beta}}{t} \phi_t(z)^2 g(\phi_t(z)), g \in A^p$, and $\phi_t(z) = \frac{t}{(t-1)z+1}$. An easy calculation shows that

$$\phi_t(z)^2 = \frac{t}{1-t}\phi'_t(z), \ z \in \mathbb{D}, 0 < t < 1.$$

It follows that

$$\| S_t(g) \|_{A^p}^p = \frac{(1-t)^{\beta p}}{t^p} \int_{\mathbb{D}} |\phi_t(z)|^{2p} |g(\phi_t(z))|^p dm(z)$$

$$\leq (1-t)^{\beta p-2} t^{2-p} \int_{\mathbb{D}} |\phi_t(z)|^{2p} |g(\phi_t(z))|^p |\phi_t'(z)|^{-2} dm(\phi_t(z))$$

$$= \frac{t^{2-p}}{(1-t)^{2-\beta p}} \int_{\mathbb{D}} |\phi_t(z)|^{2p-4} |g(\phi_t(z))|^p dm(\phi_t(z))$$

$$= \frac{t^{2-p}}{(1-t)^{2-\beta p}} \| g \|_{A^p}^p .$$

Hence,

$$\| \mathcal{S}_{t}(g) \|_{A^{p}} \leq \frac{t^{\frac{2}{p}} - 1}{(1 - t)^{\frac{2}{p} - \beta}} \| g \|_{A^{p}}.$$

To calculate the norm of $\mathcal H,$ we proceed as follows

$$\| \mathcal{H}_{\beta}(f) \|_{A^{p}} \leq \left(\int_{0}^{1} \frac{t^{\frac{2}{p}-1}}{(1-t)^{\frac{2}{p}-\beta}} dt \right) \| f_{0} \|_{A^{p}}$$

$$= \beta \left(\frac{2}{p}, 1+\beta-\frac{2}{p} \right) \| f_{0} \|_{A^{p}}$$

$$= \frac{\Gamma(\frac{2}{p})\Gamma(\beta+1-\frac{2}{p})}{\Gamma(\beta+1)} \| f_{0} \|_{A^{p}}$$

$$\leq \left(\frac{p}{2}+1 \right)^{\frac{1}{p}} \frac{\Gamma(\frac{2}{p})\Gamma(\beta+1-\frac{2}{p})}{\Gamma(\beta+1)} \| f \|_{A^{p}},$$

which is the desired result. This completes the proof.

For the proof of the next result we need Gaussian hypergeometric functions and some of its properties see, for example, [1]. The classical/Gaussian hypergeometric series is defined by the power series expansion

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a,n)(b,n)z^n}{(c,n)(1,n)n!} \quad (|z|<1).$$

Here a,b, c are complex numbers such that $c \neq -m$, m= 0,1,2,3... and (a, n) is the pochhamer's symbol which is defined as

$$(a,n) := a(a+1)...(a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}, n \in \mathbb{N}$$

and (a, 0) = 1 for $a \neq 0$.

Let \mathcal{D} be the usual Dirichlet space of analytic functions on \mathbb{D} with square summable derivative. The following result is well known (see [3]).

LEMMA 3.3. Each bounded linear functional on the Bergman space A^2 can be associated to a function $g \in \mathcal{D}$ (by the pairing $\langle f, g \rangle = \sum_{n=0}^{\infty} a_n b_n$) and the association is an isometric isomorphism of the spaces.

We will use the above Lemma to prove the following result:

PROPOSITION 3.4. Let $0 \leq \beta < 1$. There is no bounded linear operator $T : A^2 \rightarrow A^2$ satisfying :

$$T(\xi_n)(0) = \frac{\Gamma(n+1)\Gamma(\beta+1)}{\Gamma(n+\beta+2)}, \quad n = 0, 1, 2, \dots,$$

where $\mathcal{E}_n(z) = z^n$.

Proof. Assume, to the contrary, that there exists an operator T. Using the pairing that defines an isometric isomorphism between A^{2*} and \mathcal{D} , we find that the adjoint operator $T^*: \mathcal{D} \to \mathcal{D}$ is bounded and satisfies the following relation.

(4)
$$< T(f), g > = < f, T^*(g) >,$$

for all $f \in A^2$ and $g \in \mathcal{D}$. Now, let's choose $g \equiv 1$ and express $T^*(1)(z)$ as the Taylor series: $T^*(1)(z) = \sum_{n=0}^{\infty} c_n z^n$, where $T^*(1) \in \mathcal{D}$. Using (4) for $f = \xi_n$ and $g \equiv 1$, we have

$$\frac{\Gamma(n+1)\Gamma(\beta+1)}{\Gamma(n+\beta+2)} = T(\xi_n)(0)$$
$$= \langle T(\xi_n), 1 \rangle$$
$$= \langle \xi_n, T * (1) \rangle$$
$$= c_n,$$

for every n = 0, 1, 2, ..., hence

$$T^{*}(1)(z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+1)\Gamma(\beta+1)}{\Gamma(n+\beta+2)} z^{n}.$$

$$= \frac{1}{\beta+1} \sum_{n=0}^{\infty} \frac{(1,n)(1,n)}{(\beta+2,n)(1,n)} z^{n}$$

$$= \frac{1}{(\beta+1)} F(1,1;\beta+2;z).$$

In view of following well-known Gauss identity

$$F(a,b;c;z) = (1-z)^{c-a-b}F(c-a,c-b;c;z),$$

and using the derivative formula for Gaussian hypergeometric function $F'(a, b; c; z) = \frac{ab}{c}F(a+1, b+1; c+1; z)$ (see [1]), we find

$$\begin{split} \int_{D} |(T^*(1)(z))'|^2 dm(z) &= \frac{1}{\pi(\beta+1)} \int_{0}^{2\pi} \int_{0}^{1} |F(2,2;\beta+3;re^{i\theta})|^2 \, dr \, d\theta \\ &= \frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} \frac{|1-re^{i\theta}|^{2(\beta-1)}}{(\beta+1)} \left| F(\beta+1,\beta+1;\beta+3,re^{i\theta}) \right|^2 \, dr \, d\theta. \end{split}$$

Now

$$\int_{0}^{2\pi} \int_{0}^{1} \left| 1 - re^{i\theta} \right|^{2(\beta-1)} dr \, d\theta \geq \int_{0}^{2\pi} \int_{0}^{1} (1-r)^{2\beta} \left| 1 - re^{i\theta} \right|^{-2} dr \, d\theta$$
$$\geq \int_{0}^{2\pi} \int_{0}^{1} (1-r)^{2\beta} \left| 2(1-re^{i\theta}) \right|^{-1} dr \, d\theta.$$

Since $|F(\beta+1,\beta+1;\beta+3,re^{i\theta})| \leq M$ if $0 \leq \beta < 1$ and the integral $\int_0^{2\pi} |2(1-re^{i\theta})|^{-1} d\theta$ is not finite, we get the function $T^*(1)$ is not in \mathcal{D} .

From the above Proposition, we obtain the following:

COROLLARY 3.5. The operator \mathcal{H}_{β} , for $0 \leq \beta < 1$ is not bounded on A^2 .

Proof. Using the integral form of \mathcal{H}_{β} given in Lemma 1, we have

$$\mathcal{H}_{\beta}(\xi_n)(0) = \frac{\Gamma(n+1)\Gamma(\beta+1)}{\Gamma(n+\beta+2)}, \quad n = 0, 1, 2, \dots$$

The desired result follows from the Proposition 7.

4. Competing Interests

The author declares that there is no conflict of interest regarding the publication of this article.

References

- G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge Univ. Press, 1999. http://www.cambridge.org/9780521623216
- C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
 https://doi.org/10.1201/9781315139920
- [3] E. Diamantopoulos, Hilbert matrix on Bergman spaces, Illinois J. Math., 48(3), (2004), 1067– 1078.
- https://doi.org/10.1215/ijm/1258131071
 [4] E. Diamantopoulos and A. G. Siskakis, Composition operators and the Hilbert matrix, Studia Math., 140, (2000), 191–198.
 - https://doi.org/10.4064/sm-140-2-191-198
- H. Hedenmalm, B. Korenblum, and K. Zhu, *Theory of Bergman spaces*, Graduate Texts in Mathematics, **199**, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-0497-8
- [6] S. Li, Generalized Hilbert operator on Dirichlet-type space, Appl. Math. Comput., 214, (2009), 304–309.
- https://doi.org/10.1016/j.amc.2009.03.073
- S. Li and S. Stević, Generalized Hilbert operator and Fejér-Riesz type inequalities on the polydisc, Acta Math. Sci., 29(B)(1), (2009), 191-200. https://doi.org/10.1016/S0252-9602(09)60020-5
- [8] S. Naik, Generalized Cesàro operators on certain function spaces, Ann. Polon. Math., 98(2), (2010), 189–199.
 - https://doi.org/10.4064/ap98-2-6
- [9] S. Naik, Cesàro type operators on spaces of analytic functions, Filomat, 25(4), (2011), 85–97. https://doi.org/10.2298/FIL1104085N
- [10] S. Naik, Generalized Cesàro operator on BMOA space, J. Anal., 29(1), (2021), 315–323. https://doi.org/10.1007/s41478-020-00266-6
- [11] S. Naik, Cesàro operator of order α on Bloch type spaces, J. Anal., 32(4), (2024), 2639–2646. https://doi.org/10.1007/s41478-024-00755-y
- S. Naik and P. K. Nath, Generalized Hilbert type operator on Hardy spaces, Comm. Math. Appl., 6(1), (2015), 1–8.
 https://doi.org/10.26713/cma.v6i1.271
- [13] S. Naik and K. Rajbangoshi, Generalized Hilbert operators on Bergman and Dirichlet spaces of analytic functions, Bull. Pol. Acad. Sci., 63(3), (2015), 227–235. https://doi.org/10.4064/ba8031-1-2016
- [14] A. G. Siskakis, Composition semigroups and the Cesàro operator on H^p, J. London Math. Soc., 36(2), (1987), 153–164.
 - https://doi.org/10.1112/jlms/s2-36.1.153
- [15] A. G. Siskakis, On the Bergman space norm of the Cesàro operator, Arch. Math. (Basel), 67, (1996), 312–318.
 - https://doi.org/10.1007/BF01197596
- [16] D. Vukotic, A sharp estimate for A^p_{α} functions in C^n , Proc. Amer. Math. Soc., **117**, (1993), 753–756.

https://doi.org/10.2307/2159138

Simi Bhuyan

Department of Applied Sciences, Gauhati University, Guwahati, Assam 781014, India *E-mail*: simi@gauhati.ac.in

Sunanda Naik

Department of Applied Sciences, Gauhati University, Guwahati, Assam 781014, India E-mail: snaik@gauhati.ac.in