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THE TENSOR PRODUCT OF TOPOLOGICAL MODULES OVER A

RING

Sung Myung

Abstract. Tensor products provide an essential tool in the theory of rings and
modules, but its topological structure has been rarely studied. In the present article,
we give a foundational description of a natural topology on the (algebraic) tensor
product of topological modules over a commutative topological ring. Our approach
is to give a topology directly to the algebraic tensor product instead of introducing
an universal object in the category of topological modules with respect to continuous
bilinear maps.

1. Introduction

Suppose that R is a commutative ring with unity. For modules M,N,P over a ring
R, a mapping f : M ×N → P is R-bilinear if it satisfies the following two conditions:
(1) f(ax1 + bx2, y) = af(x1, y) + bf(x2, y) for every a, b ∈ R, x1, x2 ∈M and y ∈ N
(2) f(x, ay1 + by2) = af(x, y1) + bf(x, y2) for every a, b ∈ R, x ∈M and y1, y2 ∈ N .

In other words, f is bilinear if f( , y) is a R-linear map from M into P for every
y ∈ N and f(x, ) is a R-linear map from N into P for every x ∈M .

For two modules M,N over a ring R, the tensor product M ⊗R N is an R-module
T together with an R-bilinear map ϕ : M × N → T with the following universal
property (c.f., [1]):
Given any R-module P and any R-bilinear map f : M×N → P , there exists a unique
R-linear map f ′ : T → P such that f = f ′ ◦ ϕ.

In case R is not commutative, M is a right R-module and N is a left R-module,
a tensor product M ⊗R N is defined to be an abelian group T with a R-bilinear
map ϕ : M × N → T such that, for any abelian group P and any R-bilinear map
f : M × N → P , there exists a unique group homomorphism f ′ : T → P satisfying
f = f ′ ◦ ϕ (c.f., [5]). In this case, an R-bilinear map f is defined to be a bi-additive
map, i.e., f(x1+x2, y) = f(x1, y)+f(x2, y) and f(x, y1+y2) = f(x, y1)+f(x, y2) such
that f(xa, y) = f(x, ay) for every a ∈ R, x ∈ M, y ∈ N . As with any definition using
some universal property, the uniqueness of M ⊗R N defined via universal property
can be proved quite easily.

Equivalently, the tensor product may be defined more explicitly as generators and
relations. Let C denote the free R-module with the set of free generators M ×N , i.e.,
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C = RM×N . The elements of C are expressions of the form
n∑

i=1

ai(xi, yi) with ai ∈ R,

xi ∈M , yi ∈ N . Let D be the submodule of C generated by all elements of C of the
following types:
(1) (x1 + x2, y)− (x1, y)− (x2, y),
(2) (x, y1 + y2)− (x, y1)− (x, y2),
(3) (ax, y)− a(x, y),
(4) (x, ay)− a(x, y),
for all x, x1, x2 ∈ M , y, y1, y2 ∈ N and a ∈ R. Then the tensor product M ⊗R N is
defined to be the quotient module C/D. We will write x⊗ y to denote the image of
(x, y) ∈ C in C/D. Then, by the definition, we have the following obvious relations:
(1’) (x1 + x2)⊗ y − x1 ⊗ y − x2 ⊗ y,
(2’) x⊗ (y1 + y2)− x⊗ y1 − x⊗ y2,
(3’) (ax)⊗ y − a(x⊗ y),
(4’) x⊗ (ay)− a(x⊗ y),
for all x, x1, x2 ∈M , y, y1, y2 ∈ N and a ∈ R.

To show that these two definitions of a tensor product M ⊗RN are in fact isomor-
phic, we need to prove that the tensor product defined via the explicit construction
satisfies the universal property. Let T = C/D in the above definition and let us prove
first that ϕ : M × N → T where ϕ(x, y) = x ⊗ y is R-biliear. But, this follows
directly from the relations we listed before. On the other hand, let f : M × N → P
be any R-bilinear map. We can extend f to an R-linear map f : C → P since C
is the free module with the set M × N of free generators. Clearly, f vanishes on
the generating elements of the submodule D in the definition of tensor product via a
concrete construction. Therefore, f induces an R-linear map f ′ : T → P such that
f ′(x ⊗ y) = f(x, y). The mapping f ′ is uniquely determined by this condition and
thus (T, ϕ) satisfies the universal property.

Now suppose that R is a topological commutative ring with unity, which means
that the addition and multiplication R×R→ R are continuous as maps. Also suppose
that M,N are topological R-modules, that is, R-modules where scalar multiplication
R ×M → M and the addition M ×M → M are continuous as maps. We define
a topology on M ⊗R N as a quotient topology of (M × N)∞ which is introduced in
Section 2.

In Section 3, basic properties of the topology on the tensor product are given.
Especially, we look into the tensor product of locally compact topological abelian
groups like R. It turns out that a tensor product of R with itself is not locally
compact although it is compactly generated.

Our study is to give a topology directly to the algebraic tensor product, not as
an object in the category of topological modules over R with an obvious universal
property with respect to the continuous bilinear maps. The latter approach would
be similar to the one adopted in [2]. The reason behind this is that dealing directly
with algebraic tensor product enables us to apply the topological method to the
algebraically defined object like Milnor’s K-theory of a field, which happens to be a
topological field (c.f., [7]).
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2. The Topology on the Tensor Product

Let R be a topological commutative ring with unity and M be a topological R-
module. All topological rings and modules are assumed to be Hausdorff. Let Mn =
M×M×· · ·×M be the product of n-copies of M . Mn is given the product topology.
Then Mn can be regarded as a subspace of Mn+1 via the injective map (x1, . . . , xn) 7→
(x1, . . . , xn, 0). Now the product space M × N can be given the obvious R-module
direct sum structure M ⊕ N and we will switch back and forth between these two
notations.

If N is another topological R-module, let (M × N)∞ be the union
⋃

n→∞

Mn ×

Nn of the topological spaces Mn × Nn under the obvious injective maps Mn ×
Nn → Mn+1 × Nn+1, which sends the pair ((x1, . . . , xn), (y1, . . . , yn)) to the pair
((x1, . . . , xn, 0), (y1, . . . , yn, 0)). The set (M × N)∞ is endowed with the direct limit
topology (c.f., [11]), which is also called the inductive limit topology. In other words,
a subset U of (M ×N)∞ is defined to be open if U ∩Mn ×Nn is open in Mn ×Nn

for every positive integer n.

Now we define the topology on M ⊗R N .

Definition 2.1. For a topological commutative ring R with unity and two topo-
logical R-modules M,N , let p : (M × N)∞ → M ⊗R N be the map which sends an
element ((x1, . . . , xn), (y1, . . . , yn)) of Mn × Nn to

∑n
i=1(xi ⊗ yi). We give M ⊗R N

the quotient topology with respect to this map p.

In this definition, p is obviously surjective and the quotient topology is the finest
topology which makes p a continuous map.

The main technical difficulty with this definition stems from the fact that the
product of quotient maps is in general no longer a quotient map. So, before we
proceed, we recall some definitions in topology. A continuous map f : C → X from
a compact Hausdorff space C is called a “test map”. A space X is called “weakly
Hausdorff” if the image of every test map is closed. Note that a Hausdorff space is
weakly Hausdorff. A weakly Hausdorff space is a T1-space. If X is weakly Hausdorff,
then the image of every test map is Hausdorff.

A subset A of a space X is called “k-closed” if, for every test map f : K → X,
f−1(A) is closed inK. Similarly, a subset U ofX is called “k-open” if f−1(U) is open in
K for each test map f : K → X. The k-open sets in X form a topology on X and the
consequent topological space is denoted by kX (c.f., [11]). In particular, kX is same
as X as a set, but the topology on kX is finer than X in general. For every compact
Hausdorff space K, we have a natural bijection TOP (K, kX) ' TOP (K,X), where
TOP denotes the set of continuous maps. X is called a “k-space” (a.k.a. compactly
generated space) if X and kX have the same topology. Every k-space is characterized
as a quotient space of a locally compact space.

Since a product of k-spaces is not always a k-space, we use the notation X ×k Y
for the product of two k-spaces X and Y in the category k − TOP of k-spaces. If X
and Y are k-spaces and two maps f : X → X ′ and g : Y → Y ′ are quotient maps,
then the product map f × g : X ×k Y → X ′ ×k Y

′ is a quotient map.

Let C be a cover of X. The space X is said to be determined by its cover C if a
subset U of X is open in X if and only if U ∩ C is relatively open in C for every
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C ∈ C. (c.f., [9]). Using this terminology, a space is a k-space if it is determined by
the cover of all compact subsets.

A topological space X is called a kω-space if it is determined by a cover C of
countably many compact subsets (c.f., [9]).

Note that (M × N)∞ with the direct limit topology is not a topological group in
general, but it is a topological group if M and N are locally compact (c.f. [10]). The
following theorem is a fundamental result on the topology of tensor products. Recall
that a space is second-countable if it has a countable basis.

Theorem 2.2. Let R be a locally compact second-countable topological commu-
tative ring with unity. For locally compact second-countable topological modules M
and N , M ⊗R N is a topological module over R.

Proof. Let f : (M × N)∞ × (M × N)∞ → (M × N)∞ be the map given by send-
ing the pair of elements ((x1, x2, . . . ), (y1, y2, . . . )) and ((x′1, x

′
2, . . . ), (y

′
1, y
′
2, . . . )) to

the element ((x1, x
′
1, x2, x

′
2, . . . ), (y1, y

′
1, y2, y

′
2, . . . )). Since f just permutes the coor-

dinates, it is a homeomorphism. The map f gives rise to (M × N)∞ a continu-
ous (non-associative) binary operation. Note that Mn × Nn is also locally compact
and second countable and thus is Lindelöf (c.f., [8]), for every positive integer n.
Hence, Xn = p(Mn × Nn) under the map p in Definition 2.1 is a kω-space and
so Xn × Xn is a k-space for every positive integer n by Corollary 10 of [9]. This
shows that p × p : (Mn × Nn) × (Mn × Nn) → Xn × Xn is also a quotient map
by Proposition 5.8 in Appendix A of [6]. Now we have to apply the direct limit,
but, in general, it is not necessarily true that lim

→
(Xn × Xn) = lim

→
(Xn) × lim

→
(Xn)

(e.g., [4]). But, in our case, every Xn is a kω-space for every n, and so we have
lim
→

(Xn ×Xn) = lim
→

(Xn)× lim
→

(Xn) by Proposition 4.7 of [3]. Therefore, we see that

p× p : (M ×N)∞ × (M ×N)∞ → (M ⊗R N)× (M ⊗R N) is a quotient map. Since
p ◦ f = + ◦ (p× p), we have the following commutative diagram.

(M ×N)∞ × (M ×N)∞
f //

p×p
��

(M ×N)∞

p

��
(M ⊗R N)× (M ⊗R N)

+ // M ⊗R N

By the universal property of a quotient map p× p, the addition map + for M ⊗R N
is continuous. Similarly, the scalar multiplication can be shown to be continuous.

3. Properties of the Topology on the Tensor Product

Proposition 3.1. Suppose that we have two R-linear maps α : M → M ′ and
β : N → N ′ of locally compact second-countable topological R-modules. Then the
algebraically induced map α⊗ β : M ⊗R N →M ′ ⊗R N

′ is continuous.

Proof. A proof is given by the fact that α × β induces a continuous map from
Mn ×Nn to M ′n ×N ′n for every positive integer n. Pass to the direct limit as in the
proof of Theorem 2.2.

As for the tensor product of connected modules, we obtain a connected module.
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Proposition 3.2. Suppose thatM and N are connected topological modules over
R. Then M ⊗R N is also connected.

Proof. Mn×Nn is connected for every positive integer n. Thus, the union (M×N)∞

of these spaces is connected. Therefore, its image M ⊗R N is also connected.

So, for example, if one takes R = Z with the discrete topology, we are dealing
with topological abelian groups. In this case, we just write ⊗ to replace ⊗Z. By the
previous Proposition, R⊗ R, C⊗ C, C× ⊗ C× are all connected.

As for R× ⊗ R×, we have two connected components. Note that (R×)n × (R×)n

has 22n connected components determined by signs of 2n coordinates. For every
element ((x1, . . . , xn), (y1, . . . , yn)) of (R×)n × (R×)n, we can associate the product of
the Hilbert symbols (x1, y1)R× · · · (xn, yn)R, where the Hilbert symbol ( , )R is 1 if at
least one of the coordinates is positive and −1 if all coordinates are negative. Since
the Hilbert symbol is continuous, R× ⊗ R× has at least two connected components.
On the other hand, if one of the coordinates, say x1 is positive, then (x1, y1) is in
the same component as (1, y1). Now, the image of (1, y1) under the quotient map p
in Definition 2.1 is equal to the image (1, y21) by the definition of the tensor product.
Therefore, one sees that every element is in the component containing 1⊗1 or −1⊗−1
and so R× ⊗ R× has two connected components. This argument extends to a tensor
power of the group of nonzero real numbers and one concludes that R× ⊗ · · · ⊗ R×
has two connected components no matter how many copies of R× are tensored.

Example 3.3. R⊗ R is not locally compact, but is a k-space. Since R⊗ R is the
topological quotient of a k-space R∞, it is compactly generated. On the other hand,
let Xn = p((R× R)n) where p : (R× R)∞ → R⊗ R is the quotient map. Each Xn is
closed in R⊗ R and we have R⊗ R =

⋃∞
n=1Xn. Now we let U be an arbitrary open

neighborhood of 0 in R⊗R and let us prove that the closure of U cannot be compact.
To see this, construct an infinite tower of distinct subfields Q < k1 < k2 < · · · of R and
since the tensor product by a field, which is flat as an additive abelian group, preserves
an injective map, we have the strict inclusion ki ⊗ ki ( ki+1 ⊗ ki+1 of subgroups of
R⊗ R. Since ki ⊗ ki is dense in R⊗ R, one can find an element zn ∈ U which is also
an element of ∈ ki+1 ⊗ −ki ⊗ ki. Now the set Z = {zn|n = 2, 3, . . . } is a discrete
closed subset of R⊗R and has no limit point in R⊗R. So, the closure of U cannot be
compact in R by Theorem 28.1 of [8] and consequently R⊗R is not locally compact.

One notes that every compact subset Z of R ⊗ R is contained in Xn for some n
with the same notation as in the previous example. To see this, one notes that R⊗R
is the union of Xn’s (n = 1, 2, . . . ) and let Yn = Xn ∩ Z. If Z is not contained in
some Xn, then one has a sequence wn of points in R ⊗ R such that wn ∈ Yn − Yn−1
(n = 2, 3, . . . ). The infinite set A = {xn|n = 2, 3, . . . } is a closed subset of Z and this
contradicts to the fact that Z is compact. Therefore, Z is in Xn for some n. Note
also that Xn is the image of a simply connected space (R× R)n.

Example 3.4. By a similar argument as in Example 3.3, one can see that R/Z⊗
R/Z is not compact. Therefore, the tensor product of two compact modules is not
necessarily compact.
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