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A PRIORI ESTIMATES FOR SOLUTIONS TO ELLIPTIC

EQUATIONS IN LONG DOMAINS

Sungwon Cho

Abstract. We consider a second-order linear uniformly elliptic partial differen-
tial operator in non-divergence form. For the operator, there is a well-known
Aleksandrov-Bakel’man-Pucci estimate(ABP estimate, in short). Following the
proof of the original ABP estimate, using a rectangular cone than a circular cone,
we obtain a smaller constant than the original estimate for the upper bound. Also,
we show that our improved result implies the original ABP estimate and is more
useful for long domains than the original one.

1. Introduction

In this paper, we treat a second-order linear uniformly elliptic partial differential
operator. In particular, we will consider the following operator of the nondivergence
form:

(L) L =
n∑

i,j=1

aij(x)Dij +
n∑

i=1

bi(x)Di + c(x).

Here, Dij represents a partial derivative in the xi, xj-direction, namely,

Dij = DiDj =
∂2

∂xj∂xi

, and Di =
∂

∂xi

for i, j = 1, . . . , n in the considered domain lying in Rn for n ∈ N.
The coefficients are assumed to be measurable but not necessarily continuous. Uni-

form ellipticity means that the second-order coefficients aij satisfy, for some strictly
positive constants c0, C0,

(UE) c0|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ C0|ξ|2, ξ = (ξ1, ξ2, . . . , ξn)

for any x ∈ Ω(⊂ Rn) and ξ ∈ Rn. Without loss of generality, we will assume

aij(x) = aji(x) for each i, j = 1, 2, ..., n.
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For a given domain, we assume it is an open and connected subset of Rn, n ≥ 1.
The classical Aleksandrov-Bakel’man-Pucci estimate (the ABP estimate, in short)

states the following

Theorem 1.1. Let Ω be a bounded and open set in Rn, and let L be a second-order
uniformly elliptic (UE) differential operator in nondivergence form (L). In addition,
let u be a function in W 2,n

loc (Ω) ∩ C(Ω) such that Lu ≥ f in Ω, and bi, f ∈ Ln(Ω),
c(x) ≤ 0. Then,

sup
Ω

u := sup
x∈Ω

u(x) ≤ sup
∂Ω

u+ + C1 · diam(Ω) · eC1S∥f−∥Ln(Ω),

where ∂Ω denotes its topological boundary, u+ := max{u, 0}, f− := max{−f, 0},

S := S(Ω) :=
n∑

i=1

∫
Ω

|bi|ndx,

∥f−∥Ln(Ω) :=

(∫
Ω

|f−|ndx
)1/n

, the norm of the function f− in Ln(Ω),

diam(Ω) is a diameter of Ω, and C1 is a positive constant depending only on c0, C0

and n.

Originally, ABP estimate is proved by Aleksandrov and other mathematicians [1–
3,14], and an important tool in elliptic PDE. See [8,10,12] for example. For a detailed
history of the ABP estimate, one may refer to [9, 11] and references therein. For a
proof, one may refer to [2], [9, (9.14)]. The above version is modified from [13, Theorem
1.1] to our purpose.

For the case of f ≥ 0, it easily reduces to a maximum principle of the following
form:

Corollary 1.1. Let Ω be a open and bounded set in Rn, and let u be a function
belong to W 2,n

loc (Ω) ∩ C(Ω) such that Lu ≥ 0 in Ω. Then, the positive maximum of u
is attained on ∂Ω.

Similarly, if Lu ≤ 0 in Ω, then the negative minimum of u is attained on ∂Ω.

In this paper, we are interested in replacing the constant of diam(Ω) with some
other constants which is a character of the given domains. This result gives us a
better estimate for long domains. See Theorem 3.1, Theorem 3.3 and Remark 3.6.
Also, we need to point out that Cabre obtained a different kind of geometric constant.
See [4, 5].

In section 2, we prepare some preliminaries, especially ABP estimate for L without
lower order terms. In section 3, we present the main result, Theorem 3.1. The estimate
from the main result is useful for the long domain. See Remark 3.6.

For simplicity, we will treat an operator with the second-order terms only, without
lower-order terms. But one can generalize to the general elliptic operator (L).

Concluding the introductory section, we enlist some notations which will be used
later. The set of first n natural numbers is denoted by In. Namely, In := {1, 2, ..., n}.

In this paper, we are interested in a rectangular domain:

Q(ri,si) := {x ∈ Rn | ∀i ∈ In, ri < xi < si, x = (x1, ..., xn)}.
Br(x) is a open ball of radius r centered at x, namely,

Br(x) := {y ∈ Rn : |y − x| < r}.
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For simplicity, we use Br for Br(0). ωn denotes the n-dimensional measure of a unit
ball, ωn := |B1|.

The diameter of any given domain is denoted by diam(Ω) which means supx,y∈Ω{|x−
y|}. The topological boundary of a given domain Ω is denoted by ∂Ω.

2. Preliminaries

In this section, we provide a proof of ABP estimate, Theorem 1.1 for a simplified
case L0 of L, where

(L0) L0 =
n∑

i,j=1

aij(x)Dij.

Note that L turn into L0 if bi = c = 0. The idea of the proof will be adapted to the
proof of the main results. For more general cases with low-order terms, one may refer
to [4–7,9, 15].

Firstly, we introduce two definitions, the upper contact set and normal mapping.

Definition 2.1. If u ∈ C(Ω), we can define the upper contact set of u with a
notation of Γ+ or Γ+

u , to be a subset of Ω,

Γ+ = {y ∈ Ω | ∃p = p(y) ∈ Rn, ∀x ∈ Ω, u(x) ≤ u(y) + p · (x− y)}.

When u ∈ C1(Ω), then it necessarily p(y) = Du(y). For the next, we define the
normal mapping:

Definition 2.2. For u ∈ C(Ω), the normal mapping, denoted by χ(y) = χu(y),
means the following:

χ(y) = {p ∈ Rn | ∀x ∈ Ω, u(x) ≤ u(y) + p · (x− y)}.

In particular, if u ∈ C1(Ω), then χ is the gradient vector field of u on Γ+.

Example 2.3. We present the circular cone centered at the origin, radius of r > 0,
maximum of M > 0 at 0.

u(x) = M

(
1− |x|

r

)
.

By direct computation, χu(x) =

{
Mx
r|x| for x ̸= 0,

BM/r(0) for x = 0.

Thus, we have |χu(Ω)| = |BM/r|.

For the next, we consider a rectangular cone.

Example 2.4. For M, ri, si > 0, i = 1, ..., n, let

Ω := {x ∈ Rn | − ri < xi < si, i = 1, ..., n, x = (x1, ..., xn)}
and

v(x) = v(x1, ..., xn) = min
i∈In

min{M
ri
(ri + xi),

M

si
(si − xi)}.

Then χv(Ω) = [−M
s1
, M
r1
]× · · · × [−M

sn
, M
rn
]. Thus,

|χv(Ω)| = Mn
∏
i∈In

si + ri
siri

.
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The following two lemmas are basically from [9].

Lemma 2.5. For u ∈ C2(Ω) ∩ C0(Ω) we have

sup
Ω

u ≤ sup
∂Ω

u+
d

ω
1/n
n

(∫
Γ+

|detD2u|
)1/n

where d = diam(Ω).

Proof. Considering u − sup∂Ω u, without loss of generality, we may assume that
u ≤ 0 on ∂Ω.

Now we show that the maximum value of u can be estimated in terms of |χ(Ω)|.
Let maxΩ u = u(y), and k be the function whose graph is the cone K with vertex
(y, u(y)) and base ∂Ω. Then χk(Ω) ⊂ χu(Ω). Since each supporting hyperplane of K,

there exists a parallel hyperplane tangent to the graph of u. Now let k̃ be the function
whose graph is the cone K̃ with vertex (y, u(y)) and base Bd(y). Here, Bd(y) is an
open ball in Rn centered at y of radius d, and d is the diameter of the domain Ω. It
is clear that χk̃(Ω) ⊂ χk(Ω). By Example 2.3,

ωn

(
u(y)

d

)n

= |χk̃(Ω)| ≤ |χk(Ω)| ≤ |χu(Ω)|.

By definition of χ,

(1) |χu(Ω)| = |χ(Γ+)| = |Du(Γ+)|

Since the Jacobian matrix of Du : Γ+
u → Rn, D2u, is negative semi-definite, Du−

ϵIdn has a maximal rank for an arbitrary ϵ > 0, where Idn is the n×n identity matrix.
From the transformation formula for multiple integrals, we have

(2) |(Du− ϵIdn)(Γ
+
u )| ≤

∫
Γ+
u

|det(D2u− ϵIdn)|.

Letting ϵ → 0+, combining (1), (2), we have

|χu(Ω)| = |Du(Γ+)| ≤
∫
Γ+
u

|detD2u|.

Now we have

ωn

(
u(y)

d

)n

≤
∫
Γ+

|detD2u|,

which leads to the completion of the proof.

Lemma 2.6. For u ∈ C2(Ω) ∩ C0(Ω), we have

(3) |detD2u| ≤ 1

det(aij)
·
(
−aijDiju

n

)n

on Γ+. Thus, we have

(4) sup
Ω

u ≤ sup
∂Ω

u+
d

nω
1/n
n

∥∥∥∥−aijDiju

D1/n

∥∥∥∥
Ln(Γ+)

,

where d = diam(Ω), D = det(aij).
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Proof. Note that D2u is nonpositive on Γ+. Thus, −D2u becomes a positive sym-
metric.

For a proof, considering A = −D2u, B = (aij), it is enough to show that the
following claim: for positive symmetric matrix A and B,

detAdetB ≤
(
tr(AB)

n

)n

,

where tr(·) denotes the trace operator.
Note that B = ODBO

T for some orthonormal matrix O, diagonal matrix DB.
Then B = O

√
DB

√
DBO

T = O
√
DBO

TO
√
DBO

T . Let
√
B = O

√
DBO

T . Then

tr(AB) = tr(A
√
B
√
B)

= tr(
√
BA

√
B) (since tr(XY Z) = tr(ZXY ))

≥ n
n

√
det

√
BA

√
B (using

√
BA

√
B is symmetric.)

= n
n
√
detAB = n

n
√
detAdetB,

which leads to (3). By Lemma 2.5, we have (4).

Note that c0 ≤ D1/n ≤ C0 from the uniform elliptic condition, (UE). Thus, in our
setting, the denominator of (4) is bounded.

Now we present the simplified ABP estimate with its proof. For a proof of ABP
estimate of Theorem 1.1 with lower order terms, one may refer to [9].

Theorem 2.1. Let Ω be a bounded and open set in Rn, and let L0 be a second-
order uniformly elliptic (UE) differential operator in the simplified nondivergence form
(L0). In addition, let u be a function in W 2,n

loc (Ω) ∩ C(Ω) such that Lu ≥ f in Ω, and
f ∈ Ln(Ω). Then,

(5) sup
Ω

u := sup
x∈Ω

u(x) ≤ sup
∂Ω

u+ +
diam(Ω)

nω1/n

∥∥∥∥ f−
D1/n

∥∥∥∥
Ln(Ω)

,

where ∂Ω denotes its topological boundary, u+ := max{u, 0}, f− := max{−f, 0},

∥f−∥Ln(Ω) :=

(∫
Ω

|f−|ndx
)1/n

, the norm of the function f− in Ln(Ω),

diam(Ω) is a diameter of Ω, and D = det(aij).

Proof. Let aijDiju ≥ f in Ω. Thus, we have 0 ≤ −aijDiju ≤ −f ≤ f− in Γ+
u ,

where f− := max{−f, 0}.
Combining Lemma 2.5 and Lemma 2.6, we obtain (5) for u ∈ C2(Ω). Now, we

generalize these results to functions u ∈ C0(Ω)∩W 2,n
loc (Ω) by a standard approximation

argument.
Let {um} be a sequence of functions in C2(Ω) converging in W 2,n

loc (Ω) to u. For
arbitrary ϵ > 0, assume that um converges to u in W 2,n(Ωϵ) and um ≤ ϵ+sup∂Ω u+ = ϵ
on ∂Ωϵ, where

Ωϵ ⊂⊂ Ω, Ωϵ1 ⊂ Ωϵ2 for ϵ2 ≤ ϵ1, ∪ϵΩϵ = Ω.

Applying Lemma 2.6 to um in Ωϵ, we have

sup
Ωϵ

um ≤ sup
∂Ωϵ

um +
diam(Ω)

nω
1/n
n

∥∥∥∥−aijDijum

D1/n

∥∥∥∥
Ln(Γ+

um∩Ωϵ)

.
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Note that, on Γ+
um

,

0 ≤ −aijDijum ≤ −aijDij(um − u)− aijDiju ≤ −aijDij(um − u) + f−.

Also,
∥Dij(um − u)∥Ln(Ωϵ) → 0+ in Ω, ∥f−∥Ln(Γ+

um∩Ωϵ)
≤ ∥f−∥Ln(Ωϵ),

um → u uniformly on Ωϵ. Thus in all,

sup
Ωϵ

u ≤ ϵ+ sup
∂Ω

u+ +
diam(Ω)

nω
1/n
n

∥∥∥∥ f−
D1/n

∥∥∥∥
Ln(Ωϵ)

.

Now the desired estimate follows after taking ϵ → 0+.

3. The main results

In this section, we present the main result, Theorem 3.1, and generalize it to
Theorem 3.3. The idea is to follow the idea of the original ABP estimate, Theorem 2.1,
using a rectangular cone from Example 2.4 than a circular cone from Example 2.3.

3.1. Rectangular domains. In this subsection, we consider the case of rectangular
domain, Ω = Q(ri,si).

Theorem 3.1. Let u ∈ W 2,n
loc (Q(ri,si)) ∩ C0(Q(ri,si)), where

Q(ri,si) := {x ∈ Rn | ri < xi < si, i = 1, ..., n, x = (x1, ..., xn)}
for ri, si ∈ R, ri < si, i = 1, ..., n. Also, L0u ≥ f in Q(ri,si) for some f ∈ Ln(Q(ri,si)).
Then, we have

(6) sup
Q(ri,si)

u ≤ sup
∂Q(ri,si)

u+
1

n
·

(∏
i∈In

d−i d
+
i

(d−i + d+i )

)1/n ∥∥∥∥ f−
D1/n

∥∥∥∥
Ln(Γ+)

,

where u(y) = supQ(ri,si)
u for some y ∈ Q(ri,si), y = (y1, ..., yn), d

−
i = d−i (y) := yi − ri,

d+i = d+i (y) := si − yi, D = det(aij).
Also, we have

(7) sup
Q(ri,si)

u ≤ sup
∂Q(ri,si)

u+
1

n
·

(∏
i∈In

(si − ri)

4

)1/n ∥∥∥∥ f−
D1/n

∥∥∥∥
Ln(Γ+)

.

Proof. Basically, we follow the proof of Lemma 2.5 and Lemma 2.6 with a condition
of Ω = Q(ri,si) and u(y) = maxΩ u.

First, we assume that u ∈ C2(Q(ri,si)). Considering u−sup∂Q(ri,si)
u, we can assume

that u ≤ 0 on ∂Q(ri,si).
Let k be the function whose graph is the rectangular cone K with vertex (y, u(y))

and base ∂Q(ri,si). Similar to Lemma 2.5, χk(Ω) ⊂ χu(Ω).
By Example 2.4,

(u(y))n
∏
i∈In

(d−i + d+i )

d−i d
+
i

= |χk(Ω)| ≤ |χu(Ω)|.

By definition of χ and the change of variables formula,

|χu(Ω)| = |χ(Γ+)| = |Du(Γ+)| ≤
∫
Γ+

|detD2u|.
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By Lemma 2.6 and the fact that aijDiju ≤ 0 on Γ+, we finished the proof of (6). For
(7), note that ∏

i∈In

d−i d
+
i

(d−i + d+i )
≤
∏
i∈In

(si−ri)
2

4

(si − ri)
≤
∏
i∈In

(si − ri)

4
.

Here we used the fact that

(yi − ri)(si − yi) ≤
(
si − ri

2

)2

for each yi ∈ (ri, si), i ∈ In.

For a generalization to u ∈ W 2,n
loc , we follow the proof of Theorem 2.1. We omit

details.

For an application, we show a distance weighted estimate:

Corollary 3.2. Let d(y) = dist(y, ∂Q(ri,si)) = min{sj − yj, yj − rj} for some
j ∈ In. Then

sup
Q(ri,si)

u ≤ sup
∂Q(ri,si)

u+
d(y)1/n

n
·

 ∏
i∈In\{j}

di
4

1/n ∥∥∥∥aijDiju

D1/n

∥∥∥∥
Ln(Γ+)

,

where di = si − ri.

Proof. Note that d(y) = mini∈In min{d−i , d+i }. Without loss of generality, let d(y) =
d−j for some j ∈ In. Note that

d−j d
+
j

(d−j + d+j )
≤ d(y)

dj
dj

= d(y),
d−i d

+
i

(d−i + d+i )
≤ (di/2)

2

di
=

di
4

for j ̸= i. This completes the proof from (6).

3.2. General domains. In this subsection, we consider the general bounded domain
of Ω ⊂ Rn. We consider the case of Ω ⊂ Qri,si , Theorem 3.3, and Ω ⊂ BR/2,
Corollary 3.4.

Theorem 3.3. Let u ∈ W 2,n
loc (Ω) ∩ C0(Ω), and

Ω ⊂ Q(ri,si) := {x ∈ Rn | ri < xi < si, i = 1, ..., n, x = (x1, ..., xn)}

for ri, si ∈ R, ri < si, i = 1, ..., n. Also, L0u ≥ f in Ω for some f ∈ Ln(Ω). Then, we
have

sup
Ω

u ≤ sup
∂Ω

u+
1

n
·

(∏
i∈In

d−i d
+
i

(d−i + d+i )

)1/n ∥∥∥∥ f−
D1/n

∥∥∥∥
Ln(Γ+)

,

where u(y) = supΩ u for some y ∈ Ω, y = (y1, ..., yn), d
−
i = d−i (y) := yi − ri, d

+
i =

d+i (y) := si − yi.
Also, we have

sup
Ω

u ≤ sup
∂Ω

u+
1

n
·

(∏
i∈In

(si − ri)

4

)1/n ∥∥∥∥ f−
D1/n

∥∥∥∥
Ln(Γ+)

.
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Proof. Basically, we follow the proof of Theorem 3.1 with a condition of Ω ⊂ Q(ri,si).
First, we assume that u ∈ C2(Q(ri,si)).

Considering u−sup∂Ω u, we can assume that u ≤ 0 on ∂Ω. If u ≤ 0 in Ω, then there
is nothing to prove. Let maxΩ u = u(y) > 0, and k be the function whose graph is the
cone K with vertex (y, u(y)) and base ∂Ω. Similar to Lemma 2.5, χk(Ω) ⊂ χu(Ω).

Now let k̃ be the function whose graph is the cone K̃ with vertex (y, u(y)) and base
∂Q(ri,si). It is clear that χk̃(Ω) ⊂ χk(Ω). By Example 2.4,

(u(y))n
∏
i∈In

d−i + d+i
d−i d

+
i

≤ |χk̃(Ω)| ≤ |χk(Ω)| ≤ |χu(Ω)|.

By definition of χ and the change of variables formula,

|χu(Ω)| = |χ(Γ+)| = |Du(Γ+)| ≤
∫
Γ+

|detD2u|.

Now we have

(u(y))n
∏
i∈In

d−i + d+i
d−i d

+
i

≤
∫
Γ+

|detD2u|.

The remaining part of the proof is the same as Theorem 3.1.

Corollary 3.4. Let u ∈ W 2,n
loc (Ω) ∩ C0(Ω) and the domain Ω satisfies that Ω ⊂

BR/2. Also, L0u ≥ f in Ω for some f ∈ Ln(Ω). Then we have

sup
Ω

u ≤ sup
∂Ω

u+
R

2n

∥∥∥∥ f−
D1/n

∥∥∥∥
Ln(Γ+)

.

Proof. After translation, one may assume that u(0) = supΩ u, Ω ⊂ BR(0) = BR.
Since Ω ⊂ BR, Ω ⊂ Q(−Ri,Ri) for Ri = R for each i ∈ In. By Theorem 3.3, (3.3),

sup
Ω

u ≤ sup
∂Ω

u+
R

2n

∥∥∥∥ f−
D1/n

∥∥∥∥
Ln(Γ+)

.

Remark 3.5. Corollary 3.4 corresponds to the usual ABP estimates. Thus, our
result, Theorem 3.1, implies the standard ABP estimate without lower-order terms,
Theorem 2.1. Also, see [9, Problems 9.1].

Remark 3.6. Here, we compare the result of ABP estimate with Theorem 3.3.
For the right-hand side term, we have

diam(Ω)

nω
1/n
n

and
1

n
·

(∏
i∈In

(si − ri)

4

)1/n

from Theorem 2.1 and Theorem 3.3, respectively.
Consider the domain of Ω := (−r, r)× (−1

r
, 1
r
) lying in Rn. Note that

diam(Ω)

nω
1/n
n

≥ 2r

nω
1/n
n

→ ∞,

but

1

n
·

(∏
i∈In

(si − ri)

4

)1/n

=
1

2
· 1
4
·
√

2r × 2

r
=

1

4
.



A priori estimates for solutions to elliptic equations in long domains 165

Thus, the estimate from Theorem 3.3 does hold with a smaller constant than one
from Theorem 2.1 even when the domain is long enough.
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