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A PRIORI ESTIMATES FOR SOLUTIONS TO ELLIPTIC
EQUATIONS IN LONG DOMAINS

SuNGWON CHO

ABSTRACT. We consider a second-order linear uniformly elliptic partial differen-
tial operator in non-divergence form. For the operator, there is a well-known
Aleksandrov-Bakel’'man-Pucci estimate(ABP estimate, in short). Following the
proof of the original ABP estimate, using a rectangular cone than a circular cone,
we obtain a smaller constant than the original estimate for the upper bound. Also,
we show that our improved result implies the original ABP estimate and is more
useful for long domains than the original one.

1. Introduction

In this paper, we treat a second-order linear uniformly elliptic partial differential
operator. In particular, we will consider the following operator of the nondivergence
form:

Here, D;; represents a partial derivative in the x;, z;-direction, namely,

0? 0
D;;=DD; = ———, dD;,=—
J J 81’385{,’1 a Ox;
fori,5 =1,...,n in the considered domain lying in R" for n € N.

The coefficients are assumed to be measurable but not necessarily continuous. Uni-
form ellipticity means that the second-order coefficients a;; satisfy, for some strictly
positive constants cg, Cy,

(UE) l¢? <) ay(@)68 < Golél?, €= (&6, ... 6)
ij=1
for any z € Q(C R") and ¢ € R". Without loss of generality, we will assume

a;;(z) = a;i(x) foreachi,j=1,2,... n.
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For a given domain, we assume it is an open and connected subset of R™, n > 1.
The classical Aleksandrov-Bakel’'man-Pucci estimate (the ABP estimate, in short)
states the following

THEOREM 1.1. Let €2 be a bounded and open set in R", and let L be a second-order
uniformly elliptic (UE) differential operator in nondivergence form (L). In addition,
let u be a function in W2"(Q) N C(Q) such that Lu > f in Q, and b;, f € L™(Q),
c(x) <0. Then,

supu := supu(z) < supuy + Cy - diam () - 5| f_|
Q zeQ o9

L™ ()

where 0) denotes its topological boundary, u, := max{u,0}, f_ := max{—f,0},
S :=5(Q) = Z/ |b;|"dx,
i=1 /&

1/n
| f=lln(o) = </ |f|"da:> , the norm of the function f_ in L"(2),
Q

diam()) is a diameter of €2, and C is a positive constant depending only on ¢y, Cy
and n.

Originally, ABP estimate is proved by Aleksandrov and other mathematicians [1-
3,14], and an important tool in elliptic PDE. See [8,10,12] for example. For a detailed
history of the ABP estimate, one may refer to [9,11] and references therein. For a
proof, one may refer to [2], [9, (9.14)]. The above version is modified from [13, Theorem
1.1] to our purpose.

For the case of f > 0, it easily reduces to a maximum principle of the following
form:

COROLLARY 1.1. Let €2 be a open and bounded set in R", and let u be a function
belong to W2 (Q) N C(Q) such that Lu > 0 in Q. Then, the positive maximum of u
is attained on Of).

Similarly, if Lu < 0 in §2, then the negative minimum of u is attained on 0f).

In this paper, we are interested in replacing the constant of diam(2) with some
other constants which is a character of the given domains. This result gives us a
better estimate for long domains. See Theorem 3.1, Theorem 3.3 and Remark 3.6.
Also, we need to point out that Cabre obtained a different kind of geometric constant.
See [4,5].

In section 2, we prepare some preliminaries, especially ABP estimate for L without
lower order terms. In section 3, we present the main result, Theorem 3.1. The estimate
from the main result is useful for the long domain. See Remark 3.6.

For simplicity, we will treat an operator with the second-order terms only, without
lower-order terms. But one can generalize to the general elliptic operator (L).

Concluding the introductory section, we enlist some notations which will be used
later. The set of first n natural numbers is denoted by I,,. Namely, I,, := {1,2,...,n}.

In this paper, we are interested in a rectangular domain:

Qs ={x e R"|Vie I, 1, < x; < 53,0 = (21, ..., T) }
B,.(z) is a open ball of radius r centered at x, namely,
By (z) ={yeR": |y —x| <r}.
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For simplicity, we use B, for B,(0). w, denotes the n-dimensional measure of a unit
ball, w, := |By].

The diameter of any given domain is denoted by diam(£2) which means sup,, ,cq{|r—
y|}. The topological boundary of a given domain €2 is denoted by 0f2.

2. Preliminaries

In this section, we provide a proof of ABP estimate, Theorem 1.1 for a simplified
case Lg of L, where

n

(Lo) L() = Z aij(x)Dij.
ij=1
Note that L turn into Lg if b; = ¢ = 0. The idea of the proof will be adapted to the
proof of the main results. For more general cases with low-order terms, one may refer
to [4-7,9,15].
Firstly, we introduce two definitions, the upper contact set and normal mapping.

DEFINITION 2.1. If u € C(Q2), we can define the upper contact set of u with a
notation of I'" or It to be a subset of €,

I'"={yeQIp=ply) € R",Vo € Qu(x) <u(y) +p- (z—y)}

When v € C1(Q), then it necessarily p(y) = Du(y). For the next, we define the
normal mapping:

DEFINITION 2.2. For u € C(Q2), the normal mapping, denoted by x(y) = xu(y),
means the following:

X)) ={peR"|Ve € Qu(x) <uly)+p-(x—1y)}.
In particular, if u € C*(Q), then Y is the gradient vector field of v on I'",

ExAMPLE 2.3. We present the circular cone centered at the origin, radius of r > 0,

maximum of M > 0 at 0. .
T
= ltj -_— .

Mz for 4 £ 0,

rlal
By (0) for = 0.
Thus, we have |xu(2)| = | Byl

By direct computation, x,(z) =

For the next, we consider a rectangular cone.
ExAMPLE 2.4. For M,r;,s; >0,7=1,...,n, let
Q={zeR"| —rm<x;<sji=1,...,n0=(x1,....,2,)}

and v u
v(x) =v(xy, .y zy) = ?é}ilmm{r—i(ri + x;), S—Z(sZ —x;)}
Then x,(Q2) = [—%, %] X -ee X [—S—]‘f,rMn] Thus,

Si—i—Ti

SiT;

o)) =M" ]

i€ln
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The following two lemmas are basically from [9].

LEMMA 2.5. For u € C?*(2) N C°(Q) we have

d 1/n
supu < supu + — - </ ]detDzu\)
Q 0 Wn r+

where d = diam/(£2).

Proof. Considering u — supyq v, without loss of generality, we may assume that
u < 0 on 0.

Now we show that the maximum value of u can be estimated in terms of |x(2)].
Let maxqu = u(y), and k be the function whose graph is the cone K with vertex
(y,u(y)) and base 0. Then xx(2) C x.(£2). Since each supporting hyperplane of K,
there exists a parallel hyperplane tangent to the graph of u. Now let k be the function
whose graph is the cone K with vertex (y,u(y)) and base By(y). Here, By(y) is an
open ball in R™ centered at y of radius d, and d is the diameter of the domain €2. It
is clear that x;(€2) C xx(€2). By Example 2.3,

u(y)\"
o, (%) = (D] < ()] < [xu(Q)].
By definition of y,

(1) Xu(Q)] = [X(T)] = [Du(T)]

Since the Jacobian matrix of Du : I’} — R™, D?u, is negative semi-definite, Du —
eld, has a maximal rank for an arbitrary e > 0, where /d,, is the n X n identity matrix.
From the transformation formula for multiple integrals, we have

@) (Du — eId,)(TH)| < / det(D%u — eld,)|.

s

Letting € — 0T, combining (1), (2), we have

()] = [Du(T)] < [ JdetD.

Iy

Wh, (M) §/ \detD2u|,
d -

which leads to the completion of the proof. m

Now we have

LEMMA 2.6. For u € C?(Q) N C°(2), we have

1 —aijDi]’U "
det(a;;) n

(3) |det D*u| <

on I't. Thus, we have

d —Q; Z)Z iU
(4) supu < supu + 1 ,
Q 09 nwy/™ || DYn Ln(T+)

where d = diam(S2), D = det(a;;).
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Proof. Note that D?u is nonpositive on I't. Thus, —D?u becomes a positive sym-
metric.

For a proof, considering A = —D?u, B = (a;j), it is enough to show that the
following claim: for positive symmetric matrix A and B,

detAdetB < (@) ,

where tr(-) denotes the trace operator.
Note that B = ODgO?T for some orthonormal matrix O, diagonal matrix Dp.

Then B = O/ Dpv/DpOT = O/DsOTO/DgOT. Let VB = O/DgOT. Then
tr(AB) = tr(AVBVB)
= tr(VBAVB) (since tr(XY Z) = tr(ZXY))

> n\/detvV'BAVB (using VBAVB is symmetric.)
= nVdetAB = n+/detAdetB,
which leads to (3). By Lemma 2.5, we have (4). O

Note that ¢y < D" < Cj from the uniform elliptic condition, (UE). Thus, in our
setting, the denominator of (4) is bounded.

Now we present the simplified ABP estimate with its proof. For a proof of ABP
estimate of Theorem 1.1 with lower order terms, one may refer to [9].

THEOREM 2.1. Let Q be a bounded and open set in R", and let Ly be a second-
order uniformly elliptic (UE) differential operator in the simplified nondivergence form
(Lo). In addition, let u be a function in W2 (Q) N C(Q) such that Lu > f in Q, and
f e L™(2). Then,

diam(Q) || f-
(5) Sup u := ilglgﬂ(x) S supuy + — H Dijn

9

L)

where 0S) denotes its topological boundary, uy = maxz{u,0}, f_ := maxz{—f,0},

1/n
| f=lln(e) == </ ]f|"da:> , the norm of the function f_ in L"(€2),
Q

diam(QQ) is a diameter of 2, and D = det(a;;).

Proof. Let a;;Diju > f in Q. Thus, we have 0 < —a;;Dju < —f < f_ in I'},
where f_ := max{—f,0}.

Combining Lemma 2.5 and Lemma 2.6, we obtain (5) for v € C?(Q). Now, we
generalize these results to functions u € C(Q)NW2"(Q) by a standard approximation
argument.

Let {u,} be a sequence of functions in C%(Q) converging in W27 (Q) to u. For
arbitrary € > 0, assume that u,, converges to u in W?%"(€,) and u,, < e+supyguy = €
on 0f)., where

Q.ccQ, Q, CQ fore <€, UL =0

Applying Lemma 2.6 to u,, in €2, we have

diam(§2)
SUup Uy, < SUpP Uy, + Wi
Q. o) nwn’"

—a;; Dijum
Dl/n

L (T, NQ.)
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Note that, on I'}
0 < —a;;Dijum < —ai; Dij(Um — u) — aijjDiju < —a;; Dy (Um — u) + f-.
Also,
1Dij (i, — W) Lny = 07 0 Q[ f-llpnier na.y < 1f-llznn),
U, — uw uniformly on Q.. Thus in all,

diam(Q) || f-
supu < € 4 sup uy + Tn Tn )
Qe Ei9) nwn, D L ()
Now the desired estimate follows after taking e — 0. [

3. The main results

In this section, we present the main result, Theorem 3.1, and generalize it to
Theorem 3.3. The idea is to follow the idea of the original ABP estimate, Theorem 2.1,
using a rectangular cone from Example 2.4 than a circular cone from Example 2.3.

3.1. Rectangular domains. In this subsection, we consider the case of rectangular
domain, Q = Q. s,).-
THEOREM 3.1. Let u € W (Qurusr)) N C(Qrrsn) ), Where
Qeris) ={r eR"|ry<a; <sj,i=1,.,n2x=(21,...,2,)}

for ri,s; € R, ry <55, i =1,...,n. Also, Lou > f in Q(, s,y for some f € L™(Q,s,))-
Then, we have

1/n
1 d=dt f_
(6) sup u < sup u+ — - i i ’

Q(Ti’si) aQ(’"i,Si) n ZGHIn (dl +d:_) Dl/n

L™(Tt) ’

where u(y) = SUPQ,, ., U for some y € Qris)s Y = (Y153 Yn)s & = di7 (y) = yi — 73,
df = df (y) == si — yi, D = det(ay).
Also, we have

1/n
1 (Si — T’i)
7 < + —. | | -—
( ) sup u sup  u n < 1 >

Qry,s9) 9Q(r;,5;) i€ln

-
Dl/n

Lr(I) '

Proof. Basically, we follow the proof of Lemma 2.5 and Lemma 2.6 with a condition
of 0 = Q,,s;) and u(y) = maxg u.

First, we assume that u € C*(Q,.s,)). Considering u—supPyq,, |
that u < 0 on 9Q(, s,)- Z

Let k be the function whose graph is the rectangular cone K with vertex (y,u(y))
and base 0Q(y, s,)- Similar to Lemma 2.5, x4 (€2) C x.(©).

By Example 2.4,

| U, We can assume
k2

() TT Y240 — @) < (@)

, d; df
i€ly L]
By definition of x and the change of variables formula,

|Xu“D|:|XGﬂ7|:|[hdF+)|SKA;|m%[ﬂUL
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By Lemma 2.6 and the fact that a;;D;ju < 0 on I'*, we finished the proof of (6). For
(7), note that

d-dr (sizri)? (s; — 1)
et S SN S A
Zl;[ (di +df) ~ 11;{ (85 —14) H 4
Here we used the fact that

(yi — 73) (85 — ;) < (si - T2,>2

for each y; € (ri, 8;), i € I,.
For a generalization to u € VVfocn, we follow the proof of Theorem 2.1. We omit
details. O

For an application, we show a distance weighted estimate:

COROLLARY 3.2. Let d(y) = dist(y,0Q(,s)) = min{s; — y;,y; — r;} for some
j € I,. Then

1/n
aile-ju

d(y)l/n d;

sup v < sup u+
Qryosy) 9Q(r;.s) n i€l,\{j}

9

Ln(+)

where d; = s; — ;.

Proof. Note that d(y) = min;c;, min{d; ,d;}. Without loss of generality, let d(y) =
d; for some j € I,. Note that

d;df d; d; df (di/2)*  d,
_J 3 < d -7 — d 1 1 < 1 _ i
(4, +d) ~ Wy =) T <4 1
for j # . This completes the proof from (6). O

3.2. General domains. In this subsection, we consider the general bounded domain
of 2 € R". We consider the case of Q C @, Theorem 3.3, and  C Bg/s,
Corollary 3.4.

THEOREM 3.3. Let u € W2"(Q) N C°(Q), and

loc
QCQusy ={reR"|r <z <spi=1,...,n2x=(1,...,2,)}

for ri,s; € R, ry < 8,1 =1,...,n. Also, Lou > f in Q for some f € L™(Q2). Then, we
have

)

1/n
1 d; df I-
Supt S suput - (H (d.—+d.+)) ‘Dl'/n‘

Q 0 o\, L ()

where u(y) = supqu for some y € Q, y = (y1,....,yn), d; = d; (y) = y; — 13, di =
df (y) == si — yi.
Also, we have

1/n
1 i =T
supu < supu + — - (H %)

n
@ 0% i€ln

-
Dl/n

)
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Proof. Basically, we follow the proof of Theorem 3.1 with a condition of Q2 C Q, s,)-
First, we assume that u € C*(Q,.s,))-

Considering u—supgyq u, we can assume that « < 0 on 9€2. If u < 0in 2, then there
is nothing to prove. Let maxgu = u(y) > 0, and k be the function whose graph is the
cone K with vertex (y,u(y)) and base 0. Similar to Lemma 2.5, xx(Q) C xu(€2).

Now let & be the function whose graph is the cone K with vertex (y, u(y)) and base
0Q(r,5,)- 1t is clear that x7(2) C x%(2). By Example 2.4,

(o))" TT 25 < hal@)] < ()] < (@),

By definition of x and the change of variables formula,

IXu(Q)] = [X(TF)] = [Du(I'")| < /+ |det Du).
r
Now we have p "
n ; T d; 2
i) [T 258 < [ jaet?ul.

ily,
The remaining part of the proof is the same as Theorem 3.1. O

COROLLARY 3.4. Let u € W2 (Q) N C°(Q) and the domain Q satisfies that Q C
Bprya. Also, Lou > f in Q for some f € L"(§2). Then we have
R f

supu < supu + — ||——
Qp _as%) 2n || DY/

Ln(r+)
Proof. After translation, one may assume that «(0) = supgu, Q C Bgr(0) = Bg.
Since 2 C Bg, ) C Q(—g,,r,) for R; = R for each i € I,,. By Theorem 3.3, (3.3),

camus Bl
sup u sup u —
Qp - as? 2n || DY/

L () '

[]

REMARK 3.5. Corollary 3.4 corresponds to the usual ABP estimates. Thus, our
result, Theorem 3.1, implies the standard ABP estimate without lower-order terms,
Theorem 2.1. Also, see [9, Problems 9.1].

REMARK 3.6. Here, we compare the result of ABP estimate with Theorem 3.3.
For the right-hand side term, we have

1/n

di Q 1 i — T

zcmign)and__ H(s Ti)
wn o \ier 4

from Theorem 2.1 and Theorem 3.3, respectively.

Consider the domain of Q := (—r,r) x (=1, 1) lying in R". Note that

r?

diam(S2) 2r
> — 00,
nwa™ nws/™

but
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Thus, the estimate from Theorem 3.3 does hold with a smaller constant than one
from Theorem 2.1 even when the domain is long enough.
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