GENERALIZED LUKASIEWICZ FUZZY SUBALGEBRAS OF BCI-ALGEBRAS AND BCK-ALGEBRAS

Sun Shin Ahn*, Young Joo Seo, and Young Bae Jun

ABSTRACT. The aim of this paper is to generalize Łukasiewicz fuzzy subalgebras in BCK/BCI-algebras. First, the concept of (α, ε) -Łukasiewicz fuzzy subalgebras using fuzzy points is defined and examples to explain it are given, and then several properties are investigated. The relationship between Łukasiewicz fuzzy subalgebras and (α, ε) -Łukasiewicz fuzzy subalgebras is discussed, and the conditions under which the ε -Łukasiewicz fuzzy set to be an (α, ε) -Łukasiewicz fuzzy subalgebra are explored. The characterizations of (α, ε) -Łukasiewicz fuzzy subalgebras are examined. Conditions under which Łukasiewicz \in -set, Łukasiewicz \in -set and Łukasiewicz \in -set can be subalgebras are handled.

1. Introduction

Eukasiewicz (fuzzy) logic, which is named by the Polish logician Jan Łukasiewicz, is a foundational system in the realm of fuzzy logic and multi-valued logic. This logic extends the classical two-valued logic (true or false) by allowing the degree of truth represented as real numbers in the unit interval [0,1]. Łukasiewicz (fuzzy) logic uses a t-norm and t-co-norm, ensuring the operations are well-suited for reasoning with uncertainty. Using the Łukasiewicz t-norm, Jun [6] constructed the concept of Łukasiewicz fuzzy sets based on a given fuzzy set and applied it to BCK-algebras and BCI-algebras. The concept of Łukasiewicz fuzzy sets is also applied to BCK/BCI-algebras, BE-algebras, Hilbert algebras, hoops, and Sheffer stroke Hilbert algebras, etc. (see [1,2,7-9,11,13,14]).

In this paper, we consider the generalized version of Łukasiewicz fuzzy subalgebras in BCK/BCI-algebras. We define the concept of (α, ε) -Łukasiewicz fuzzy subalgebras using fuzzy points, and provide examples to explain it. We investigate several properties of (α, ε) -Łukasiewicz fuzzy subalgebras, and discuss the relationship between Łukasiewicz fuzzy subalgebras and (α, ε) -Łukasiewicz fuzzy subalgebras. We explore the conditions under which the ε -Łukasiewicz fuzzy set to be an (α, ε) -Łukasiewicz fuzzy subalgebras, and examine the characterizations of (α, ε) -Łukasiewicz fuzzy subalgebras. We find conditions under which the Łukasiewicz ε -set, Łukasiewicz ε -set and Łukasiewicz ε -set are subalgebras.

Received March 26, 2025. Revised June 18, 2025. Accepted August 29, 2025.

²⁰¹⁰ Mathematics Subject Classification: 03G25, 06F35, 08A72.

Key words and phrases: (α, ε) -Łukasiewicz fuzzy subalgebra, Łukasiewicz ϵ -set, Łukasiewi

^{*} Corresponding author.

⁽C) The Kangwon-Kyungki Mathematical Society, 2024.

2. Preliminaries

This section lists the known default content that will be used later. See the books [3,10] for further information regarding BCK-algebras and BCI-algebras.

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki (see [4] and [5]) and was extensively investigated by several researchers.

If a set X has a special element "0" and a binary operation "*" satisfying the conditions:

- (I_1) $(\forall \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X)$ $(((\mathfrak{a} * \mathfrak{b}) * (\mathfrak{a} * \mathfrak{c})) * (\mathfrak{c} * \mathfrak{b}) = 0),$
- $(I_2) \ (\forall \mathfrak{a}, \mathfrak{b} \in X) \ ((\mathfrak{a} * (\mathfrak{a} * \mathfrak{b})) * \mathfrak{b} = 0),$
- $(I_3) \ (\forall \mathfrak{a} \in X) \ (\mathfrak{a} * \mathfrak{a} = 0),$
- (I_4) $(\forall \mathfrak{a}, \mathfrak{b} \in X)$ $(\mathfrak{a} * \mathfrak{b} = 0, \mathfrak{b} * \mathfrak{a} = 0 \Rightarrow \mathfrak{a} = \mathfrak{b}),$

then we say that X is a BCI-algebra. If a BCI-algebra X satisfies the following identity:

(K)
$$(\forall \mathfrak{a} \in X) (0 * \mathfrak{a} = 0),$$

then X is called a *BCK-algebra*. In what follows, BCK/BCI-algebra is expressed as $(X,0)_*$.

The order relation " \leq " in a BCK/BCI-algebra $(X,0)_*$ is defined as follows:

$$(\forall \mathfrak{a}, \mathfrak{b} \in X)(\mathfrak{a} \leq \mathfrak{b} \iff \mathfrak{a} * \mathfrak{b} = 0).$$

Every BCK/BCI-algebra $(X,0)_*$ satisfies the following conditions (see [3,10]):

$$\begin{split} & (\forall \mathfrak{a} \in X) \, (\mathfrak{a} * 0 = \mathfrak{a}) \,, \\ & (\forall \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X) \, (\mathfrak{a} \leq \mathfrak{b} \Rightarrow \, \mathfrak{a} * \mathfrak{c} \leq \mathfrak{b} * \mathfrak{c}, \, \mathfrak{c} * \mathfrak{b} \leq \mathfrak{c} * \mathfrak{a}) \,, \\ & (\forall \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X) \, ((\mathfrak{a} * \mathfrak{b}) * \mathfrak{c} = (\mathfrak{a} * \mathfrak{c}) * \mathfrak{b}) \,. \end{split}$$

Every BCI-algebra $(X,0)_*$ satisfies (see [3])

$$(\forall \mathfrak{a}, \mathfrak{b} \in X) (\mathfrak{a} * (\mathfrak{a} * (\mathfrak{a} * \mathfrak{b})) = \mathfrak{a} * \mathfrak{b}),$$

$$(\forall \mathfrak{a}, \mathfrak{b} \in X) (0 * (\mathfrak{a} * \mathfrak{b}) = (0 * \mathfrak{a}) * (0 * \mathfrak{b})).$$

A subset K of a BCK/BCI-algebra $(X,0)_*$ is called a *subalgebra* of X (see [3,10]) if it satisfies

$$(\forall \mathfrak{a}, \mathfrak{b} \in K)(\mathfrak{a} * \mathfrak{b} \in K).$$

A fuzzy set h in a set X of the form

$$h(\mathfrak{b}) := \left\{ \begin{array}{ll} t \in (0,1] & \text{if } \mathfrak{b} = \mathfrak{a}, \\ 0 & \text{if } \mathfrak{b} \neq \mathfrak{a}, \end{array} \right.$$

is said to be a fuzzy point with support \mathfrak{a} and value t and is denoted by $\langle \mathfrak{a}/t \rangle$.

For a fuzzy set h in a set X, we say that a fuzzy point $\langle \mathfrak{a}/t \rangle$ is

- (i) contained in h, denoted by $\langle \mathfrak{a}/t \rangle \in h$, (see [12]) if $h(\mathfrak{a}) > t$.
- (ii) quasi-coincident with h, denoted by $\langle \mathfrak{a}/t \rangle q h$, (see [12]) if $h(\mathfrak{a}) + t > 1$.

DEFINITION 2.1 (see [6]). Let h be a fuzzy set in a set X and let $\varepsilon \in [0,1]$. A function

$$\mathbf{L}_h^{\varepsilon}: X \to [0, 1], \ x \mapsto \max\{0, h(x) + \varepsilon - 1\}$$

is called an ε -Lukasiewicz fuzzy set (of h) in X.

Let $\mathcal{L}_h^{\varepsilon}$ be an ε -Łukasiewicz fuzzy set of a fuzzy set h in X. If $\varepsilon = 1$, then $\mathcal{L}_h^{\varepsilon}(x) = \max\{0, h(x) + 1 - 1\} = \max\{0, h(x)\} = h(x)$ for all $x \in X$. This shows that if $\varepsilon = 1$, then the ε -Łukasiewicz fuzzy set of a fuzzy set h in X is the classisical fuzzy set h itself in X. If $\varepsilon = 0$, then $\mathcal{L}_h^{\varepsilon}(x) = \max\{0, h(x) + 0 - 1\} = \max\{0, h(x) - 1\} = 0$ for all $x \in X$, that is, if $\varepsilon = 0$, then the ε -Łukasiewicz fuzzy set is the zero fuzzy set. Therefore, in handling the ε -Łukasiewicz fuzzy set, the value of ε can always be considered to be in (0,1).

Let h be a fuzzy set in a set X and $\varepsilon \in (0,1)$. If $h(x) + \varepsilon \leq 1$ for all $x \in X$, then the ε -Łukasiewicz fuzzy set $\mathcal{L}_h^{\varepsilon}$ of h in X is the 0-constant function, that is, $\mathcal{L}_h^{\varepsilon}(x) = 0$ for all $x \in X$. Therefore, in order for the ε -Łukasiewicz fuzzy set to have a meaningful form, a fuzzy set h in X and $\varepsilon \in (0,1)$ must be set to satisfy the following condition:

$$(\exists x \in X)(h(x) + \varepsilon > 1).$$

For the Łukasiewicz fuzzy set $\mathcal{L}_h^{\varepsilon}$ (of h) in X and $t \in (0,1]$, consider the sets

$$(\mathcal{L}_h^{\varepsilon}, t)_{\in} := \{ x \in X \mid \langle x/t \rangle \in \mathcal{L}_h^{\varepsilon} \},$$

$$(\mathbf{L}_h^{\varepsilon}, t)_q := \{ x \in X \mid \langle x/t \rangle \, q \, \mathbf{L}_h^{\varepsilon} \},\,$$

which are called the $Lukasiewicz \in -set$ and $Lukasiewicz \neq -set$, respectively, of $\mathcal{L}_h^{\varepsilon}$ (with value t). Also, consider a set:

$$O(\mathbb{L}_h^{\varepsilon}) := \{ x \in X \mid \mathbb{L}_h^{\varepsilon}(x) > 0 \}$$

which is called the *Łukasiewicz O-set* of $\mathcal{L}_h^{\varepsilon}$. It is observed that

$$O(\mathbf{L}_h^{\varepsilon}) = \{ x \in X \mid h(x) + \varepsilon - 1 > 0 \}.$$

DEFINITION 2.2 (see [6]). Let h be a fuzzy set in a BCK/BCI-algebra $(X, 0)_*$ and ε an element of (0, 1). Then its ε -Łukasiewicz fuzzy set $\mathcal{L}_h^{\varepsilon}$ in X is called an ε -Łukasiewicz fuzzy subalgebra of $(X, 0)_*$ if it satisfies:

$$(1) \qquad \langle x/t_{\mathfrak{a}} \rangle \in \mathcal{L}_{h}^{\varepsilon}, \, \langle y/t_{\mathfrak{b}} \rangle \in \mathcal{L}_{h}^{\varepsilon} \Rightarrow \langle (x * y)/\min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}\} \rangle \in \mathcal{L}_{h}^{\varepsilon}$$

for all $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$.

LEMMA 2.3. (see [6, Theorem 3.6]) If h is a fuzzy subalgebra of a BCK/BCI-algebra $(X,0)_*$ and ε is an element of (0,1), then its ε -Lukasiewicz fuzzy set L_h^{ε} in X is an ε -Lukasiewicz fuzzy subalgebra of $(X,0)_*$.

3. Generalized Łukasiewicz fuzzy subalgebras

In this section, let h and ε be a fuzzy set in X and an element of (0,1), respectively, unless otherwise specified. In addition, BCK-algebra or BCI-algebra is expressed as $(X,0)_*$.

DEFINITION 3.1. An ε -Lukasiewicz fuzzy set $\mathcal{L}_h^{\varepsilon}$ in X is called an (α, ε) -Lukasiewicz fuzzy subalgebra (briefly, (α, ε) -Lf-subalgebra) of $(X, 0)_*$ if the following assertion is valid.

(2)
$$\langle x/t_{\mathfrak{a}} \rangle \in \mathcal{L}_{h}^{\varepsilon}, \langle y/t_{\mathfrak{b}} \rangle \in \mathcal{L}_{h}^{\varepsilon}, \alpha \in \mathbb{R}^{+} \vdash \langle (x * y)/\min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \rangle \in \mathcal{L}_{h}^{\varepsilon}$$
 for all $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$.

REMARK 3.2. Let $\mathcal{L}_h^{\varepsilon}$ be an (α, ε) -Lf-subalgebra of $(X, 0)_*$. If $\alpha \geq 1$, then (2) goes back to (1). Hence if $\alpha \geq 1$, then every (α, ε) -Lf-subalgebra is an ε -Lukasiewicz fuzzy subalgebra. Also, it is clear that every ε -Lukasiewicz fuzzy subalgebra is an (α, ε) -Lf-subalgebra for all $\alpha \geq 1$. So when $\alpha \in (0, 1]$, (α, ε) -Lf-subalgebra has an independent meaning.

EXAMPLE 3.3. Consider a BCK-algebra $(X, 0)_*$ where $X = \{e_0, e_1, e_2, e_3, e_4\}$ and a binary operation "*" is given by Table 1 (see [10])).

*	e_0	e_1	e_2	e_3	e_4
$\overline{e_0}$	e_0	e_0	e_0	e_0	e_0
e_1	e_1	e_0	e_1	e_0	e_0
e_2	e_2	e_2	e_0	e_0	e_0
e_3	e_3	e_3	e_3	e_0	e_0
e_4	e_4	e_3	e_4	e_1	e_0

Table 1. Tabular representation for the operation "*"

Define a fuzzy set h in X as follows:

$$h: X \to [0, 1], \ y \mapsto \begin{cases} 0.76 & \text{if } y = e_0, \\ 0.69 & \text{if } y = e_1, \\ 0.63 & \text{if } y = e_2, \\ 0.57 & \text{if } y = e_3, \\ 0.42 & \text{if } y = e_4. \end{cases}$$

Given $\varepsilon := 0.59$, the ε -Łukasiewicz fuzzy set $\mathcal{L}_h^{\varepsilon}$ of h in X is given as follows:

$$\mathbf{L}_{h}^{\varepsilon}: X \to [0, 1], \ y \mapsto \begin{cases} 0.35 & \text{if } y = e_{0}, \\ 0.28 & \text{if } y = e_{1}, \\ 0.22 & \text{if } y = e_{2}, \\ 0.16 & \text{if } y = e_{3}, \\ 0.01 & \text{if } y = e_{4}. \end{cases}$$

It is routine to verify that $\mathcal{L}_{h}^{\varepsilon}$ is an (α, ε) -Lf-subalgebra of $(X, 0)_{*}$ for all $\alpha \in (0, 0.01]$.

THEOREM 3.4. Every ε -Łukasiewicz fuzzy subalgebra is an (α, ε) -Łf-subalgebra for all $\alpha \in \mathbb{R}^+$.

Proof. The proof is straightforward.

COROLLARY 3.5. If h is a fuzzy subalgebra of $(X,0)_*$, then its ε -Lukasiewicz fuzzy set L_h^{ε} is an (α, ε) -Lf-subalgebra of $(X,0)_*$ for all $\alpha \in \mathbb{R}^+$.

From the perspective of Theorem 3.4, we can say that the (α, ε) -Lf-subalgebra is a more generalized concept than the ε -Lukasiewicz fuzzy subalgebra.

The following example shows that there exists $\alpha \in \mathbb{R}^+$ such that an (α, ε) -Lf-subalgebra may not be an ε -Lukasiewicz fuzzy subalgebra. Also, the converse of Corollary 3.5 may not be true.

EXAMPLE 3.6. Let $X = \{0, e_1, e_2, e_3, e_4\}$ be a set in which a binary operation "*" is given by Table 2.

*	e_0	e_1	e_2	e_3	e_4
$\overline{e_0}$	e_0	e_0	e_2	e_3	$\overline{e_4}$
e_1	e_1	e_0	e_2	e_3	e_4
e_2	e_2	e_2	e_0	e_4	e_3
e_3	e_3	e_3	e_4	e_0	e_2
e_4	e_4	e_4	e_3	e_2	e_0

Table 2. Tabular representation for the operation "*"

Then $(X,0)_*$ is a BCI-algebra (see [3]). Define a fuzzy set h in X as follows:

$$h: X \to [0, 1], \ x \mapsto \begin{cases} 0.73 & \text{if } x = e_0, \\ 0.69 & \text{if } x = e_1, \\ 0.62 & \text{if } x = e_2, \\ 0.58 & \text{if } x = e_3, \\ 0.56 & \text{if } x = e_4. \end{cases}$$

Given $\varepsilon := 0.64$, the ε -Łukasiewicz fuzzy set $\mathcal{L}_h^{\varepsilon}$ of h in X is given as follows:

$$\mathbf{L}_{h}^{\varepsilon}: X \to [0, 1], \ x \mapsto \begin{cases} 0.37 & \text{if } x = e_{0}, \\ 0.33 & \text{if } x = e_{1}, \\ 0.26 & \text{if } x = e_{2}, \\ 0.22 & \text{if } x = e_{3}, \\ 0.20 & \text{if } x = e_{4}. \end{cases}$$

It is routine to verify that $\mathcal{L}_h^{\varepsilon}$ is an (α, ε) -Lf-subalgebra of $(X, 0)_*$ for all $\alpha \in (0, 0.2]$. But $\mathcal{L}_h^{\varepsilon}$ is not an ε -Lukasiewicz fuzzy subalgebra of $(X, 0)_*$ because of

$$\mathbf{L}_h^{\varepsilon}(e_2 * e_3) = \mathbf{L}_h^{\varepsilon}(e_4) = 0.20 \ngeq 0.22 = \min\{\mathbf{L}_h^{\varepsilon}(e_2), \mathbf{L}_h^{\varepsilon}(e_3)\}.$$

Also, h is not a fuzzy subalgebra of $(X,0)_*$ because of

$$h(e_2 * e_3) = h(e_4) = 0.56 \ngeq 0.58 = \min\{h(e_2), h(e_3)\}.$$

THEOREM 3.7. Consider $\alpha, \beta \in \mathbb{R}^+$. If $\alpha \geq \beta$, then every (α, ε) -Lf-subalgebra of $(X, 0)_*$ is a (β, ε) -Lf-subalgebra of $(X, 0)_*$.

Proof. Let $\alpha, \beta \in \mathbb{R}^+$ be such that $\alpha \geq \beta$, and let $\mathcal{L}_h^{\varepsilon}$ be an (α, ε) -Lf-subalgebra of $(X,0)_*$. Let $x,y \in X$ and $t_{\mathfrak{a}},t_{\mathfrak{b}} \in (0,1]$ be such that $\langle x/t_{\mathfrak{a}} \rangle \in \mathcal{L}_h^{\varepsilon}$ and $\langle y/t_{\mathfrak{b}} \rangle \in \mathcal{L}_h^{\varepsilon}$. Then $\langle (x*y)/\min\{t_{\mathfrak{a}},t_{\mathfrak{b}},\alpha\} \rangle \in \mathcal{L}_h^{\varepsilon}$ by Definition 3.1, and thus

$$\mathcal{L}_h^{\varepsilon}(x * y) \ge \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \ge \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \beta\},$$

that is, $\langle (x * y)/\min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \beta\} \rangle \in \mathcal{L}_{h}^{\varepsilon}$. This shows that

$$\langle x/t_{\mathfrak{a}}\rangle \in \mathcal{L}_{h}^{\varepsilon}, \, \langle y/t_{\mathfrak{b}}\rangle \in \mathcal{L}_{h}^{\varepsilon}, \, \beta \in \mathbb{R}^{+} \ \vdash \langle (x*y)/\mathrm{min}\{t_{\mathfrak{a}}, \, t_{\mathfrak{b}}, \beta\}\rangle \in \mathcal{L}_{h}^{\varepsilon}$$

for all $x,y\in X$ and $t_{\mathfrak{a}},t_{\mathfrak{b}}\in (0,1].$ Therefore $\mathcal{L}_{h}^{\varepsilon}$ is a (β,ε) -Lf-subalgebra of $(X,0)_{*}.$

In Example 3.6, the ε -Łukasiewicz fuzzy set $\mathcal{L}_h^{\varepsilon}$ is an (α, ε) -Łf-subalgebra of $(X, 0)_*$ for all $\alpha \in (0, 0.2]$. If we take $\beta = 0.3$, then $\alpha < \beta$. Note that $\langle e_2/0.26 \rangle \in \mathcal{L}_h^{\varepsilon}$, $\langle e_3/0.22 \rangle \in \mathcal{L}_h^{\varepsilon}$ and $\beta \in (0.2, 1] \subseteq \mathbb{R}^+$. But $\langle (e_2 * e_3)/\min\{0.26, 0.22, \beta\} \rangle \in \mathcal{L}_h^{\varepsilon}$, that is,

$$\begin{array}{l} \langle e_2/0.26\rangle \in \mathcal{L}_h^{\varepsilon}, \ \langle e_3/0.22\rangle \in \mathcal{L}_h^{\varepsilon}, \ \beta \in (0.2,1] \subseteq \mathbb{R}^+ \\ \not\vdash \langle (e_2*e_3)/\mathrm{min}\{0.26, \ 0.22, \beta\}\rangle \in \mathcal{L}_h^{\varepsilon} \end{array}$$

Hence $\mathcal{L}_h^{\varepsilon}$ is not a (β, ε) -Lf-subalgebra of $(X, 0)_*$. This shows that if $\alpha < \beta$, then any (α, ε) -Lf-subalgebra may not be a (β, ε) -Lf-subalgebra.

LEMMA 3.8. Every (α, ε) -Lf-subalgebra L_h^{ε} of $(X, 0)_*$ satisfies

(3)
$$\langle x/t \rangle \in L_h^{\varepsilon}, \ \alpha \in (0,1] \vdash \langle 0/\min\{t,\alpha\} \rangle \in L_h^{\varepsilon}$$

for all $x \in X$ and $t \in (0,1]$.

Proof. The combination of (I_3) and (2) induces (3).

PROPOSITION 3.9. Every (α, ε) -Lf-subalgebra L_h^{ε} of a BCI-algebra $(X, 0)_*$ satisfies (4) $\langle x/t \rangle \in L_h^{\varepsilon}$, $\alpha \in (0, 1] \vdash \langle (0 * x)/\min\{t, \alpha\} \rangle \in L_h^{\varepsilon}$.

for all $x, y \in X$ and $t \in (0, 1]$.

Proof. Let $x \in X$ and $\alpha, t \in (0,1]$ be such that $\langle x/t \rangle \in \mathcal{L}_h^{\varepsilon}$. Since $\langle 0/\mathcal{L}_h^{\varepsilon}(0) \rangle \in \mathcal{L}_h^{\varepsilon}$, we have

$$\langle (0*x)/\min\{t, \alpha\} \rangle = \langle (0*x)/\min\{t, \mathbf{L}_h^{\varepsilon}(0), \alpha\} \rangle \in \mathbf{L}_h^{\varepsilon}$$

by Definition 3.1 and Lemma 3.8. Hence (4) is verified.

The combination of Lemma 2.3 and Theorem 3.4 induces the following corollary.

COROLLARY 3.10. If h is a fuzzy subalgebra of a BCI-algebra $(X,0)_*$, then its ε -Lukasiewicz fuzzy set L_h^{ε} in X satisfies (4).

PROPOSITION 3.11. If h is a fuzzy subalgebra of a BCI-algebra $(X,0)_*$, then its ε -Lukasiewicz fuzzy set L_h^{ε} in X satisfies

$$\langle x/t_{\mathfrak{a}} \rangle \in L_{h}^{\varepsilon}, \ \langle y/t_{\mathfrak{b}} \rangle \in L_{h}^{\varepsilon}, \ \alpha \in (0,1]$$

 $\vdash \langle (x*(0*y))/\min\{\alpha, t_{\mathfrak{a}}, t_{\mathfrak{b}}\} \rangle \in L_{h}^{\varepsilon}$

for all $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$.

Proof. Assume that h is a fuzzy subalgebra of a BCI-algebra $(X,0)_*$. Let $x,y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha \in (0,1]$ be such that $\langle x/t_{\mathfrak{a}} \rangle \in \mathcal{L}_h^{\varepsilon}$ and $\langle y/t_{\mathfrak{b}} \rangle \in \mathcal{L}_h^{\varepsilon}$. Then $\mathcal{L}_h^{\varepsilon}(x) \geq t_{\mathfrak{a}}$ and $\mathcal{L}_h^{\varepsilon}(y) \geq t_{\mathfrak{b}}$. Hence

$$\begin{split} \mathbf{L}_{h}^{\varepsilon}(x*(0*y)) &= \max\{0, h(x*(0*y)) + \varepsilon - 1\} \\ &\geq \max\{0, \min\{h(x), h(0*y)\} + \varepsilon - 1\} \\ &= \max\{0, \min\{h(x), h(y)\} + \varepsilon - 1\} \\ &= \max\{0, \min\{h(x) + \varepsilon - 1, h(y) + \varepsilon - 1\}\} \\ &= \min\{\max\{0, h(x) + \varepsilon - 1\}, \max\{0, h(y) + \varepsilon - 1\}\} \\ &= \min\{\mathbf{L}_{h}^{\varepsilon}(x), \mathbf{L}_{h}^{\varepsilon}(y)\} \\ &\geq \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}\} \geq \min\{\alpha, t_{\mathfrak{a}}, t_{\mathfrak{b}}\}, \end{split}$$

that is, $\langle (x * (0 * y))/\min\{\alpha, t_{\mathfrak{a}}, t_{\mathfrak{b}}\} \rangle \in \mathcal{L}_{h}^{\varepsilon}$. This completes the proof.

We provide conditions for an ε -Łukasiewicz fuzzy set to be an (α, ε) -Łf-subalgebra.

Theorem 3.12. For every fuzzy set h in X, if its ε -Lukasiewicz fuzzy set L_h^{ε} satisfies

(5)
$$\langle y/t_{\mathfrak{b}} \rangle \in L_{h}^{\varepsilon}, \, \langle z/t_{\mathfrak{c}} \rangle \in L_{h}^{\varepsilon}, \, \alpha \in \mathbb{R}^{+} \, \vdash \langle (x * y)/\min\{t_{\mathfrak{b}}, \, t_{\mathfrak{c}}, \alpha\} \rangle \in L_{h}^{\varepsilon}$$

for all $t_{\mathfrak{b}}, t_{\mathfrak{c}} \in (0,1]$ and $x, y, z \in X$ with $z \leq x$, then L_h^{ε} is an (α, ε) -Lf-subalgebra of $(X, 0)_*$.

Proof. Let $\alpha \in \mathbb{R}^+$, $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$ be such that $\langle x/t_{\mathfrak{a}} \rangle \in \mathcal{L}_h^{\varepsilon}$ and $\langle y/t_{\mathfrak{b}} \rangle \in \mathcal{L}_h^{\varepsilon}$. Since $x \leq x$ for all $x \in X$, it follows from (5) that

$$\langle (x * y) / \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \rangle \in \mathcal{L}_{h}^{\varepsilon}.$$

Therefore, $\mathcal{L}_h^{\varepsilon}$ is an (α, ε) -Lf-subalgebra of $(X, 0)_*$.

We discuss the characterization of an (α, ε) -Lf-subalgebra.

THEOREM 3.13. An ε -Lukasiewicz fuzzy set L_h^{ε} in X is an (α, ε) -Lf-subalgebra of $(X, 0)_*$ if and only if it satisfies

(6)
$$L_h^{\varepsilon}(x * y) \ge \min\{L_h^{\varepsilon}(x), L_h^{\varepsilon}(y), \alpha\}$$

for all $x, y \in X$ and $\alpha \in \mathbb{R}^+$.

Proof. Assume that $\mathcal{L}_h^{\varepsilon}$ is an (α, ε) -Lf-subalgebra of $(X, 0)_*$. Let $x, y \in X$ and $\alpha \in \mathbb{R}^+$. Note that $\langle x/\mathcal{L}_h^{\varepsilon}(x) \rangle \in \mathcal{L}_h^{\varepsilon}$ and $\langle y/\mathcal{L}_h^{\varepsilon}(y) \rangle \in \mathcal{L}_h^{\varepsilon}$. Hence

$$\langle (x * y) / \min\{ \mathcal{L}_h^{\varepsilon}(x), \mathcal{L}_h^{\varepsilon}(y), \alpha \} \rangle \in \mathcal{L}_h^{\varepsilon}$$

by Definition 3.1, and so $L_h^{\varepsilon}(x * y) \ge \min\{L_h^{\varepsilon}(x), L_h^{\varepsilon}(y), \alpha\}.$

Conversely, suppose that $\mathcal{L}_h^{\varepsilon}$ satisfies (6). Let $\alpha \in \mathbb{R}^+$, $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$ be such that $\langle x/t_{\mathfrak{a}} \rangle \in \mathcal{L}_h^{\varepsilon}$ and $\langle y/t_{\mathfrak{b}} \rangle \in \mathcal{L}_h^{\varepsilon}$. Then $\mathcal{L}_h^{\varepsilon}(x) \geq t_{\mathfrak{a}}$ and $\mathcal{L}_h^{\varepsilon}(y) \geq t_{\mathfrak{b}}$, and thus

$$\mathrm{L}_h^\varepsilon(x*y) \geq \min\{\mathrm{L}_h^\varepsilon(x), \mathrm{L}_h^\varepsilon(y), \alpha\} \geq \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\}$$

by (6). Hence $\langle (x*y)/\min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \rangle \in \mathcal{L}_{h}^{\varepsilon}$, which shows that (2) is valid. Thereore, $\mathcal{L}_{h}^{\varepsilon}$ is an (α, ε) -Łf-subalgebra of $(X, 0)_{*}$.

THEOREM 3.14. If an ε -Lukasiewicz fuzzy set L_h^{ε} in X is an (α, ε) -Lf-subalgebra of $(X, 0)_*$, then the Lukasiewicz \in -set $(L_h^{\varepsilon}, t)_{\in}$ of L_h^{ε} is a subalgebra of $(X, 0)_*$ for all $\alpha \in \mathbb{R}^+$ and $t \in (0, 1]$ with $t \leq \alpha$.

Proof. Let $\alpha \in \mathbb{R}^+$ and and $t \in (0,1]$ be such that $t \leq \alpha$. If $x, y \in (\mathbf{L}_h^{\varepsilon}, t)_{\in}$, then $\langle x/t \rangle \in \mathbf{L}_h^{\varepsilon}$ and $\langle y/t \rangle \in \mathbf{L}_h^{\varepsilon}$. It follows from (2) that

$$\langle (x*y)/t \rangle = \langle (x*y)/\min\{t,\alpha\} \rangle \in \mathcal{L}_h^{\varepsilon},$$

i.e., $x * y \in (\mathbf{L}_h^{\varepsilon}, t)_{\in}$. Thus $(\mathbf{L}_h^{\varepsilon}, t)_{\in}$ is a subalgebra of $(X, 0)_*$.

We now consider the converse of Theorem 3.14.

THEOREM 3.15. Let $\alpha \in \mathbb{R}^+$. Given an ε -Lukasiewicz fuzzy set L_h^{ε} in X, if its Lukasiewicz \in -set $(L_h^{\varepsilon}, t)_{\in}$ is a subalgebra of $(X, 0)_*$ for all $t \in (0, 1]$ with $t \leq \alpha$, then L_h^{ε} is an (α, ε) -Lf-subalgebra of $(X, 0)_*$.

Proof. Let $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$ be such that $\langle x/t_{\mathfrak{a}} \rangle \in \mathcal{L}_{h}^{\varepsilon}$ and $\langle y/t_{\mathfrak{b}} \rangle \in \mathcal{L}_{h}^{\varepsilon}$. If $t_{\mathfrak{a}} \leq \alpha$ and $t_{\mathfrak{b}} \leq \alpha$, then $x \in (\mathcal{L}_{h}^{\varepsilon}, t_{\mathfrak{a}})_{\in} \subseteq (\mathcal{L}_{h}^{\varepsilon}, \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}\})_{\in}$ and $y \in (\mathcal{L}_{h}^{\varepsilon}, t_{\mathfrak{b}})_{\in} \subseteq (\mathcal{L}_{h}^{\varepsilon}, \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}\})_{\in}$ is a subalgebra of $(X, 0)_{*}$ by assumption. Hence

$$x*y\in (\mathbf{L}_h^\varepsilon, \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}\})_{\in} \subseteq (\mathbf{L}_h^\varepsilon, \min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\})_{\in},$$

and so $\langle (x*y)/\min\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \rangle \in \mathcal{L}_{h}^{\varepsilon}$. Therefore, $\mathcal{L}_{h}^{\varepsilon}$ is an (α, ε) -Lf-subalgebra of $(X, 0)_{*}$.

THEOREM 3.16. If an ε -Lukasiewicz fuzzy set L_h^{ε} in X is an (α, ε) -Lf-subalgebra of $(X, 0)_*$, then the Lukasiewicz q-set $(L_h^{\varepsilon}, t)_q$ of L_h^{ε} is a subalgebra of $(X, 0)_*$ for all $\alpha \in \mathbb{R}^+$ and $t \in (0, 1]$ with $t + \alpha \geq 1$.

Proof. Let $\alpha \in \mathbb{R}^+$ and and $t \in (0,1]$ be such that $t + \alpha \geq 1$. If $x, y \in (\mathbb{E}_h^{\varepsilon}, t)_q$, then $\langle x/t \rangle q \, \mathbb{E}_h^{\varepsilon}$ and $\langle y/t \rangle q \, \mathbb{E}_h^{\varepsilon}$, that is, $\mathbb{E}_h^{\varepsilon}(x) + t > 1$ and $\mathbb{E}_h^{\varepsilon}(y) + t > 1$. It follows from Theorem 3.13 that

$$\mathcal{L}_{h}^{\varepsilon}(x * y) \ge \min\{\mathcal{L}_{h}^{\varepsilon}(x), \mathcal{L}_{h}^{\varepsilon}(y), \alpha\} \ge \min\{1 - t, \alpha\} = 1 - t.$$

Hence $\langle (x*y)/t \rangle q \mathcal{L}_h^{\varepsilon}$, and so $x*y \in (\mathcal{L}_h^{\varepsilon},t)_q$. Therefore, $(\mathcal{L}_h^{\varepsilon},t)_q$ is a subalgebra of $(X,0)_*$.

PROPOSITION 3.17. Given an (α, ε) -Lf-subalgebra L_h^{ε} of $(X, 0)_*$, if its Lukasiewicz \in -set $(L_h^{\varepsilon}, t)_{\varepsilon}$ is a subalgebra of $(X, 0)_*$ for all $\alpha \in \mathbb{R}^+$ and $t \in (0.5, 1]$ with $t \leq \alpha$, then the following inequality is valid:

(7)
$$\max\{L_h^{\varepsilon}(x*y), 0.5\} \ge \min\{L_h^{\varepsilon}(x), L_h^{\varepsilon}(y), \alpha\}$$

for all $x, y \in X$.

Proof. Assume that $(L_h^{\varepsilon}, t)_{\varepsilon}$ is a subalgebra of $(X, 0)_*$ for all $\alpha \in \mathbb{R}^+$ and $t \in (0.5, 1]$ with $t \leq \alpha$. If (7) is not valid, then there exist $t \in (0, 1]$ and $\mathfrak{a}, \mathfrak{b} \in X$ such that

$$\max\{\mathcal{L}_h^{\varepsilon}(\mathfrak{a} * \mathfrak{b}), 0.5\} < t \leq \min\{\mathcal{L}_h^{\varepsilon}(\mathfrak{a}), \mathcal{L}_h^{\varepsilon}(\mathfrak{b}), \alpha\}.$$

Then $t \in (0.5, 1]$, $t \leq \alpha$, $\langle \mathfrak{a}/t \rangle \in \mathcal{L}_h^{\varepsilon}$ and $\langle \mathfrak{b}/t \rangle \in \mathcal{L}_h^{\varepsilon}$. Hence $\mathfrak{a}, \mathfrak{b} \in (\mathcal{L}_h^{\varepsilon}, t)_{\in}$, and so $\mathfrak{a} * \mathfrak{b} \in (\mathcal{L}_h^{\varepsilon}, t)_{\in}$. It follows that $t \leq \mathcal{L}_h^{\varepsilon}(\mathfrak{a} * \mathfrak{b}) = \max\{\mathcal{L}_h^{\varepsilon}(\mathfrak{a} * \mathfrak{b}), 0.5\}$. This is a contradiction, and therefore $\mathcal{L}_h^{\varepsilon}$ satisfies the inequality (7).

The combination of Theorems 3.14 and 3.15 induces the following corollary.

COROLLARY 3.18. If an ε -Łukasiewicz fuzzy set L_h^{ε} in X is an (α, ε) -Łf-subalgebra of $(X, 0)_*$, then it satisfies the inequality (7).

Now, we discuss the converse of Proposition 3.17.

THEOREM 3.19. If an ε -Łukasiewicz fuzzy set L_h^{ε} in X satisfies the inequality (7) for all $\alpha \in \mathbb{R}^+$ and $x, y \in X$, then its Łukasiewicz \in -set $(L_h^{\varepsilon}, t)_{\in}$ is a subalgebra of $(X, 0)_*$ for all $t \in (0.5, 1]$ with $t \leq \alpha$.

Proof. Let $t \in (0.5, 1]$ and $x, y \in X$ be such that $t \leq \alpha$ and $x, y \in (\mathbb{L}_h^{\varepsilon}, t)_{\in}$. Then $\mathbb{L}_h^{\varepsilon}(x) \geq t$ and $\mathbb{L}_h^{\varepsilon}(y) \geq t$. Thus (7) induces

$$\max\{\mathcal{L}_h^{\varepsilon}(x*y), 0.5\} \ge \min\{\mathcal{L}_h^{\varepsilon}(x), \mathcal{L}_h^{\varepsilon}(y), \alpha\} \ge \min\{t, \alpha\} = t$$

and so $\mathcal{L}_h^{\varepsilon}(x*y) \geq t$ since t > 0.5. Hence $x*y \in (\mathcal{L}_h^{\varepsilon}, t)_{\in}$, and thus $(\mathcal{L}_h^{\varepsilon}, t)_{\in}$ is a subalgebra of $(X, 0)_*$.

THEOREM 3.20. If an ε -Lukasiewicz fuzzy set L_h^{ε} in X is an (α, ε) -Lf-subalgebra of $(X, 0)_*$ for all $\alpha (\neq 0) \in \mathbb{R}^+$, then its Lukasiewicz O-set $O(L_h^{\varepsilon})$ is a subalgebra of $(X, 0)_*$.

Proof. Assume that $\mathcal{L}_h^{\varepsilon}$ is an (α, ε) -Lf-subalgebra of $(X, 0)_*$ for all $\alpha \neq 0 \in \mathbb{R}^+$. If $x, y \in O(\mathcal{L}_h^{\varepsilon})$, then $h(x) + \varepsilon - 1 > 0$ and $h(y) + \varepsilon - 1 > 0$. Hence Theorem 3.13 induces

$$\begin{split} h(x*y) + \varepsilon - 1 &= \max\{0, h(x*y) + \varepsilon - 1\} = \mathcal{L}_h^{\varepsilon}(x*y) \\ &\geq \min\{\mathcal{L}_h^{\varepsilon}(x), \mathcal{L}_h^{\varepsilon}(y), \alpha\} \\ &= \min\{h(x) + \varepsilon - 1, h(y) + \varepsilon - 1, \alpha\} > 0, \end{split}$$

and so $x * y \in O(\mathbb{L}_h^{\varepsilon})$. Therefore, $O(\mathbb{L}_h^{\varepsilon})$ is a subalgebra of $(X,0)_*$.

THEOREM 3.21. Let $\alpha \in \mathbb{R}^+$ be such that $\alpha + \varepsilon \leq 1$. If an ε -Łukasiewicz fuzzy set L_h^{ε} in X satisfies

(8)
$$\langle x/t_{\mathfrak{a}} \rangle \in L_{h}^{\varepsilon}, \langle y/t_{\mathfrak{b}} \rangle \in L_{h}^{\varepsilon}, \alpha \in \mathbb{R}^{+} \vdash \langle (x * y)/\max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \rangle q L_{h}^{\varepsilon}$$

for all $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$, then its Lukasiewicz O-set $O(L_h^{\varepsilon})$ is a subalgebra of $(X, 0)_*$.

Proof. Assume that $\mathcal{L}_h^{\varepsilon}$ satisfies (8) for all $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$. Let $x, y \in O(\mathcal{L}_h^{\varepsilon})$. Then $h(x) + \varepsilon - 1 > 0$ and $h(y) + \varepsilon - 1 > 0$. If we take $t_{\mathfrak{a}} := \mathcal{L}_h^{\varepsilon}(x)$ and $t_{\mathfrak{b}} := \mathcal{L}_h^{\varepsilon}(y)$, then $\langle x/t_{\mathfrak{a}} \rangle \in \mathcal{L}_h^{\varepsilon}$ and $\langle y/t_{\mathfrak{b}} \rangle \in \mathcal{L}_h^{\varepsilon}$. Thus

$$\langle (x * y) / \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \rangle q \, \mathcal{L}_{b}^{\varepsilon}$$

by (8). If $x * y \notin O(\mathbf{L}_h^{\varepsilon})$, then $\mathbf{L}_h^{\varepsilon}(x * y) = 0$ and so

$$\begin{split} & \mathbf{L}_{h}^{\varepsilon}(x * y) + \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} = \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \\ & = \max\{\mathbf{L}_{h}^{\varepsilon}(x), \mathbf{L}_{h}^{\varepsilon}(y), \alpha\} \\ & \leq \max\{h(x) + \varepsilon - 1, h(y) + \varepsilon - 1, 1 - \varepsilon\}. \end{split}$$

It follows that $\mathcal{L}_h^{\varepsilon}(x * y) + \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \leq 1 - \varepsilon \leq 1$ or

$$\begin{split} & \mathcal{L}_h^{\varepsilon}(x*y) + \max\{t_{\mathfrak{a}}, \, t_{\mathfrak{b}}, \alpha\} \leq \max\{h(x) + \varepsilon - 1, h(y) + \varepsilon - 1\} \\ & = \max\{h(x), h(y)\} + \varepsilon - 1 \leq 1 + \varepsilon - 1 = \varepsilon \leq 1. \end{split}$$

This is a contradiction, and thus $x * y \in O(\mathbb{L}_h^{\varepsilon})$. Therefore, $O(\mathbb{L}_h^{\varepsilon})$ is a subalgebra of $(X,0)_*$.

COROLLARY 3.22. (see [6, Theorem 3.21]) If an ε -Lukasiewicz fuzzy set L_h^{ε} in X satisfies (8) for all $\alpha \leq \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}\}$, then its Lukasiewicz O-set $O(L_h^{\varepsilon})$ is a subalgebra of $(X, 0)_*$.

Theorem 3.23. If an ε -Łukasiewicz fuzzy set L_h^{ε} in X satisfies

(9)
$$\langle x/t_{\mathfrak{a}} \rangle q L_{h}^{\varepsilon}, \langle y/t_{\mathfrak{b}} \rangle q L_{h}^{\varepsilon}, \alpha \in \mathbb{R}^{+} \vdash \langle (x * y) / \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \rangle \in L_{h}^{\varepsilon}$$

for all $x, y \in X$ and $t_{\mathfrak{a}}, t_{\mathfrak{b}} \in (0, 1]$, then its Lukasiewicz O-set $O(L_h^{\varepsilon})$ is a subalgebra of $(X, 0)_*$.

Proof. Let $\alpha \in \mathbb{R}^+$ and $x, y \in O(\mathbb{E}_h^{\varepsilon})$. Then $h(x) + \varepsilon - 1 > 0$ and $h(y) + \varepsilon - 1 > 0$. Thus $\mathbb{E}_h^{\varepsilon}(x) + 1 = h(x) + \varepsilon - 1 + 1 = h(x) + \varepsilon > 1$ and $\mathbb{E}_h^{\varepsilon}(y) + 1 = h(x) + \varepsilon - 1 + 1 = h(y) + \varepsilon > 1$, that is, $\langle x/1 \rangle q \mathbb{E}_h^{\varepsilon}$ and $\langle y/1 \rangle q \mathbb{E}_h^{\varepsilon}$. It follows from (9) that $\langle (x * y) / \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} \rangle \in \mathbb{E}_h^{\varepsilon}$. Hence $\mathbb{E}_h(x * y) \geq \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\}$, and so $\mathbb{E}_h(x * y) \geq \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}, \alpha\} > 0$ or $\mathbb{E}_h(x * y) \geq \alpha > 0$. Thus $x * y \in O(\mathbb{E}_h^{\varepsilon})$ and $O(\mathbb{E}_h^{\varepsilon})$ is a subalgebra of $(X, 0)_*$.

COROLLARY 3.24. (see [6, Theorem 3.22]) If an ε -Lukasiewicz fuzzy set L_h^{ε} in X satisfies (9) for all $\alpha \leq \max\{t_{\mathfrak{a}}, t_{\mathfrak{b}}\}$, then its Lukasiewicz O-set $O(L_h^{\varepsilon})$ is a subalgebra of $(X, 0)_*$.

4. Conclusion

Lukasiewicz (fuzzy) logic, which is the logic of the Łukasiewicz t-norm, is a non-classical and many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued logic BCK/BCI-algebras originally defined by K. Iséki and S. Tanaka in [5] to generalize the set difference in set theory. Using the idea of Łukasiewicz t-norm, Jun constructed the concept of Łukasiewicz fuzzy sets based on a given fuzzy set and applied it to BCK-algebras and BCI-algebras. For the purpose of considering the generalization of Łukasiewicz fuzzy subalgebras in BCK/BCI-algebras, we defined (α, ε) -Łukasiewicz fuzzy subalgebras using fuzzy points and provided examples to illustrate it. We investigated several properties arising from (α, ε) -Łukasiewicz fuzzy subalgebras, and discussed the relation between Łukasiewicz fuzzy subalgebras and (α, ε) -Łukasiewicz fuzzy subalgebras. We explored the characterizations of (α, ε) -Łukasiewicz fuzzy subalgebras, and examined the conditions under which the ε -Łukasiewicz fuzzy set to be an (α, ε) -Łukasiewicz fuzzy subalgebra. We found conditions for the Łukasiewicz ε -set, Łukasiewicz ε -set and Łukasiewicz ε -set to be subalgebras.

The ideas and results obtained in this paper can be applied to various forms of logical algebras in the future.

References

- [1] S. S. Ahn, E. H. Roh and Y. B. Jun, Ideals in BE-algebras based on Lukasiewicz fuzzy set, European Journal of Pure and Applied Mathematics, 15 (3) (2022), 1307-1320. https://doi.org/10.29020/nybg.ejpam.v15i3.4467
- R. A. Borzooei, S. S. Ahn and Y. B. Jun, Lukasiewicz fuzzy filters of Sheffer stroke Hilbert algebras, Journal of Intelligent & Fuzzy Systems, 46 (2024), 8231–8243.
 https://doi.org/10.3233/JIFS-233295
- [3] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [4] K. Iséki, On BCI-algebras, Mathematics Seminar Notes, 8 (1980), 125–130. https://api.semanticscholar.org/CorpusID:119048727
- [5] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, 23 (1978), 1–26.
- Y. B. Jun, Lukasiewicz fuzzy subalgebras in BCK-algebras and BCI-algebras, Annals of Fuzzy Mathematics and Informatics, 23 (2) (2022), 213-223.
 https://doi.org/10.30948/afmi.2022.23.2.213
- [7] Y. B. Jun, *Łukasiewicz fuzzy ideals in BCK-algebras and BCI-algebras*, Journal of Algebra and Related Topics, **11** (1) (2023), 1–14.
- [8] Y. B. Jun, Positive implicative BE-filters of BE-algebras based on Lukasiewicz fuzzy sets, Journal of Algebraic Hyperstructures and Logical Algebras, 4 (1) (2023), 1–11.
- Y. B. Jun and S. S. Ahn, Lukasiewicz fuzzy BE-algebras and BE-filters, European Journal of Pure and Applied Mathematics, 15 (3) (2022), 924-937.
 https://doi.org/10.29020/nybg.ejpam.v15i3.4446
- [10] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa Co., Seoul, 1994.
- [11] M. Mohseni Takallo, M. Aaly Kologani, Y. B. Jun and R. A. Borzooei, *Łukasiewicz fuzzy filters in hoops*, Journal of Algebraic Systems, 12 (1) (2024), 1–20. https://doi.org/10.22044/JAS.2022.12139.1632
- [12] P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, Journal of Mathematical Analysis and Applications, 76 (1980), 571–599. https://doi.org/10.1016/0022-247X(80)90048-7

- [13] G. R. Rezaei and Y. B. Jun, Commutative ideals of BCI-algebras based on Łukasiewicz fuzzy sets, Journal of Algebraic Hyperstructures and Logical Algebras, 3 (4) (2022), 25–36. https://doi.org/10.52547/HATEF.JAHLA.3.4.2
- [14] S. Z. Song and Y. B. Jun, *Lukasiewicz fuzzy positive implicative ideals in BCK-algebras*, Journal of Algebraic Hyperstructures and Logical Algebras, **3** (2) (2022), 47–58. https://doi.org/10.52547/HATEF.JAHLA.3.2.4

Sun Shin Ahn

Department of Mathematics Education, Dongguk University, Seoul 04620, Korea *E-mail*: sunshine@dongguk.edu

Young Joo Seo

Research Institute for Natural Sciences, Department of Mathematics, Hanyang University, Seoul 04763, Korea *E-mail*: bejesus@hanyang.ac.kr

Young Bae Jun

Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea E-mail: skywine@gmail.com