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WEAK EXTENDED ORDER ALGEBRAS HAVING

ADJOINT TRIPLES

Yong Chan Kim and Jung Mi Ko∗

Abstract. We study the properties of weak extended order alge-
bras having adjoint pairs (triples) or Galois pairs. In particular, we
investigate the various laws on weak extended order algebras.

1. Introduction

Wille [9] introduced the structures on lattices which are important
mathematical tools for data analysis and knowledge processing. MV-
algebra was introduced by Chang [2] to provide algebraic models for
many valued propositional logic. Recently, it is developed in many di-
rections (BL-algebra, residuated algebra) [1,3,4,7,9]. Recently, Guido
et al. [5] introduced extended order algebras as the generalization of
residuated algebras. Kim and Ko [6] introduced the properties of weak
extended order algebras. In particular, we investigate the properties of
commutative and associative extended-order algebras.

In this paper, we study the properties of weak extended order al-
gebras having adjoint pairs (triples) or Galois pairs. In particular, we
investigate the various laws on weak extended order algebras.
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2. Preliminaries

Definition 2.1. [5,6] Let (L,∧,∨) be a lattice. A triple (L,⇒,>) is
called a weak extended order algebra (shortly, w-eo algebra) iff it satisfies
the following properties:

(O1) a⇒ > = > (upper bounded condition)
(O2) a⇒ a = > (reflexive condition)
(O3) if a⇒ b = > and b⇒ a = >, then a = b
(O4) if a⇒ b = > and b⇒ c = >, then a⇒ c = >.
A triple (L,⇒,>) is called a right w-eo algebra if it satisfies (O1),

(O2), (O3) and
(O5) if a⇒ b = >, then (c⇒ a)⇒ (c⇒ b) = >.
A triple (L,⇒,>) is called a left w-eo algebra if it satisfies (O1), (O2),

(O3) and
(O6) if a⇒ b = >, then (b⇒ c)⇒ (a⇒ c) = >.
A w-eo algebra is called a right distributive w-eo algebra if
(O7) a⇒

∧
i bi =

∧
i(a⇒ bi).

A w-eo algebra is called a left distributive w-eo algebra if
(O8)

∨
i ai ⇒ b =

∧
i(ai ⇒ b).

(1) A w-eo algebra has an adjoint pair (⇒,�) if there exists a binary
operation � such that

a� b ≤ c iff b ≤ a⇒ c.

(2) A w-eo algebra has a Galois pair (⇒,→) if there exists a binary
operation → such that

b ≤ a⇒ c iff a ≤ b→ c.

(3) A w-eo algebra has symmetrical if it has a Galois pair (⇒,→) and
(L,→,>) is a w-eo algebra.

(4) A w-eo algebra has an adjoint triple (⇒,�,→) if there exists
binary operation � and→ such that a�b ≤ c iff b ≤ a⇒ c iff a ≤ b→ c.

(5) A w-eo algebra is called a w-ceo algebra if L is complete.

Theorem 2.2. [6] (1) If (L,⇒,>) is a right w-eo algebra, then it is
a w-eo algebra.

(2) If (L,⇒,>) is a left w-eo algebra, then it is a w-eo algebra.

Theorem 2.3. [5] Let (L,⇒,>) be a right-distributive w-ceo algebra
and � be defined by

a� x =
∧
{y ∈ L | x ≤ a⇒ y}.
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Then � and ⇒ form an adjoint pair, i.e.

x� y ≤ z iff y ≤ x⇒ z.

Theorem 2.4. [5] Let (L,⇒,>) be a left-distributive w-ceo algebra
and → be defined by

ga(y) = y → a =
∨
{x ∈ L | y ≤ x⇒ a}.

Then (⇒,→) forms an adjoint pair, i.e.

y ≤ x⇒ a iff x ≤ y → a.

Theorem 2.5. [6] Let (L,⇒,>) be a w-eo algebra having an adjoint
pair (⇒,�) and ⇒ be defined by

a⇒ b = > iff a ≤ b

For each a, b, c, ai, bi ∈ L, the following properties hold.
(1) a� b ≤ a and a� (a⇒ b) ≤ b ≤ a⇒ a� b;
(2) a�> = a;
(3) a�⊥ = ⊥� a = ⊥;
(4) If b ≤ c, then a� b ≤ a� c.
(5) (L,⇒,>) be a right w-eo algebra.
(6) If (L,⇒,>) is a complete lattice, (L,⇒,>) is a right distributive

w-eo algebra and a� (
∨

i∈Γ bi) =
∨

i∈Γ(a� bi).
(7) (L,⇒,>) is a left w-eo algebra iff a� c ≤ b� c for a ≤ b.
(8) If (L,⇒,>) is a left w-eo algebra, then (L,⇒,>) be a right w-eo

algebra.
(9) If (L,⇒,>) is a left w-eo algebra and a � (b � c) = (a � b) � c,

then

(a⇒ b)⇒ ((c⇒ a)⇒ (c⇒ b)
)

= >.

(10) If (L,⇒,>) is a complete and left w-eo algebra, then (L,⇒,>)
is a left distributive w-eo algebra and (

∨
i∈Γ ai)� b =

∨
i∈Γ(ai � b).

(11) If > ⇒ a = a, then > � a = a, a =
∧

b(b ⇒ (b � a)) and
a =

∨
b(b� (b⇒ a)).

(12) If (L,⇒,>) is a left w-eo algebra and > ⇒ a = a, then a� b ≤ b
and a⇒ (b⇒ a) = >.

Theorem 2.6. [6] Let (L,⇒,>) be a w-eo algebra having a Galois
pair (⇒,→). For each a, b, c ∈ L, the following properties hold.

(1) a ≤ (a→ b)⇒ b and a ≤ (a⇒ b)→ b.
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(2) > → a = a. Furthermore, if (L,⇒,→,>) is a symmetrical w-eo
algebra, then > ⇒ a = a.

(3) If > ⇒ a = a, then a→ b = > iff a ≤ b.

(4) (L,⇒,>) is a left w-eo algebra. If > ⇒ a = a, (L,→,>) is a left
w-eo algebra.

(5) (L,⇒,>) is a right w-eo algebra iff (L,→,>) is a right w-eo
algebra.

(6) a =
∧

b((a⇒ b)→ b). If > ⇒ a = a, then a =
∧

b((a→ b)⇒ b).

(7) If (L,⇒,>) is a complete lattice,
∨

i ai ⇒ b =
∧

i(ai ⇒ b) and∨
i ai → b =

∧
i(ai → b).

Theorem 2.7. [6] Let (L,⇒,>) be a w-eo algebra having adjoint
triple with � and →. Then the following properties hold.

(1) (L,⇒,>) is an eo algebra;

(2) If > ⇒ a = a, then (L,→,>) is an eo algebra;

(3) If a ≤ b, then a� c ≤ b� c and c� a ≤ c� b.

(4) If > ⇒ a = a, then >� a = a.

Definition 2.8. [5] A w-eo algebra (L,⇒,>) is commutative iff it
satisfies

a⇒ (b⇒ c) = > iff b⇒ (a⇒ c) = >

Theorem 2.9. [6] Let (L,⇒,>) be a w-eo algebra having adjoint
triple with � and →. Then the following statements are equivalent:

(1) (L,⇒,>) is commutative;

(2) (L,�,>) is commutative;

(3) (L,→,>) is commutative eo algebra with ⇒=→.

(4) a→ b ≤ a⇒ b for all a, b ∈ L.

(5) a⇒ b ≤ a→ b for all a, b ∈ L.

(6) a ≤ (a⇒ b)⇒ b for all a, b ∈ L.

(7) a ≤ (a→ b)→ b for all a, b ∈ L.

(8) (a⇒ b)� a ≤ b for all a, b ∈ L.

(9) a� (a→ b) ≤ b for all a, b ∈ L.

(10) b ≤ a⇒ b� a for all a, b ∈ L.

(11) a ≤ b→ b� a for all a, b ∈ L.
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3. Weak extended order algebras having adjoint triples

Theorem 3.1. Let (L,⇒,>) be a w-eo algebra having adjoint triple
with � and →. Then the following statements are equivalent:

(1) a⇒ (b⇒ c) = b⇒ (a⇒ c) for all a, b, c ∈ L.
(2) b→ c ≤ (a⇒ b)→ (a⇒ c) for all a, b, c ∈ L.
(3) a� (b� c) = b� (a� c) for all a, b, c ∈ L.
(4) b→ c ≤ (a� b)→ (a� c) for all a, b, c ∈ L.
(5) b→ (a⇒ c) = (a� b)→ c for all a, b, c ∈ L.

Proof. (1)⇔ (2) Since a ⇒ (b ⇒ c) ≤ b ⇒ (a ⇒ c), then b ≤ (a ⇒
(b⇒ c))→ (a⇒ c). Put b = b→ c. Since b ≤ (b→ c)⇒ c, then

b→ c ≤ (a⇒ ((b→ c)⇒ c))→ (a⇒ c)

≤ (a⇒ b)→ (a⇒ c).

Conversely, since b ≤ (b⇒ c)→ c ≤ (a⇒ (b⇒ c))→ (a⇒ c), then
a⇒ (b⇒ c) ≤ b⇒ (a⇒ c).

(1)⇔ (3) Since a⇒ (b⇒ a� (b� c)) = b⇒ (a⇒ a� (b� c)) ≥ b⇒
(b� c) ≥ c, then

a⇒ (b⇒ a� (b� c)) ≥ c iff b⇒ a� (b� c) ≥ a� c

iff a� (b� c) ≥ b� (a� c).

Similarly, a� (b� c) ≤ b� (a� c).
Conversely, since a� (b� (a⇒ (b⇒ c))) = b� (a� (a⇒ (b⇒ c))) ≤

b� (b⇒ c) ≤ c, we have

a� (b� (a⇒ (b⇒ c))) ≤ c iff b� (a⇒ (b⇒ c)) ≤ a⇒ c

iff a⇒ (b⇒ c) ≤ b⇒ (a⇒ c)

Similarly, a⇒ (b⇒ c) ≥ b⇒ (a⇒ c).
(3)⇔ (4)

(b→ c)� (a� b) = a� ((b→ c)� b
)
≤ a� c

iff b→ c ≤ (a� b)→ (a� c.)

b ≤ c→ b� c ≤ (a� c)→ a� (b� c)

iff b� (a� c) ≤ a� (b� c).
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(3)⇔ (5) By (4), put c = a⇒ c.

b→ (a⇒ c) ≤ (a� b)→ a� (a⇒ c) ≤ a� b→ c.

(a� b→ c)� (a� b) ≤ c

iff a� ((a� b→ c)� b) ≤ c

iff (a� b→ c)� b ≤ a⇒ c

iff a� b→ c ≤ b→ (a⇒ c).

Hence a� b→ c ≤ b→ (a⇒ c).
Conversely, since b� c→ b� (a� c) = c→ (b⇒ b� (a� c)) ≥ c→

(a� c) ≥ a, we have

b� c→ b� (a� c) ≥ a iff a� (b� c) ≤ b� (a� c).

Theorem 3.2. Let (L,⇒,>) be a w-eo algebra having adjoint triple
with � and →. Then the following statements are equivalent:

(1) a→ (b→ c) = b→ (a→ c) for all a, b, c ∈ L.
(2) b⇒ c ≤ (a→ b)⇒ (a→ c) for all a, b, c ∈ L.
(3) (a� b)� c = (a� c)� b for all a, b, c ∈ L.
(4) b⇒ c ≤ (b� a)⇒ (c� a) for all a, b, c ∈ L.
(5) b⇒ (a→ c) = (b� a)⇒ c for all a, b, c ∈ L.

Proof. (1)⇔ (2) Since a → (b → c) ≤ b → (a → c), then b ≤ (a →
(b→ c))⇒ (a→ c). Put b = b⇒ c. Since b ≤ (b⇒ c)→ c, then

b⇒ c ≤ (a→ ((b⇒ c)→ c))⇒ (a→ c)

≤ (a→ b)⇒ (a→ c)

Since b ≤ (b → c) ⇒ c ≤ (a → (b → c)) ⇒ (a → c), then a → (b →
c) ≤ b→ (a→ c).

(1)⇔ (3) Since c→ (b→ (a� b)� c) = b→ (c→ (a� b)� c) ≥ b→
(a� b) ≥ a, we have

c→ (b→ (a� b)� c) ≥ a iff b→ (a� b)� c ≥ a� c

iff (a� b)� c ≥ (a� c)� b.

Conversely, since ((a → (b → c))� b)� a = ((a → (b → c))� a)� b ≤
(b→ c)� b ≤ c, we have

((a→ (b→ c))� b)� a ≤ c iff (a→ (b→ c))� b ≤ a→ c

iff a→ (b→ c) ≤ b→ (a→ c).
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(3)⇔ (4)

(b� a)� (b⇒ c) = (b� (b⇒ c))� a ≤ c� a

iff b⇒ c ≤ (b� a)⇒ (c� a)

Conversely, since c ≤ a⇒ a� c ≤ (a� b)⇒ (a� c)� b, we have

c ≤ (a� b)⇒ (a� c)� b iff (a� b)� c ≤ (a� c)� b.

(3)⇔ (5) By (4), put c = a→ c.

b⇒ (a→ c) ≤ (b� a)⇒ (a→ c)� a ≤ b� a⇒ c.

Since (b� (b�a⇒ c))� (b⇒ b�a) = (b� (b⇒ b�a))� (b�a→ c) ≤
(b�a)�(b�a⇒ c) ≤ c, then b�(b�a⇒ c) ≤ (b⇒ b�a)→ c ≤ a→ c.
So, b� a⇒ c ≤ b⇒ (a→ c). Hence b� a⇒ c = b⇒ (a→ c).

Conversely, since a� b⇒ (a� c)� b = a⇒ (b→ (a� c)� b) ≥ a⇒
a� c ≥ c, we have

a� b⇒ (a� c)� b ≥ c iff (a� b)� c ≤ (a� c)� b.

Definition 3.3. [5] Let (L,⇒,>) be a w-eo algebra having an adjoint
pair (⇒,�). A w-eo algebra (L,⇒,>) is associative iff it satisfies

a⇒ (b⇒ c) = (b� a)⇒ c.

Theorem 3.4. Let (L,⇒,>) be a w-eo algebra having an adjoint
pair (⇒,�). Then the following statements are equivalent:

(1) (L,⇒,>) is associative;
(2) (a� b)� c = a� (b� c) for all a, b, c ∈ L.

Proof. (1)⇒ (2)

(a� b)� c ≤ a� (b� c)

iff c ≤ (a� b)⇒ (a� (b� c)) = b⇒ (a⇒ (a� (b� c)))

iff b� c ≤ a⇒ a� (b� c)

iff a� (b� c) ≤ a� (b� c).
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a� (b� c) ≤ (a� b)� c

iff b� c ≤ a⇒ ((a� b)� c)

iff c ≤ b⇒ (a⇒ ((a� b)� c)) = a� b⇒ ((a� b)� c)

iff (a� b)� c ≤ (a� b)� c.

(2)⇒ (1) Since (b� a)� (a⇒ (b⇒ c)) = b� (a� (a⇒ (b⇒ c))) ≤
b� (b⇒ c) ≤ c, we have a⇒ (b⇒ c) ≤ (b� a)⇒ c.

(b� a)⇒ c ≤ a⇒ (b⇒ c)

iff a� ((b� a)⇒ c) ≤ b⇒ c

iff (b� a)� ((b� a)⇒ c) ≤ c.

Theorem 3.5. Let (L,⇒,>) be a right w-eo algebra having a Galois
pair (⇒,→). Then the following statements are equivalent:

(1) a⇒ (b→ c) = b→ (a⇒ c).
(2) b→ a ≤ (a→ c)⇒ (b→ c) and b⇒ a ≤ (a⇒ c)→ (b⇒ c).

Proof. (1)⇒ (2) Since (a→ c)⇒ c ≥ a, we have

(a→ c)⇒ (b→ c) = b→ ((a→ c)⇒ c) ≥ b→ a.

Since (a⇒ c)→ c ≥ a, we have

(a⇒ c)→ (b⇒ c) = b⇒ ((a⇒ c)→ c) ≥ b⇒ a.

(2)⇒ (1) Since a ≤ (a⇒ c)→ c,

a⇒ (b→ c) ≥ ((a⇒ c)→ c)⇒ (b→ c)

≥ b→ (a⇒ c).

Since b ≤ (b→ c)⇒ c,

b→ (a⇒ c) ≥ ((b→ c)⇒ c)→ (a⇒ c)

≥ a⇒ (b→ c).

Theorem 3.6. Let (L,⇒,>) be a right w-eo algebra having adjoint
triple with � and →. Then the following statements are equivalent:

(1) a⇒ (b→ c) = b→ (a⇒ c).
(2) (L,�,>) is associative.
(3) a→ (b→ c) = (a� b)→ c.
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Proof. (1)⇒ (2)

(a� b)� c ≤ a� (b� c)

iff a� b ≤ c→ (a� (b� c))

iff b ≤ a⇒ (c→ (a� (b� c))) = c→ (a⇒ (a� (b� c)))

iff b� c ≤ a⇒ (a� (b� c))

iff a� (b� c) ≤ a� (b� c)

a� (b� c) ≤ (a� b)� c

iff b� c ≤ a⇒ (a� b)� c

iff b ≤ c→ (a⇒ ((a� b)� c)) = a⇒ (c→ ((a� b)� c)))

iff a� b ≤ c→ (a� b)� c

iff (a� b)� c ≤ (a� b)� c

(2)⇒ (1) Since a� ((a⇒ (b→ c))� b) = (a� (a⇒ (b→ c)))� b ≤
(b → c) � b ≤ c, then (a ⇒ (b → c)) � b ≤ a ⇒ c. So, a ⇒ (b → c) ≤
b→ (a⇒ c).

Since (a� (b→ (a⇒ c)))� b = a� ((b→ (a⇒ c))� b) ≤ a� (a⇒
c) ≤ c, then a�(b→ (a⇒ c)) ≤ b→ c. So, b→ (a⇒ c) ≤ a⇒ (b→ c).

(2)⇔ (3) Since (a→ (b→ c))� (a� b) = ((a→ (b→ c))�a)� b ≤ c,
then a→ (b→ c) ≤ (a� b)→ c.

Since (((a � b) → c) � a) � b = ((a � b) → c) � (a � b) ≤ c, then
(a� b)→ c ≤ a→ (b→ c).

Conversely, it follows from;

(a� b)� c ≤ (a� b)� c

iff a� b ≤ c→ (a� b)� c

iff a ≤ b→ (c→ ((a� b)� c)) = (b� c)→ (a� b)� c

iff a� (b� c) ≤ (a� b)� c,

a� (b� c) ≤ a� (b� c)

iff a ≤ (b� c)→ a� (b� c)

iff a ≤ b→ (c→ a� (b� c))

iff a� b ≤ c→ a� (b� c)

iff (a� b)� c ≤ (a� b)� c.
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Theorem 3.7. Let (L,⇒,>) be a w-eo algebra having adjoint triple
with � and → satisfying > ⇒ a = a for all a ∈ L. Then the following
statements are equivalent:

(1) a⇒ (b⇒ c) = b⇒ (a⇒ c) for all a, b, c ∈ L.
(2) a→ (b→ c) = b→ (a→ c) for all a, b, c ∈ L.
(3) a� b = b� a and (a� b)� c = a� (b� c) for all a, b, c ∈ L.

Proof. (1)⇔ (2). Since a ⇒ (b ⇒ c) = > iff b ⇒ (a ⇒ c) = >, then
⇒=→.

Conversely, since (L,→,>) be an eo algebra having adjoint triple with
�∗ and ⇒ with a�∗ b = b� a from Theorem 2.7 (2), then (L,→,>) is
commutative. Hence ⇒=→.

(1)⇔ (3). By Theorem 2.9, a� b = b� a. By Theorems 3.1 and 3.2,
(a� b)� c = (a� c)� b = b� (a� c) = a� (b� c).

Conversely, by Theorem 3.1, it follows from a�(b�c) = b�(a�c).

Theorem 3.8. Let (L,⇒,>) be a w-eo algebra having a ⇒ (b ⇒
c) = b ⇒ (a ⇒ c) for all a, b, c ∈ L and (a ⇒ ⊥) ⇒ ⊥ = a . Then
a⇒ b = (b⇒ ⊥)⇒ (a⇒ ⊥).

Proof. It follows from a ⇒ b = a ⇒ ((b ⇒ ⊥) ⇒ ⊥) = (b ⇒ ⊥) ⇒
(a⇒ ⊥).

Example 3.9. (1) Let ([0, 1],⇒) be a unit interval defined as

a⇒ b =

{
1, if a ≤ b,

(1
2
− a) ∨ b, otherwise.

We easily show that ([0, 1],⇒, 1) is an eo algebra having
∨

i xi ⇒ y =∧
i(xi ⇒ y) and x ⇒

∧
i yi =

∧
i(x ⇒ yi). Put fb(x) = x ⇒ b. Define

gb(y) = y → b =
∨
{x ∈ L | y ≤ fb(x)}. Then y ≤ fb(x) iff x ≤ gb(y).

We obtain:

a→ b =

{
1, if a ≤ b,

(1
2
− a) ∨ b, otherwise.

Put fb(x) = b⇒ x. Define gb(y) = b� y =
∧
{x ∈ L | y ≤ fb(x)}. Then

gb(y) ≤ x iff y ≤ fb(x). We obtain:

a� b =

{
a ∧ b, if a + b ≥ 1

2
,

0, otherwise.
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Since a ⇒ (b ⇒ c) = b ⇒ (a ⇒ c) for all a, b, c ∈ L, we have
a � b = b � a and (a � b) � c = a � (b � c) for all a, b, c ∈ L. Since
(0.7⇒ ⊥)⇒ ⊥ = >, we have

0.7 = 0.8⇒ 0.7 6= (0.7⇒ ⊥)⇒ (0.8⇒ ⊥) = ⊥ ⇒ ⊥ = ⊥.

Example 3.10. Let K = {(x, y) ∈ R2 | x > 0} be a set and we define
an operation ⊗ : K ×K → K as follows:

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + y1).

Then (K,⊗) is a group with e = (1, 0), (x, y)−1 = ( 1
x
,− y

x
).

We have a positive cone P = {(a, b) ∈ R2 | a = 1, b ≥ 0 , or a > 1}
because P ∩ P−1 = {(1, 0)}, P ⊗ P ⊂ P , (a, b)−1 ⊗ P ⊗ (a, b) = P and
P ∪ P−1 = K. For (x1, y1), (x2, y2) ∈ K, we define

(x1, y1) ≤ (x2, y2)

⇔ (x1, y1)−1 ⊗ (x2, y2) ∈ P, (x2, y2)⊗ (x1, y1)−1 ∈ P

⇔ x1 < x2 or x1 = x2, y1 ≤ y2.

Then (K,≤ ⊗) is a lattice-group. (ref. [1])
The structure (L,�,⇒,→, (1

2
, 1), (1, 0)) is a generalized residuated

lattice with strong negation where ⊥ = (1
2
, 1) is the least element and

> = (1, 0) is the greatest element from the following statements:

(x1, y1)� (x2, y2) = (x1, y1)⊗ (x2, y2) ∨ (
1

2
, 1)

= (x1x2, x1y2 + y1) ∨ (
1

2
, 1),

(x1, y1)⇒ (x2, y2) = ((x1, y1)−1 ⊗ (x2, y2)) ∧ (1, 0)

= (
x2

x1

,
y2 − y1

x1

) ∧ (1, 0),

(x1, y1)→ (x2, y2) = ((x2, y2)⊗ (x1, y1)−1) ∧ (1, 0)

= (
x2

x1

,−x2y1

x1

+ y2) ∧ (1, 0).

The structure (L,�,⇒,→, (1
2
, 1), (1, 0)) is a w-eo algebra having an ad-

joint triple as follows:

(x1, y1)� (x2, y2) ≤ (x3, y3) iff (x2, y2) ≤ (x1, y1)⇒ (x3, y3)

iff (x1, y1) ≤ (x2, y2)→ (x3, y3)
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Since

(x1, y1)⇒ ((x2, y2)⇒ (x3, y3)) = (
x3

x1x2

,
y3 − x2y1 − y2

x1x2

) ∧ (1, 0)

= ((x2, y2)� (x1, y1))⇒ (x3, y3),

(L,�,⇒,→, (1
2
, 1), (1, 0)) is associative. Since (1, 0) ⇒ (x, y) = (x, y)

and

(
4

5
, 1)⇒ ((

5

6
, 3)⇒ (

2

3
,−1)) = (

4

5
, 1)⇒ (

4

5
,−24

5
) = (1,−29

4
),

(
5

6
, 3)⇒ ((

4

5
, 1)⇒ (

2

3
,−1)) = (

5

6
, 3)⇒ (

5

6
,−5

2
) = (1,−33

5
),

(
4

5
, 1)⇒ ((

5

6
, 3)⇒ (

2

3
,−1)) 6= (

5

6
, 3)⇒ ((

4

5
, 1)⇒ (

2

3
,−1)),

by Theorems 3.1, 3.2 and 3.7,

(x1, y1)→ ((x2, y2)→ (x3, y3)) 6= (x2, y2)→ ((x1, y1)→ (x3, y3))

(x1, y1)� ((x2, y2)� (x3, y3)) 6= (x2, y2)� ((x1, y1)� (x3, y3))

((x1, y1)� (x2, y2))� (x3, y3) 6= ((x1, y1)� (x3, y3))� (x2, y2)

(x1, y1)� (x2, y2) 6= (x2, y2)� (x1, y1).

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, New York
(1968)

[2] C.C. Chang, Algebraic analysis of many valued logics, Trans. of A.M.S., 88 (2)
(1958), 467–490

[3] G. Georgescu, A. Popescu, Non-commutative fuzzy Galois connections, Soft
Comput, 7 (2003), 458–467

[4] G. Georgescu, A. Popescu, Non-commutative fuzzy structures and pairs of weak
negations, Fuzzy Sets and Systems, 143 (2004), 129–155

[5] C. Guido, P. Toto, Extended ordered algebras, J. Appl. Log., 6 (2008) 609–626
[6] Y.C. Kim, J.M. Ko, Some properties of extended order algebras, Korean J. Math.,

21 (1) (2013) 63–73
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