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JOIN-MEET APPROXIMATION OPERATORS INDUCED
BY ALEXANDROV FUZZY TOPOLOGIES

YoNG CHAN KiMm

ABSTRACT. In this paper, we investigate the properties of Alexan-
drov fuzzy topologies and join-meet approximation operators. We
study fuzzy preorder, Alexandrov topologies join-meet approxima-
tion operators induced by Alexandrov fuzzy topologies. We give their
examples.

1. Introduction

Pawlak [8,9] introduced rough set theory as a formal tool to deal
with imprecision and uncertainty in data analysis. Hajek [2] introduced
a complete residuated lattice which is an algebraic structure for many
valued logic. Radzikowska [10] developed fuzzy rough sets in complete
residuated lattice. Bélohldvek [1] investigated information systems and
decision rules in complete residuated lattices. Zhang [6,7] introduced
Alexandrov L-topologies induced by fuzzy rough sets. Kim [5] investi-
gated the properties of Alexandrov topologies in complete residuated
lattices. Hohle [3] introduced L-fuzzy topologies and L-fuzzy interior
approximation operators on complete residuated lattices.

In this paper, we investigate the properties of Alexandrov fuzzy topolo-
gies and join-meet approximation operators in a sense as Hohle [3]. We
study fuzzy preorder, Alexandrov topologies join-meet approximation
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operators induced by Alexandrov fuzzy topologies. We give their exam-
ples.

2. Preliminaries

DEFINITION 2.1. [1-3] A structure (L,V,A,®,—, L, T) is called a
complete residuated lattice iff it satisfies the following properties:

(L1) (L,V,A, L, T) is a complete lattice where L is the bottom ele-
ment and T is the top element;

(L2) (L,®, T) is a monoid;

(L3) It has an adjointness,i.e.

r<y—ziff xOy <z

An operator * : L — L defined by a* = a — L is called strong
negations if a** = a.

T, ify=a, sy 4L, ify=ua,
Ta(y) _{ L, otherwise. Taly) = { T, otherwise.

In this paper, we assume that (L,V,A,®,—,*, L, T) be a complete
residuated lattice with a strong negation *.

DEFINITION 2.2. [6,7] Let X be a set. A function ex : X x X — L is
called a fuzzy preorder if it satisfies the following conditions

(E1) reflexive if ex(z,z) =1 for all z € X

(E2) transitive if ex(x,y) ® ex(y, 2) < ex(x, 2), for all z,y,z € X’

EXAMPLE 2.3. (1) We define a function e, : L X L — L as ep(z,y) =
x — y. Then ey is a fuzzy preorder on L.

(2) We define a function e;x : L* x LY — L as e;x(A,B) =
Nsex(A(xr) — B(x)). Then erx is a fuzzy preorder from Lemma 2.4
9).

LEMMA 2.4. [1,2] Let (L, V,\,®,—,*, L, T) be a complete residuated
lattice with a strong negation *. For each x,y, z,x;,y; € L, the following
properties hold.

(1) Ify <z, thenzx@y<z0 -z

(2) Ify<z, thenx -y<z—zandz—zx<y— .

Bz —-y=Tiffz <uy.

(4)x—>T Tand T =z =ux.

(5)
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(6) 2 ®© (Vier ¥i) = Vier(z © yi) and (V;cr i) © y = Viep (@ © ).
(M) 2 = (Nier vi) = Nier(z = wi) and (V;cr i) = y = Njer(zi —

Y)-
8) Vierzi = Vier¥i = Nier(zi = wi) and N\jcp i = Niervi 2
/\ier(xi — Vi)
9) (z—=y ox<yand (y—2)0(r =y <(r—2).
(10)z—y<(y—z2)—=(r—z2)andz -y <(z—z)— (2 =>y).
(11) /\'LEF Ty = (\/iel“ z;)* and vier Ty = (/\'LEF ;)"
(12) (zOy) wz=0—>(y—=2)=y—(r—2)and (zOy) =1 —
Y.

(13) z* - y* =y = x and (x = y)* =2 O y*.
(M4 y—2<20y—c02.

DEFINITION 2.5. [5] A map K : L* — LY is called a join-meet op-
erator if it satisfies the following conditions, for all A, A, € L¥, and
a € L,

(K1) K(a® A) = a — K(A) where (a« ® A)(x) = a ® A(x) for each
reX,

(K2) ’C(Viel Ai) = /\ie[ IC<A1')7

(K3) £(A4) < A",

(K4) K(K(A)) = K(A).

DEFINITION 2.6. [4] An operator T : L* — L is called an Alezandrov
fuzzy topology on X iff it satisfies the following conditions, for all A, A; €
LX and o € L,

(T1) T(ax) = T where ax(z) = «,

(T2) T(A,ir A) = Ayer T(A) and T(V,p A) = A, T(A),

(T3) T(a®A) > T(A), where (a«® A)(z) = a® A(z) for each x € X,

(T4) T(ax — A) > T(A).

DEFINITION 2.7. [5] A subset 7 C L¥ is called an Alezandrov topology
if it satisfies satisfies the following conditions.

(Ol) ax €T.

(O2)If Ay eTforiel, \/;op Ais Nicr Ai € 7.

(03ya®Aerforallae Land A € 7.

(O4)a - Aerforalla e Land A €.

REMARK 2.8. (1) If T : LX — L is an Alexandrov fuzzy topology.
Define T*(A) = T(A*). Then T* is an Alexandrov fuzzy topology.

(2) If T is an Alexandrov fuzzy topology on X, 7 = {A € L |
T(A) > r} is an Alexandrov topology on X and 7} C 75 for s <r € L.
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(3) If T* is an Alexandrov fuzzy topology on X, (17:)* = {A € LY |
T*(A) > r} is an Alexandrov topology on X and (7})* = Tj..

3. Join-meet approximation operators induced by Alexan-
drov fuzzy topologies

THEOREM 3.1. If K is a join-meet approximation operator, then T =
{A € L¥ | K(A) = A*} is an Alexandrov topology on X.

Proof. (O1) Since K(Tx) = Lx and L(a®©Tx) =a — K(Tx) = ak,
then o% = K(ayx). Thus ay € 7.

(0O2) For A; € 7 for each i € I, by (K2), K(V,;cr Ai) = Nier £(A )
Nier Af. Then \/, . A; € 7x. Smce K is decreasing function, \/ =

ZEF
VieF]C(A ) = K(Aier 4i) < (Njer Ai)", Thus, Vi A; € 7.
(03) For A € 1ic, K(a®A) =a — IC(A) = (a®@A)*. Then a® A € 7.
(O4) For A € 1, since a ® (¢ - A) < A, then @ — K(aw — A) =
Kla® (a— A) > K(A). So, a ®© K(A) < K(la - A) < (o — A)* =
a® A*. Thus (o« — A) € 7. O

THEOREM 3.2. Let T be an Alexandrov fuzzy topology on X . Define

Ry(z,y) = N{Ax) y) | T(A) > r}.

Then the following properties hold.
(1) R} is a fuzzy preorder with R} < R%. for each r < s.
(2) Define Kg:: : L* — LX as follows

Kry (A)y) = N\ (Alx) = B7 (2,y)).

zeX

Then ICRTT* is a join-meet operator on X with ICR%* < ICRTT* for each
r < s.

(3) 7. = TR e

Proof. (1) Since T(B) > riff B € 7, then R (z,y) = /\BET%(B(m) —
B(y)). Since Ry (z,x) = /\BETF;(B(m) — B(x)) =T and

Rp(2,y) © Ry, 2) = Npery (B(x) = B(y)) © Npery (B(y) = B(2))

< Aper (B(z) = B(y)) © (B(y) = B(2))
< Aper (B(x) = B(2)) = Rp(2,y).
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Hence R} is a fuzzy preorder. For r < s, since T(B) > s > r, we have
R, < Rj.
(2) (K1)

Kri(a © A)y) = Npex((a© A)(z) = Ry (, 2)/))

)
(K3) Ky (A)(y) = Npex (Alz
A(z) — L = A*(z).

(K4)

Ky (K (A))(2) - = Nyex Ky (A)(y) = B (y, 2))
= Nyex (Naex(A(x) = B (2,9))" = R (y, 2))
= /\yeX(\/xeX(A(x) © Ry(z,y)) = R (y, 2))
= Nayex(Alz) = (Rp(z, y)) Ry (y, 2)))
= Noex(A(z) = /\yEX(R’" (z,y)) = R (y, 2))
= Naex(A(@) = (Vyex (Br(2,9)) © Br(y, 2))7)
> Neex(A(z) = By (z, Z))
= Ky (A)(2).

Hence Kpr» is a join-meet operator on X. For r < s, since R < R,
then ICRgT* S KR%:*
(3) Let A € 7. Since R (z,y) = /\BETT(B(m) — B(y)),

A*(y) © Rp(z,y) = A*(Y) © Apery (B(z) = B(y))
< A"(y) © (A°(y) = A*(x)) < A*(2).
Thus A*(y) < Rip(z,y) — A*(xz) = A(x) — Ry (z,y). Then A* <
Krr=(A). By (K3), Kgr(A) = A* ideAe€ TR e So, T} C TR e

Let A € TK e e Kpes (A Then

) =
Neex(Alz) = Ry (z, —))

/\xeX( (#) = (Apesy (B(z) = B))")
Naex(A(@) = Vpery (B(x)© BY))

Since Ve, (B)OB?) € (75)” and A(x) = Vs (B(2) & B) € (75,
we have A* € (77)%i.e A € 77. So, Tk, C T O
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THEOREM 3.3. Let T be an Alexandrov fuzzy topology on X . Define

= A\ (B z) | T(B) = r}.

Then the following properties hold.
(1) R;" is a fuzzy preorder with R;" < R;*® for each r < s and

(2) K+ Is a join-meet operator on X such that

K (D) = N\ (Al@) = R (.0)) = A\ (Alx) Ry (2.0)).
rzeX rzeX

(3) (7',17;) = TK 77‘* - T}CRr* .

(4) If Kpie (A) B for all i € T # 0, then Kpgs:(A) = B with
§ = ViEF Ty

(5) If Kp-ri(A) = B for all i € T' # (), then Kp-:(A) = B with
s = \/iGF i

(6) Kres (A) = V{A; | A; < A%, T(A;) > r} for all A € L* and
r € L. Moreover, Ry"(x,y) = R (T2)(y), for each x,y € X.

(7) Kryx(A) = V{A; | A < A%, T*(A;) > r} for all A € L* and
r € L. Moreover, Ry(z,y) = Kpr(T2)(y), for each z,y € X.

Proof. (1) By a similar method as (1), R;" is a fuzzy preorder. More-
over,

Ry (z,y) = N\{B(y) = B(x) | T(B) >r}
= AMB*(z) = B*(y) | T(B") =
= ng*(l',y)

(2) By (1), R7"(z,y) = /\BET (B(y) — B(z)) is a fuzzy preorder.
(3) Let A € (7})*. Then A* € 7. and

A*(y) © Ry (x,y)

T*(B) > r}

Thus A*(y) < Ry"(2,y) = A(z) = A(z) = Ry (2,y). Hence K- (A) =
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Let A € 1 - de. Kpor A) = A*. Then

(
A" = Npex(Alz) = Ry (2,-))
= Naex(A(@) = (Apery, (B(z) = B)))
= Auex(A@) = Ve (B@) © B))
Since \/BET%<B(JZ) ©® B*) € 7. and A(z) — \/BGT%(B(JJ) ® B*) € 1}, we
have A* € 77;i.e A € (17)*. So, 7 - C (1p)*.
(4) Let Kpri«(A) = B for all i € T # (). Since
K (4) = N\ (Alx) = (Rii (2, —))") € ()"

T
zeX

T(B) = T*(ICR;Z-*(A)) > 13, then T*(B) > \/,.p1mi = siie. B €
(T3)* = TR s, pe. BT € T = T, Since Kps (B*) = B = Kpri+(A) <
A*, A< Kj, (B*) = B*. Thus

Ky (A) 2 Kry (Kgs: (B)) = Kpg: (B*) = B.

Since s > 1y, Kps:(A) < ICR;Z-*(A) = B. Thus Krs(A4) = B.

(6) For each A € L™ with A; < A*, T(4;) > r, since A; € 7}, = 7.

T

from Theorem 3.2(3), then

ICRTT*(\/ A) = /\’CR;*(Ai) = /\A;(-
Since \/; 4; € 7. = 71 iff (\/; Ai)* € 7%, = 77w, then
T T*

ICRTT** ((\/ Az)*) = ’CRTT** (/\ A;k) = \/Az
Since \; A} > A. Thus
Ko (4) > Knes (N A = \/ A = /{4, | 4 < A%, T(4) > r}.

Since ICR%** (’CETT** (A)) S ’CR?;* (A) S A*. Since
Kry. (A) = )\ (A@@) = (Rp.(z,-))") € 71

zeX
So, V{Ai | Ai < A%, T(Ai) > r} > Kgpy (A). Hence V{A; | 4; <
A, T(A) > r} = Kgpe (A) for all A € L* and r € L. Moreover,
Krp (To)(y) = Noex(Ta(2) = R (2,9)) = Byt (2,y) = By (2,y).
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(5) and (6) are similarly proved as (4) and (7), respectively. O

THEOREM 3.4. Let T be an Alexandrov fuzzy topology on X. Then
the following properties hold.
(1) Define Ty, : L — L as

T (A) = \[{ri € L| K (4) = A7}

Then T, is an Alexandrov fuzzy topology on X such that Tk, = T.
(2) Define Tk, : L — L as

Tr,.(A) = \/{ri€ L| Koo (4) = A"} = V{ri € L K (A) = A7},

Then Tk, is an Alexandrov fuzzy topology on X such that Tk, .. = T*.
(3) There exists an Alexandrov fuzzy topology T such that

T} (A) = epx (A", Kps: (A)).

Ifr < s, then TS, < T% for all A€ L*.
(4) There exists an Alexandrov fuzzy topology T3l such that

T (A) = epx (A", K- (A)).
If r < s, then T3 < T% for all A € LX.
(5) Define Ty : L* — L as
Ti(A) = \/{r" € L| TH(A) =T}

Then T =T = Tk, is an Alexandrov fuzzy topology on X.
(6) Define Ty~ : LX — L as

T (A) = \/{r" e L| T(A) =T}
Then Ty~ = T* = Tk, is an Alexandrov fuzzy topology on X.
Proof. (1) We will show that Ty, = T. Let Kpri-(A) = A”. Since
Kz (A) € (77)" and T(A) = T*(A%) = T*(Kgzi+ (A)) > 74, then
T, (4) = \/{ri € L| Ky (A) = A} < T(A).

Since T(A) > T(A) and 75 = TR st then [Cps+(A) = A where T(A) = s.
Thus

Tier(A) = \/{rs € L | Ko (A) = A} > T(A).
Hence Tk, = T.
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(3) (T1) By Lemma 2.4(12), since a* © Ry (z,z) < of,

(T2)Since Krr=(Vep Ai) = Njer Krz: (Ai), by Lemma 2.4(8),

Tk Vier Ai) = enx((Vier 4)*, Kryr (Vier 4i))
=€rx (/\ieF A7, /\ieI‘ ’CRTT* (A))
> Nier enx (A7, Kryr (Ai)) = Nier T (A)

Since Krr: (Nicr Ai) > Vier Krr(A;), by Lemma 2.4(8), we have
T (Nier Ai) = erx (Aier Ai)", Krg: (Nier Ai))

> erx (vz‘eF Az, Vier ’CR}* (4))
> Nier enx (A7, Kryr (Ai)) = Nier T (A)

(T3) Since

o — ICR%*(Oé © A) = ’CR;*<Q — (Oé O] A)) > K:R;*<A)
iff ICR;* (Oz ® A) Z a® ICR;* (A),
by Lemma 2.4(8),
Th(@® 4) = egx (@A), Kag: (0 © 4))
> epx(a— A" a — Kgr(A))
> epx (A", Kpe: (A)) = T (A).(by Lemma 2.4(8))

(T4)
o —r ’CR%*((I — A) = ICR%*((I ® ((Y — A)) 2 /CR;*(A)
iff ICR%*(CY — A) >a® ICR%*(A),
by Lemma 2.4(8),
Th(a— A) =epx((a — A)*,,CR;*(Q — A))

=epx(a@© A", a© Kgp(A4))
> epx (A, Kpr: (A)) = Tk (A).(by Lemma 2.4(10))

Hence T is an Alexandrov fuzzy topology. Since Kgs: < Kpr- for r < s,
T (A) = erx (A, Kry (A)) < erx (A, Kryr(A)) = T (A).
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(5) Since T (A) = epx (A", Kpr:(A)) = T iff A* = Krex(A), by (1),

Tk(A) =V{reL|Tg(A) =T}
— Ty, (4) = T(A),

(2), (4) and (6) are similarly proved. O

EXAMPLE 3.5. Let (L = [0,1],®,—,") be a complete residuated lat-
tice with a strong negation.

(1) Let X = {z,y, 2} be a set. Define a map T : [0, 1]X — [0, 1] as

T(A) = A(z) — A(z2).

Trivially, T(ax) =1

Since a ® A(z) - a ® A(z) > A(x) — A(z) from Lemma 2.4 (14),
T(a ® A) > T(A). Since (o = A(x)) = (a — A(z)) > A(z) —
A(z) from Lemma 2.4 (10), T(« — A) > T(A). By Lemma 2.4 (8),
T(V,er Ai) 2 Nier T(A;) and T(A,;op Ai) > Aier T(A;). Hence T is an

ISR

Alexandrov fuzzy topology.

Since T(A) = A(x) — A(z) > r, then A(z) > A(x) ®r. Put A(x) =
1,A(y) = 0. So, Rip(z,y) = N{A(z) — A(y) | T(A) > r} = 0 and
Rp(x,2) = NA(x) = A(z) | T(A) =2 r} =7

W(z,z) =1 Rp(z,y)=0 Rip(z,z)=r
( r(y,0) =0 Rp(y,y) =1 Ri(y,z) 0)
Rip(z,2) =0 Rp(z,y)=0 Ri(z,2)=1
By Theorem 3.1(3), we obtain Krr(A)(y) = N\,ex(A(z) = Ry (7,y))
such that
Kry:(A) = (A(x) = 0, A(y) = 0, (A(x) = ") A (A(2) = 0))
= (A"(2), A(y), (A(z) = 1) A A*(2)))

If A*(z) < A(z) — r*, then Kgr+(A) = A%, that is, A € TK g CIf

Krr=(A) = A*, then (A(z) — 7*) A A*(2) = A*(2), that is, A* ( ) <

(
A(z) — r*. Hence A*(2) < A(x) — r* iff A*
A(z) > Alx) Oriff r < (A(z) = A(2)) = .

)
T (4) = Vir € L | Kppo(4) = 4°)
—\/{TEL!TS A(x) = A(2)}
= A(z) = A(z) = T(A).

(2) < (Ax) @ 1) if
T(A)iff Ae TR e

Moreover,



Join-meet approximation operators induced by Alexandrov fuzzy topologies 563

From Theorem 3.4(1), we obtain

Ti(A) = Npex (A7(2) = Kppe (A)(2)
= A(2) = (r = A*(z)) = 7 = (A*(2) = A*(z)).

Tr(A) =V{relL|Ti(A) =1}

1
=\V{rel|r— (A*"(z) —» A*(x)) =1}
= A(z) — A(z) = T(A).

Hence T = Tk, =T.
(2) By (1), we obtain a map T* : [0,1]% — [0, 1] as
T*(A) = A%(z) = A"(2) = A(2) = A().
Since T*(A) = A(z) — A(z) > r, then A(zx) > (z) ©r. Put A(z) =
1A(y) = 0. So. Ry (2,y) = AMA(z) —» A(y) | T(4) = r} = 0 and
RL.(z,2) = N{A(z) = A(z) | T(A) >r}=r
Ry (z,x) =1 Rh.(z,y) =0 Rhy.(r,2)=0
Rp(y,x) =0 Rp.(y,y) =1 Rp.(y,2) =0
RL.(z,x) =1 RL.(z,y)=0 Rp(z,2)=1
Moreover, Ry.(z,y) = Ry (x,y) = Ry (y,x) for all z,y € X.
Kry (A)(y) = /\ (Alz) = R.(z.y)).
K. (A) = (A"(x) A (A(z) = 1), A*(y), A*(2))
Then A*(z) < A(z) — r iff Kgrs (A) = A". Moreover, since T*(A) =
A(z) = A(x) > riff A(z)or < A( )iff A*(x) < A(z) — r, then A € 77
iff Aerc,, w, . Thus 77. = = TK . . Moreover,
\/{7" € L | Kpy, (A) = A"}
A(z) = A(z) = T*(A).

TKT* (A)

Moreover, we obtain

Ty (A) _/\:ceX< “(x) = Kpy, (A)(x))
=A%) = (A(z) = 17) =7 = (A(2) = A()).
- 1

Tr-(A) =V{rel|Tg(A) =1}
A(z) = A(z) = T*(A),

Hence Tg+ = Tg,.. = T".

=\/{B(2) | B< 1, T(B) >r}
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Since B(z) =0 and T(B) =0 — B(z) =1 > r, then Kgr+ (1,)(2) = 1.
Kry (1.)(x) = \/{B(z) | B< 13, T(B) > r}
Since B(z) = 0 and T(B) = B(z) — 0 > r, then Kz (1
Krre (1,)(x) =1 Krrs (1,)(y) =0 Kpgr (1,)(2) =1
Then Kgrs, (1.)(y) = Ry (2, y).

Kry(1:)(2) = \/[{B(2) | B <1}, T"(B) > r}
Since B(z) = 0 and T*(B) = B(z) — 0 > r, then Kgr(1,)(2) = r*.

Ky (L)) = \/{B(2) | B< 17, T*(B) > r}
Since B(z) = 0 and T*(B) = 0 — B(x) =1 > r, then Kgr+(1})(z) = 1.
( Krr(12)(x) =0 Kpe: (1, =1 Kpgee(la)(2) =1 )

)(y)
Kry(1y) () =1 Krpe(Ly)(y) =0 Kpy(1y)(z) =1
Kry(1:)(2) =1 ’CR; (L)(y) =1 Kgp(l)(z)=0

Then Kry: (12)(y) = R (2,y).
(3) Let (L = [0,1},®,—,*) be a complete residuated lattice with a
strong negation defined by, for each n € N,

3=

2Oy = ((z"+y" = DV0)n, z—y=(1—a"+y")vAl, z* = (1—a")r.
By (1) and (2), we obtain
T(A) = (1 - A@@)” + A(z)")" A1, T*(A) = (1— A(z)" + A(z)")" A1l

()

(), A(2) A (L= 1" + (A" (z))")7)

(1— 7"+ (A%(2))")7, A"(y), A*(2)).

Since T(A) = (1 — A(z)" + A(2)")% A1 > r, we have
Th=Top. ={A€LX|AY(2) = A"(2) 2 1 -1}
Tps = K gy, ={AecLX| A¥z) — A"(2) > 1—r"}.

3 o

0
1
0

— o O

o o= o
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T (A) =7 — (A(@) = A(2)) = (2— 1" — A(z)" + A(z)")» A 1
Tg(A) =71 — (A(z) = A(z))

(2 =77 — A(2)" + A(z)")w A L.
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