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CONTINUITY OF THE SPECTRUM ON (classA)∗

Jae Won Lee and In Ho Jeon∗

Abstract. Let (classA)∗ denotes the class of operators satisfying
|T 2| ≥ |T ∗|2. In this paper, we show that the spectrum is continuous
on (classA)∗.

1. Introduction

Let L (H ) denotes the algebra of bounded linear operators on a
complex infinite dimensional Hilbert space H . Recall [1] that T ∈
L (H ) is called hyponormal if T ∗T ≥ TT ∗, and T is called ∗-paranormal
if

||T 2x|| ≥ ||T ∗x||2

for all unit vector x ∈H . Recently, B. P. Duggal, I. H. Jeon, and I. H.
Kim [7] consider a following class of operators; we say that an operator
T ∈ L (H ) belongs to (classA)∗ if

|T 2| ≥ |T ∗|2.
For brevity, we shall denote classes of hyponormal operators, ∗-paranormal

operators, and (classA)∗ operators by H,PN ∗, and (classA)∗, respec-
tively. From [7] it is well known that

(1.1) H ⊂ (classA)∗ ⊂ PN ∗.
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Let K denote the set of all compact subsets of the complex plane C.
Equipping K with the Hausdorff metric, one may consider the spectrum
σ as a function σ : L (H ) → K mapping operators T ∈ L (H ) into
their spectrum σ(T ). It is known that the function σ is upper semi-
continuous, but has points of discontinuity [8, p.56]. Studies identifying
sets C of operators for which σ becomes continuous when restricted to
C has been carried out by a number authors (see, for example, [3, 4, 5,
6, 9]).

Given an operator T ∈ L (H ), let α(T ) = dim(T−1(0)) and β(T ) =
dim(H \ TH ). T is upper semi-Fredholm if TH is closed and α(T ) <
∞, and then the index of T , ind(T ), is defined by ind(T ) = α(T )−β(T ).
T is said to be Fredholm if TH is closed and the deficiency indices α(T )
and β(T ) are (both) finite.

Let T ◦ ∈ L (K ) denote the Berberian extension of an operator T ∈
L (H ). Then the Berberian extension theorem [2] says that given an
operator T ∈ L (H ) there exists a Hilbert space K ⊇ H and an
isometric ∗-isomorphism T → T ◦ ∈ L (K ) preserving order such that
σ(T ) = σ(T ◦) and σp(T

◦) = σa(T
◦) = σa(T ). Here σp and σa denote,

respectively, the point spectrum and the approximate point spectrum.
In the following, we shall denote the set of accumulation points (resp.
isolated points) of σ(T ) by accσ(T )(resp. isoσ(T )).

The aim of this paper is to give a proof of the following theorem.

Theorem 1.1. The spectrum σ is continuous on (classA)∗.

To prove the theorem we adopt the Berberian technique used in [6]
and we, in a sense, try to approach in a little different way.

2. Proof of Theorem 1.1

Since the function σ is upper semi-continuous [8], if {An} ⊂ L (H ) is
a sequence which converges in the operator norm topology toA ∈ L (H )
then

(2.1) lim sup
n
σ(An) ⊆ σ(A).

Thus to prove the theorem it would suffice to prove that if {An} ⊂
(classA)∗ is a sequence of operators such that limn→∞ ||An − A|| = 0 for
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some operator A ∈ (classA)∗, then

(2.2) σ(A) ⊆ lim inf
n
σ(An).

We first consider the following lemma, which actually is proved in [9,
Lemma 2], but for the completeness we give a proof.

Lemma 2.1. Let {An} ⊂ L (H ) be a sequence which converges in
the operator norm topology to A ∈ L (H ). Then

(2.3) σa(A) ⊆ lim inf
n
σ(An)⇒ σ(A) ⊆ lim inf

n
σ(An).

Proof. Suppose that λ /∈ lim infn σ(An). Then there exists a δ > 0,
a neighbourhood Nδ(λ) of λ and a subsequence {Ank

} of {An} such
that σ(Ank

) ∩ Nδ(λ) = ∅ for every k ≥ 1. This implies that Ank
− µ is

Fredholm and ind(Ank
−µ) = 0 for every µ ∈ Nδ(λ). Since λ /∈ σa(A) by

the assumption, then A−λ is left invertible, hence upper semi-Fredholm
with α(A− λ) = 0. Then

||(Ank
− λ)− (A− λ)|| → 0 as n→ 0

and the continuity of the index implies that ind(A−λ) = 0, and so A−λ
is Weyl. Since α(A− λ) = 0, it follows that λ /∈ σ(A).

It is well known that, from an argument of Newburgh [10, Lemma 3],

(2.4) λ ∈ isoσ(A) ⇒ λ ∈ lim inf
n
σ(An).

Indeed, if λ ∈ isoσ(A), then for every neighbourhood N (λ) of λ there
exists a positive integer N such that σ(An) ∩N (λ) 6= ∅ for all n > N .

Now, we consider corresponding the Berberian extensions to A and
the sequence {An} as mensioned above, and then have that

σ(A) = σ(A◦), σ(An) = σ(A◦n) and σa(A) = σa(A
◦) = σp(A

◦).

Since if T ∈ (classA)∗ then T ◦ ∈ (classA)∗, we have that

(2.5) σ(A) ⊆ lim inf
n
σ(An)⇐⇒ σ(A◦) ⊆ lim inf

n
σ(A◦n).

To complete the proof of the theorem we show the following lemma
in the view of Lemma 2.1.

Lemma 2.2. Let {An} ⊂ (classA)∗ be a sequence which converges in
the operator norm topology to A ∈ (classA)∗. Then

(2.6) σa(A
◦) ⊆ lim inf

n
σ(A◦n).
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Proof. If λ ∈ σa(A
◦) = σp(A

◦), then (A◦ − λ)−1(0) is a reducing
subspace of A◦ [7, Lemma 2.2], and so we have a representation of A◦,

A◦ = λ⊕B on K = (A◦ − λ)−1(0)⊕ {(A◦ − λ)−1(0)}⊥

Evidently, B − λ is upper semi-Fredholm and α(B − λ) = 0. There
exists an ε > 0 such that B − (λ − µo) is upper semi-Fredholm with
ind(B − (λ − µo)) = ind(B − λ) and α(B − (λ − µo)) = 0 for every
µo satisfying 0 < |µo| < ε. Choose 0 < ε < δ and set µ = λ − µo
(0 < |µo| < ε). (Here δ > 0 as in proof of Lemma 2.1) Then B − µ is
upper semi–Fredholm, ind(B−µ) = ind(B−λ) and α(B−µ) = 0. This
implies that

A◦ − µ = λ− µ⊕B − µ
is upper semi-Fredholm ,

ind(A◦ − µ) = ind(B − µ) and α(A◦ − µ) = 0.

Assume to the contrary that λ /∈ lim infn σ(A◦n), then evidently, A◦nk
−

µ is Fredholm, with ind(A◦nk
− µ) = 0, and

lim
n→∞

||(A◦nk
− µ)− (A◦ − µ)|| = 0.

It follows from the continuity of the index that ind(A◦ − µ) = 0 and
A◦ − µ is Fredholm. Since α(A◦ − µ) = 0, µ /∈ σ(A◦) for every µ in a
deleted ε-neighbourhood of λ. This contradicts to (2.4). Hence we must
have that λ ∈ lim infn σ(A◦n).
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