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CONVERGENCE THEOREMS FOR THE
CHOQUET-PETTIS INTEGRAL

CHUN-KEE PARK

ABSTRACT. In this paper, we introduce the concept of Choquet-
Pettis integral of Banach-valued functions using the Choquet integral
of real-valued functions and investigate convergence theorems for the
Choquet-Pettis integral.

1. Introduction

The fuzzy measure was introduced by Sugeno [9] and the Choquet
integral of real-valued functions with respect to a fuzzy measure was
introduced by Murofushi and Sugeno [5]. The Choquet integral is a
generalization of the Lebesgue integral, since they coincide when g is
a classical o—additive measure. The Choquet integral is a basic tool
for the subjective evaluation and decision analysis. The convergence
theorems are very important in classical integral theory and also Choquet
integral theory. Narukawa, Murofushi and Sugeno [8] introduced the
regular fuzzy measure on a locally compact Hausdorff space and showed
the usefulness in the point of representation of some functional.

In this paper, we introduce the concept of Choquet-Pettis integral
of Banach-valued functions using the Choquet integral of real-valued
functions. The Choquet-Pettis integral is an extension of the Choquet
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integral for Banach-valued functions and this integral is also a generaliza-
tion of the Pettis integral, since the Choquet integral and the Lebesgue
integral coincide when p is a classical o—additive measure. We also
investigate convergence theorems for this integral.

2. Preliminaries

Throughout this paper, X denotes a real Banach space and X* its
dual. Let 2 be a nonempty classical set, 3 a o-algebra formed by the
subsets of © and (£2,X) a measurable space.

DEFINITION 2.1.[7,9]. A fuzzy measure on a measurable space (€2, %)
is an extended real-valued set function p : 3 — [0, 0o| satisfying

(i) (@) =0,

(i) u(A) < p(B) whenever A C B, A, B € 3.

When 1(Q) < oo, we say that p is finite. When p is finite, we define
the conjugate p° of p by

pe(A) = p(€) — p(A%),
where A€ is the complement of A € 3.
A fuzzy measure p is said to be lower semi-continuous if it satisfies

Ay C Ay C -+ implies p(Up2  Ay,) = lim p(A,).
n—oo

A fuzzy measure p is said to be upper semi-continuous if it satisfies

A} D Ay D -+ and p(Ay) < oo implies p(Ne2, A,) = lim p(A4,).
n—oo

A fuzzy measure p is said to be continuous if it is both lower and
upper semi-continuous.

If a fuzzy measure p is lower(resp., upper) semi-continuous, then ¢
is upper(resp., lower) semi-continuous.

The class of real-valued measurable functions is denoted by M and
the class of nonnegative real-valued measurable functions is denoted
by M*. The class of non-negative upper semi-continuous real-valued
functions with compact support is denoted by USCC™ and the class of
non-negative lower semi-continuous real-valued functions is denoted by

LSCT.
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DEFINITION 2.2.[1,5]. (1) The Choquet integral of f € M™ with
respect to a fuzzy measure p on A € ¥ is defined by

©) [ sau= [ wts = vy Ay

where the right-hand side integral is the Lebesgue integral and (f >
r)={we | f(w)>r} foral r>0.

If (C) [, fdu < oo, then we say that f is Choquet integrable on A
with respect to p. Instead of (C) [, fdu, we will write (C) [ fdpu.

(2) Suppose p(£2) < oco. The Choquet integral of f € M with respect
to a fuzzy measure p on A € X is defined by

©) / fdu = (C) / fdy— (C) / Jdu

where f* = fVv 0 and f~ = —(f A 0). When the right-hand side is
00 — 00, the Choquet integral is not defined. If (C) [, fdpu is finite, then
we say that f is Choquet integrable on A with respect to pu.

L (1) denotes the class of nonnegative Choquet integrable functions.
That is,

L= {71 £ e b (©) [ fau<oof.

The Choquet integral is a generalization of the Lebesgue integral,
since they coincide when p is a classical o-additive measure. For each
f € M*, we also have

© [ sau= [ u(r >0 A vaes,
A 0
where (f >7)={w e Q| f(w) >r} for all r > 0.

DEFINITION 2.3.[2]. Let f,g € M. We say that f and g are comono-
tonic if f(w) < f(W') = g(w) < g(w') for w,w’ € Q. We denote f ~ g
when f and g are comonotonic.

DEFINITION 2.4.[3]. A sequence (f,) of real-valued measurable func-
tions is said to converge to f in distribution, in symbols f, Z_)> f,if

lim (£, > 7)) = u(f 2 7)) e

where “e.c.” stands “except at most countably many values of r”.
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3. Results

We introduce the concept of Choquet-Pettis integral of Banach-valued
functions. The concept of Pettis integral and its properties may be found
in [4].

DEFINITION 3.1. A function f : Q@ — X is called Choquet-Pettis
integrable if for each x* € X* the function z* f is Choquet integrable and
for every A € X there exists 24 € X such that 2*(z4) = (C) [, 2* fdp
for all * € X*. The vector x4 is called the Choquet-Pettis integral of f
on A and is denoted by (CP) [, fdp.

The Choquet-Pettis integral is a generalization of the Pettis integral,
since the Choquet integral and the Lebesgue integral coincide when  is
a classical g-additive measure.

DEFINITION 3.2. (1) Let f : Q@ — X and g : Q@ — X be weakly
measurable. f and g are said to be weakly comonotonic if for each
x* € X* x*f and x*g are comonotonic. We denote f ~,, g when f and
g are weakly comonotonic.

(2) A sequence (f,) of X-valued weakly measurable functions is said
to converge weakly to f in distribution on €2, in symbols f,, ug f, if for

each x* € X* (z*f,) converges to z*f in distribution.

A set N € ¥ is called a null set with respect to p if u(AUN) = p(A)
for all A € ¥ [6]. “P(w) p-a.e. on A” means that there exists a null set
N such that P(w) is true for all w € A— N, where P(w) is a proposition
concerning the point of A.

THEOREM 3.3. Let f : Q2 — X and g : 2 — X be Choquet-Pettis
integrable. Then

(1) af is Choquet-Pettis integrable and

(cP) /A afdy = a(CP) /A fdu

for all A€ ¥ and a > 0;
(2) if f ~y g, then f + g is Choquet-Pettis integrable and

(cP) / (f + g)du = (CP) / fdu+ (CP) / gdy
for all A € ¥3;
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(3) if f = g p-a.e. and pc-a.e. on §), then

(CP)/Afduz (CP)/Agdu
forall Ae X

Proof. (1) Since f : @ — X is Choquet-Pettis integrable, for each
x* € X* 2*f is Choquet integrable and for every A € ¥ there exists
x4 € X such that 2*(xs) = (C) [, 2*fdp for all 2* € X*. Hence
for each x* 6 X* x*(af) is Choquet integrable and for every A € X
r*(ax ) fA (af)du for all z* € X*. Thus af is Choquet-Pettis
1ntegrable and (CP) [,afdy = axs = a(CP) [, fdu for all A € ¥ and
a > 0.

(2) Since f: Q2 — X and g : Q — X are Choquet-Pettis integrable,
for each z* € X* z*f and 2*g are Choquet integrable and for every
A € X there exist x4,ya € X such that 2*(z4) = (C) fo*fdu and
x*(yA) = (C) [,x*gdp for all z* € X*. Since f ~, g, for each z* €

( f + g) is Choquet integrable and for every A € ¥ z*(wa +

C) [, 2*(f + g)du for all z* € X*. Thus f + g is Choquet-Pettis

1ntegrable and (CP) [,(f+g)du = xa+ya = (CP) [, fdu+(CP) [, gdp
for all A € X.

(3) Since f: Q2 — X and g : Q — X are Choquet-Pettis integrable,
for each z* € X* 2*f and x*g are Choquet integrable and for every
A € X there exist x4,y4 € X such that z*(z4) = (C) [, * fdu and
t*(ya) = (O) [, x*gdp for all 2* € X*. Since f = g p-a.e. and pa.e.
on Q, z*f = x*g p-a.e. and p-a.e. on € for all x* € X*. Hence for
every A € X (C) [, a* fdu = (O) [, x*gdp i.e., x*(xa) = 2*(ya) for all
a* € X*. Hence x4 =y, ie., (CP) [, fdu= (CP) [, gdp.

O

THEOREM 3.4. Let X be a reflexive Banach space and let (f,) be a
sequence of Choquet-Pettis integrable X -valued functions on ). If (f,)
converges weakly to f in distribution on () and if g and h are Choquet-
Pettis integrable X-valued functions on € such that u((x*h > r)) <
p((z*f, > 1)) < wp((x*g > 7)) ec. forn=1,2,--- and z* € X*, then f
is Choquet-Pettis integrable and (C'P) [ f,du — (CP) [ fdu weakly.

Proof. Since g and h are Choquet-Pettis integrable, for each z* € X
z*g and z*h are Choquet integrable. Since (f,) converges weakly to f
in distribution, for each x* € X (z*f,,) converges to z* f in distribution.



388 Chun-Kee Park

By hypothesis, u((z*h > 1)) < p((z*fu > 1)) < pl(a’g > 1)) ec.
for n = 1,2,--- and z* € X*. By [3, Theorem 8.9] z*f is Choquet
integrable and lim, o (C) [, #* fudp = (C) [, 2* fdp for all A € ¥ and
x* € X*. Since f, is Choquet-Pettis integrable for n = 1,2, - - -, for each
A € ¥ there exists x, 4 € X such that z*(z,4) = (C) fA x* fpdu for
all z* € X*, ie., z,4 = (CP) fA fndp. Thus (z, 4) is a weak Cauchy
sequence in X. Since X is a reflexive Banach space, the sequence (x,, 4)
converges weakly to some x4 € X. Thus lim,, . 2*(2,4) = 2*(x4) for
all 2* € X*. Hence z*(x4) = (C) [, x* fdp for all z* € X*. Thus f is
Choquet-Pettis integrable and x4 = (CP) [, fdu for each A € ¥. In
particular, (CP) [ fodu — (CP) [ fdu weakly.

O

THEOREM 3.5. (1) Let pu be a finite and lower semi-continuous fuzzy
measure and let (f,) be a sequence of real-valued measurable functions. If
fo T f p-a.e. and p-a.e. and there exists a Choquet integrable function
g such that fi < g on €, then f is Choquet integrable and (C) [ fodp t
() [ fdp.

(2) Let p be a finite and upper semi-continuous fuzzy measure and let
(fn) be a sequence of real-valued measurable functions. If f, | f p-a.e.

and pc-a.e. and there exists a Choquet integrable function g such that
< g onQ, then f is Choquet integrable and (C) [ fodp L (C) [ fdpu.

Proof. (1) Since f,, 1 f p-a.e. and p-a.e., £ 1 f* p-a.e. and f, | f~
p-a.e. Since p is lower semi-continuous, by [11, Theorem 2.4] f* is

Choquet integrable with respect to p and (C) [ f,fdu 1 (C) [ fHdu.
Since p is lower semi-continuous, u¢ is upper semi-continuous. Since
there exists a Choquet integrable function g such that f;7 < ¢ on
Q, by [11, Theorem 2.4] f~ is Choquet integrable with respect to u°
and (C) [ frduc | (C) [ f~duc. Hence f is Choquet integrable and
(C) f fadp 1 (C) [ fdp
(2) The proof is similar to (1).
O

THEOREM 3.6. Let u be a finite and continuous fuzzy measure and
let X be a reflexive Banach space and let (f,,) be a sequence of Choquet-
Pettis integrable X -valued functions on ().

(1) If f, 1 [ weakly p-a.e. and p-a.e. and there exists a Choquet
integrable function g such that (z*f1)~ < g on Q for all z* € X*,
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then f is Choquet-Pettis integrable and (CP) [ f,du 1 (CP) [ fdu
weakly.

(2) If f, | f weakly p-a.e. and p-a.e. and there exists a Choquet
integrable function g such that (z*fi)" < g on Q for all z* € X*,
then f is Choquet-Pettis integrable and (CP) [ fodu | (CP) [ fdu
weakly.

Proof. (1) Let A € ¥. Since f, 1 f weakly p-a.e. and p-a.e. and
there exists a Choquet integrable function g such that (z*f;)” < g on
Q for all z* € X*, by Theorem 3.5 x*f is Choquet integrable and
(C) [, a* fadp t (C) [, 2% fdp for all 2* € X*. Since f, is Choquet-
Pettis integrable for n = 1,2,---, there exists x, 4 € X such that
*(xp4) = (O) [y fudp for all z* € X* ie., z,a = (CP) [, fudp.
Thus (z,,4) is a weak Cauchy sequence in X. Since X is a reflexive Ba-
nach space, the sequence (x,, 4) converges weakly to some x4 € X. Thus
a*(2n,a) T a*(24) for all 2* € X*. Hence 2*(x4) = (C) [, «* fdu for all
z* € X*. Thus f is Choquet-Pettis integrable and x4 = (CP) [, fdpu.
In particular, (CP) [ fudu 1 (CP) [ fdu weakly.

(2) The proof is similar to (1).

O

THEOREM 3.7. Let p be a finite and continuous fuzzy measure and
let X be a reflexive Banach space and let (f,,) be a sequence of Choquet-
Pettis integrable X -valued functions on 2. If f,, — f weakly p-a.e. and
pé-a.e. and there exist Choquet integrable functions g and h such that
h<axz*f, <gonf forn=12-- and z* € X*, then f is Choquet-
Pettis integrable and (C'P) [ f,du — (CP) [ fdu weakly.

Proof. Let A € ¥. Since f, — f weakly p-a.e., (z*f,)" — (z*f)*
p-a.e. for all x* € X*. Since z*f, < gon Q for n = 1,2,--- and
e X*, (2*f)T < gt on Q forn = 1,2,--- and 2* € X*. By
[11, Theorem 2.7] (x*f)T is Choquet integrable with respect to u and
limy, oo (C) [, (z* fr)Tdp = (C) [,(a*f)Tdp for all z* € X*. Since
fo — f weakly pf-ae., (z*f,)” — (x*f)” p-ae. for all z* € X*.
Since h < z*f, on Q for n = 1,2,--- and z* € X*, (2*f,)” < h™
on  for n = 1,2,--- and z* € X*. By [11, Theorem 2.7] (z*f)~ is
Choquet integrable with respect to p¢ and lim,,«(C) [, (z* f,)~du® =

(C) [, (a* f)~dpc for all z* € X*. Hence z* f is Choquet integrable with
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respect to u and

lim (€) [ & fudy = Jim (<C> J@tyran-o© [ <x*fn>dw>
=© [ @1t (C) [ @
~(© [ @ rau

for all x* € X*. Since f, is Choquet-Pettis integrable for n = 1,2, -,
there exists x, 4 € X such that 2*(z, 1) = (C) [, @* fpdp for all 2* € X*
ie., Tna = (CP) [, fadp. Since lim,_,o (C) [, z* fudp = (C) [, a* fdp
for all * € X*, (z,4) is a weak Cauchy sequence in X. Since X
is a reflexive Banach space, the sequence (x, 4) converges weakly to
some r4 € X. Thus lim, 0 2*(zp4) = 2*(x4) for all z* € X*
Hence z*(z4) = (C) [, «*fdp for all z* € X*. Thus f is Choquet-
Pettis integrable and x4 = (CP) [, fdu. In particular, (CP) [ fodp —
(CP) [ fdu weakly.

O

In the sequel, we assume that €2 is a locally compact Hausdorff space,

B is the class of Borel subsets of €2, C is the class of compact subsets of
2 and O is the class of open subsets of ().

DEFINITION 3.8.[8]. Let p be a fuzzy measure on the measurable
space (§2, B). p is said to be outer regular if

u(B) = inf{u(0)|0 € 0,0 > B}
for all B € B.

The outer regular fuzzy measure p is said to be regular if

pn(0) =inf{u(C)|C e C,C C O}
for all O € O.
The next theorem follows immediately from [8, Proposition 3.3].

THEOREM 3.9. Let p be a regular fuzzy measure.

(1) If f, € LSCT forn=1,2,--- and f, T f on Q, then f is Choquet
integrable and

n—0o0

i (€) [ fudu=(C) [ fdu.
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(2) If f, e USCC* forn =1,2,--- and f, | f on €, then f is Choquet
integrable and

n—o0

i () [ fud = (©) [ fau

THEOREM 3.10. Let p be a finite and regular fuzzy measure. If (f,)
is a sequence of continuous real-valued functions with compact support
and f, T f on (), then f is Choquet integrable and

i (€) [ fudu=(C) [ fdu.

n—oo

Proof. Since (f,) is a sequence of continuous real-valued functions
with compact support and f, 1 f on Q, ff € LSCT forn = 1,2,---
and fF 1 f*. By Theorem 3.9,

i (C) [ fdn=(©) [ tan

n—oo
Since (f,) is a sequence of continuous real-valued functions with compact
support and f, T fon Q, f- € USCC* forn =1,2,--- and f, | f~.
By Theorem 3.9,

ti (€) [ frdu=(©) [ 1 an

Hence f is Choquet integrable and

i (€) [ fude = fimn (©) [ frau=©) [ g

n—oo

=t (€) [ fidu = an (C) [ £

n—o0

—(©) [ frdu-(C) [ £au

]

THEOREM 3.11. Let i be a finite and regular fuzzy measure and let X
be a reflexive Banach space. If (f,) is a sequence of continuous Choquet-
Pettis integrable X -valued functions with compact support and f, 1 f
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weakly on €1, then f is Choquet-Pettis integrable and

lim (C'P) /fnd,u (CP) /fd,u weakly.

’H,HOO

Proof. Let A € X. Since (f,) is a sequence of continuous X-valued
functions with compact support, (z*f,,) is a sequence of continuous real-
valued functions with compact support for all x* € X*. Since f, 1 f
weakly on Q, z*f, T 2*f on Q for all z* € X*. By Theorem 3.10,
z* f is Choquet integrable for all z* € X* and lim,oo(C) [, 2* fudp =

) [ 42" fdp for all ¥ € X*. Since f, is Choquet-Pettis integrable for

n=1,2,---, there exists x, 4 € X such that 2*(z,4) = fA:U fndp
for all z* € X* and n = 1,2,---. That is, z,4 = C’P ) [ fudp for
n = 1,2,---. Thus (x,4) is a weak Cauchy sequence in X. Since

X is a reflexive Banach space, the sequence (x, 4) converges weakly
to some x4 € X Thus lim,, o x*(an) = z*(xn) for all z* € X*.
Hence z*(x4) = fA x* fdu for all z* € X*. Thus f is Choquet-Pettis
integrable and xA = (CP) [, fdu for each A € ¥. In particular,

lim (C'P) /fndu (CP) /fd,u weakly.

TL*)OO
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