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CONVERGENCE THEOREMS FOR THE

CHOQUET-PETTIS INTEGRAL

Chun-Kee Park

Abstract. In this paper, we introduce the concept of Choquet-
Pettis integral of Banach-valued functions using the Choquet integral
of real-valued functions and investigate convergence theorems for the
Choquet-Pettis integral.

1. Introduction

The fuzzy measure was introduced by Sugeno [9] and the Choquet
integral of real-valued functions with respect to a fuzzy measure was
introduced by Murofushi and Sugeno [5]. The Choquet integral is a
generalization of the Lebesgue integral, since they coincide when µ is
a classical σ−additive measure. The Choquet integral is a basic tool
for the subjective evaluation and decision analysis. The convergence
theorems are very important in classical integral theory and also Choquet
integral theory. Narukawa, Murofushi and Sugeno [8] introduced the
regular fuzzy measure on a locally compact Hausdorff space and showed
the usefulness in the point of representation of some functional.

In this paper, we introduce the concept of Choquet-Pettis integral
of Banach-valued functions using the Choquet integral of real-valued
functions. The Choquet-Pettis integral is an extension of the Choquet
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integral for Banach-valued functions and this integral is also a generaliza-
tion of the Pettis integral, since the Choquet integral and the Lebesgue
integral coincide when µ is a classical σ−additive measure. We also
investigate convergence theorems for this integral.

2. Preliminaries

Throughout this paper, X denotes a real Banach space and X∗ its
dual. Let Ω be a nonempty classical set, Σ a σ-algebra formed by the
subsets of Ω and (Ω,Σ) a measurable space.

Definition 2.1.[7,9]. A fuzzy measure on a measurable space (Ω,Σ)
is an extended real-valued set function µ : Σ→ [0,∞] satisfying

(i) µ(∅) = 0,
(ii) µ(A) ≤ µ(B) whenever A ⊂ B, A,B ∈ Σ.
When µ(Ω) <∞, we say that µ is finite. When µ is finite, we define

the conjugate µc of µ by

µc(A) = µ(Ω)− µ(Ac),

where Ac is the complement of A ∈ Σ.
A fuzzy measure µ is said to be lower semi-continuous if it satisfies

A1 ⊂ A2 ⊂ · · · implies µ(∪∞n=1An) = lim
n→∞

µ(An).

A fuzzy measure µ is said to be upper semi-continuous if it satisfies

A1 ⊃ A2 ⊃ · · · and µ(A1) <∞ implies µ(∩∞n=1An) = lim
n→∞

µ(An).

A fuzzy measure µ is said to be continuous if it is both lower and
upper semi-continuous.

If a fuzzy measure µ is lower(resp., upper) semi-continuous, then µc

is upper(resp., lower) semi-continuous.
The class of real-valued measurable functions is denoted by M and

the class of nonnegative real-valued measurable functions is denoted
by M+. The class of non-negative upper semi-continuous real-valued
functions with compact support is denoted by USCC+ and the class of
non-negative lower semi-continuous real-valued functions is denoted by
LSC+.
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Definition 2.2.[1,5]. (1) The Choquet integral of f ∈ M+ with
respect to a fuzzy measure µ on A ∈ Σ is defined by

(C)

∫
A

fdµ =

∫ ∞
0

µ((f ≥ r) ∩ A)dr,

where the right-hand side integral is the Lebesgue integral and (f ≥
r) = {ω ∈ Ω | f(ω) ≥ r} for all r ≥ 0.

If (C)
∫
A
fdµ < ∞, then we say that f is Choquet integrable on A

with respect to µ. Instead of (C)
∫

Ω
fdµ, we will write (C)

∫
fdµ.

(2) Suppose µ(Ω) <∞. The Choquet integral of f ∈M with respect
to a fuzzy measure µ on A ∈ Σ is defined by

(C)

∫
A

fdµ = (C)

∫
A

f+dµ− (C)

∫
A

f−dµc,

where f+ = f ∨ 0 and f− = −(f ∧ 0). When the right-hand side is
∞−∞, the Choquet integral is not defined. If (C)

∫
A
fdµ is finite, then

we say that f is Choquet integrable on A with respect to µ.
L+

1 (µ) denotes the class of nonnegative Choquet integrable functions.
That is,

L+
1 (µ) :=

{
f | f ∈M+, (C)

∫
fdµ <∞

}
.

The Choquet integral is a generalization of the Lebesgue integral,
since they coincide when µ is a classical σ-additive measure. For each
f ∈M+, we also have

(C)

∫
A

fdµ =

∫ ∞
0

µ((f > r) ∩ A)dr, ∀A ∈ Σ,

where (f > r) = {ω ∈ Ω | f(ω) > r} for all r ≥ 0.

Definition 2.3.[2]. Let f, g ∈M . We say that f and g are comono-
tonic if f(ω) < f(ω′) ⇒ g(ω) ≤ g(ω′) for ω, ω′ ∈ Ω. We denote f ∼ g
when f and g are comonotonic.

Definition 2.4.[3]. A sequence (fn) of real-valued measurable func-
tions is said to converge to f in distribution, in symbols fn D−→ f , if

lim
n→∞

µ((fn ≥ r)) = µ(f ≥ r)) e.c.,

where “e.c.” stands “except at most countably many values of r”.
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3. Results

We introduce the concept of Choquet-Pettis integral of Banach-valued
functions. The concept of Pettis integral and its properties may be found
in [4].

Definition 3.1. A function f : Ω → X is called Choquet-Pettis
integrable if for each x∗ ∈ X∗ the function x∗f is Choquet integrable and
for every A ∈ Σ there exists xA ∈ X such that x∗(xA) = (C)

∫
A
x∗fdµ

for all x∗ ∈ X∗. The vector xA is called the Choquet-Pettis integral of f
on A and is denoted by (CP )

∫
A
fdµ.

The Choquet-Pettis integral is a generalization of the Pettis integral,
since the Choquet integral and the Lebesgue integral coincide when µ is
a classical σ-additive measure.

Definition 3.2. (1) Let f : Ω → X and g : Ω → X be weakly
measurable. f and g are said to be weakly comonotonic if for each
x∗ ∈ X∗ x∗f and x∗g are comonotonic. We denote f ∼w g when f and
g are weakly comonotonic.

(2) A sequence (fn) of X-valued weakly measurable functions is said
to converge weakly to f in distribution on Ω, in symbols fn wD−−→ f , if for

each x∗ ∈ X∗ (x∗fn) converges to x∗f in distribution.

A set N ∈ Σ is called a null set with respect to µ if µ(A∪N) = µ(A)
for all A ∈ Σ [6]. “P (ω) µ-a.e. on A” means that there exists a null set
N such that P (ω) is true for all ω ∈ A−N , where P (ω) is a proposition
concerning the point of A.

Theorem 3.3. Let f : Ω → X and g : Ω → X be Choquet-Pettis
integrable. Then

(1) af is Choquet-Pettis integrable and

(CP )

∫
A

afdµ = a(CP )

∫
A

fdµ

for all A ∈ Σ and a ≥ 0;
(2) if f ∼w g, then f + g is Choquet-Pettis integrable and

(CP )

∫
A

(f + g)dµ = (CP )

∫
A

fdµ+ (CP )

∫
A

gdµ

for all A ∈ Σ;
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(3) if f = g µ-a.e. and µc-a.e. on Ω, then

(CP )

∫
A

fdµ = (CP )

∫
A

gdµ

for all A ∈ Σ

Proof. (1) Since f : Ω → X is Choquet-Pettis integrable, for each
x∗ ∈ X∗ x∗f is Choquet integrable and for every A ∈ Σ there exists
xA ∈ X such that x∗(xA) = (C)

∫
A
x∗fdµ for all x∗ ∈ X∗. Hence

for each x∗ ∈ X∗ x∗(af) is Choquet integrable and for every A ∈ Σ
x∗(axA) = (C)

∫
A
x∗(af)dµ for all x∗ ∈ X∗. Thus af is Choquet-Pettis

integrable and (CP )
∫
A
afdµ = axA = a(CP )

∫
A
fdµ for all A ∈ Σ and

a ≥ 0.
(2) Since f : Ω → X and g : Ω → X are Choquet-Pettis integrable,

for each x∗ ∈ X∗ x∗f and x∗g are Choquet integrable and for every
A ∈ Σ there exist xA, yA ∈ X such that x∗(xA) = (C)

∫
A
x∗fdµ and

x∗(yA) = (C)
∫
A
x∗gdµ for all x∗ ∈ X∗. Since f ∼w g, for each x∗ ∈

X∗ x∗(f + g) is Choquet integrable and for every A ∈ Σ x∗(xA +
yA) = (C)

∫
A
x∗(f + g)dµ for all x∗ ∈ X∗. Thus f + g is Choquet-Pettis

integrable and (CP )
∫
A

(f+g)dµ = xA+yA = (CP )
∫
A
fdµ+(CP )

∫
A
gdµ

for all A ∈ Σ.
(3) Since f : Ω → X and g : Ω → X are Choquet-Pettis integrable,

for each x∗ ∈ X∗ x∗f and x∗g are Choquet integrable and for every
A ∈ Σ there exist xA, yA ∈ X such that x∗(xA) = (C)

∫
A
x∗fdµ and

x∗(yA) = (C)
∫
A
x∗gdµ for all x∗ ∈ X∗. Since f = g µ-a.e. and µc-a.e.

on Ω, x∗f = x∗g µ-a.e. and µc-a.e. on Ω for all x∗ ∈ X∗. Hence for
every A ∈ Σ (C)

∫
A
x∗fdµ = (C)

∫
A
x∗gdµ i.e., x∗(xA) = x∗(yA) for all

x∗ ∈ X∗. Hence xA = yA i.e., (CP )
∫
A
fdµ = (CP )

∫
A
gdµ.

Theorem 3.4. Let X be a reflexive Banach space and let (fn) be a
sequence of Choquet-Pettis integrable X-valued functions on Ω. If (fn)
converges weakly to f in distribution on Ω and if g and h are Choquet-
Pettis integrable X-valued functions on Ω such that µ((x∗h ≥ r)) ≤
µ((x∗fn ≥ r)) ≤ µ((x∗g ≥ r)) e.c. for n = 1, 2, · · · and x∗ ∈ X∗, then f
is Choquet-Pettis integrable and (CP )

∫
fndµ→ (CP )

∫
fdµ weakly.

Proof. Since g and h are Choquet-Pettis integrable, for each x∗ ∈ X
x∗g and x∗h are Choquet integrable. Since (fn) converges weakly to f
in distribution, for each x∗ ∈ X (x∗fn) converges to x∗f in distribution.



388 Chun-Kee Park

By hypothesis, µ((x∗h ≥ r)) ≤ µ((x∗fn ≥ r)) ≤ µ((x∗g ≥ r)) e.c.
for n = 1, 2, · · · and x∗ ∈ X∗. By [3, Theorem 8.9] x∗f is Choquet
integrable and limn→∞(C)

∫
A
x∗fndµ = (C)

∫
A
x∗fdµ for all A ∈ Σ and

x∗ ∈ X∗. Since fn is Choquet-Pettis integrable for n = 1, 2, · · · , for each
A ∈ Σ there exists xn,A ∈ X such that x∗(xn,A) = (C)

∫
A
x∗fndµ for

all x∗ ∈ X∗, i.e., xn,A = (CP )
∫
A
fndµ. Thus (xn,A) is a weak Cauchy

sequence in X. Since X is a reflexive Banach space, the sequence (xn,A)
converges weakly to some xA ∈ X. Thus limn→∞ x

∗(xn,A) = x∗(xA) for
all x∗ ∈ X∗. Hence x∗(xA) = (C)

∫
A
x∗fdµ for all x∗ ∈ X∗. Thus f is

Choquet-Pettis integrable and xA = (CP )
∫
A
fdµ for each A ∈ Σ. In

particular, (CP )
∫
fndµ→ (CP )

∫
fdµ weakly.

Theorem 3.5. (1) Let µ be a finite and lower semi-continuous fuzzy
measure and let (fn) be a sequence of real-valued measurable functions. If
fn ↑ f µ-a.e. and µc-a.e. and there exists a Choquet integrable function
g such that f−1 ≤ g on Ω, then f is Choquet integrable and (C)

∫
fndµ ↑

(C)
∫
fdµ.

(2) Let µ be a finite and upper semi-continuous fuzzy measure and let
(fn) be a sequence of real-valued measurable functions. If fn ↓ f µ-a.e.
and µc-a.e. and there exists a Choquet integrable function g such that
f+

1 ≤ g on Ω, then f is Choquet integrable and (C)
∫
fndµ ↓ (C)

∫
fdµ.

Proof. (1) Since fn ↑ f µ-a.e. and µc-a.e., f+
n ↑ f+ µ-a.e. and f−n ↓ f−

µc-a.e. Since µ is lower semi-continuous, by [11, Theorem 2.4] f+ is
Choquet integrable with respect to µ and (C)

∫
f+
n dµ ↑ (C)

∫
f+dµ.

Since µ is lower semi-continuous, µc is upper semi-continuous. Since
there exists a Choquet integrable function g such that f−1 ≤ g on
Ω, by [11, Theorem 2.4] f− is Choquet integrable with respect to µc

and (C)
∫
f−n dµ

c ↓ (C)
∫
f−dµc. Hence f is Choquet integrable and

(C)
∫
fndµ ↑ (C)

∫
fdµ.

(2) The proof is similar to (1).

Theorem 3.6. Let µ be a finite and continuous fuzzy measure and
let X be a reflexive Banach space and let (fn) be a sequence of Choquet-
Pettis integrable X-valued functions on Ω.

(1) If fn ↑ f weakly µ-a.e. and µc-a.e. and there exists a Choquet
integrable function g such that (x∗f1)− ≤ g on Ω for all x∗ ∈ X∗,
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then f is Choquet-Pettis integrable and (CP )
∫
fndµ ↑ (CP )

∫
fdµ

weakly.
(2) If fn ↓ f weakly µ-a.e. and µc-a.e. and there exists a Choquet

integrable function g such that (x∗f1)+ ≤ g on Ω for all x∗ ∈ X∗,
then f is Choquet-Pettis integrable and (CP )

∫
fndµ ↓ (CP )

∫
fdµ

weakly.

Proof. (1) Let A ∈ Σ. Since fn ↑ f weakly µ-a.e. and µc-a.e. and
there exists a Choquet integrable function g such that (x∗f1)− ≤ g on
Ω for all x∗ ∈ X∗, by Theorem 3.5 x∗f is Choquet integrable and
(C)

∫
A
x∗fndµ ↑ (C)

∫
A
x∗fdµ for all x∗ ∈ X∗. Since fn is Choquet-

Pettis integrable for n = 1, 2, · · · , there exists xn,A ∈ X such that
x∗(xn,A) = (C)

∫
A
x∗fndµ for all x∗ ∈ X∗ i.e., xn,A = (CP )

∫
A
fndµ.

Thus (xn,A) is a weak Cauchy sequence in X. Since X is a reflexive Ba-
nach space, the sequence (xn,A) converges weakly to some xA ∈ X. Thus
x∗(xn,A) ↑ x∗(xA) for all x∗ ∈ X∗. Hence x∗(xA) = (C)

∫
A
x∗fdµ for all

x∗ ∈ X∗. Thus f is Choquet-Pettis integrable and xA = (CP )
∫
A
fdµ.

In particular, (CP )
∫
fndµ ↑ (CP )

∫
fdµ weakly.

(2) The proof is similar to (1).

Theorem 3.7. Let µ be a finite and continuous fuzzy measure and
let X be a reflexive Banach space and let (fn) be a sequence of Choquet-
Pettis integrable X-valued functions on Ω. If fn → f weakly µ-a.e. and
µc-a.e. and there exist Choquet integrable functions g and h such that
h ≤ x∗fn ≤ g on Ω for n = 1, 2, · · · and x∗ ∈ X∗, then f is Choquet-
Pettis integrable and (CP )

∫
fndµ→ (CP )

∫
fdµ weakly.

Proof. Let A ∈ Σ. Since fn → f weakly µ-a.e., (x∗fn)+ → (x∗f)+

µ-a.e. for all x∗ ∈ X∗. Since x∗fn ≤ g on Ω for n = 1, 2, · · · and
x∗ ∈ X∗, (x∗fn)+ ≤ g+ on Ω for n = 1, 2, · · · and x∗ ∈ X∗. By
[11, Theorem 2.7] (x∗f)+ is Choquet integrable with respect to µ and
limn→∞(C)

∫
A

(x∗fn)+dµ = (C)
∫
A

(x∗f)+dµ for all x∗ ∈ X∗. Since
fn → f weakly µc-a.e., (x∗fn)− → (x∗f)− µc-a.e. for all x∗ ∈ X∗.
Since h ≤ x∗fn on Ω for n = 1, 2, · · · and x∗ ∈ X∗, (x∗fn)− ≤ h−

on Ω for n = 1, 2, · · · and x∗ ∈ X∗. By [11, Theorem 2.7] (x∗f)− is
Choquet integrable with respect to µc and limn→∞(C)

∫
A

(x∗fn)−dµc =
(C)

∫
A

(x∗f)−dµc for all x∗ ∈ X∗. Hence x∗f is Choquet integrable with
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respect to µ and

lim
n→∞

(C)

∫
A

x∗fndµ = lim
n→∞

(
(C)

∫
A

(x∗fn)+dµ− (C)

∫
A

(x∗fn)−dµc

)
= (C)

∫
A

(x∗f)+dµ− (C)

∫
A

(x∗f)−dµc

= (C)

∫
A

x∗fdµ

for all x∗ ∈ X∗. Since fn is Choquet-Pettis integrable for n = 1, 2, · · · ,
there exists xn,A ∈ X such that x∗(xn,A) = (C)

∫
A
x∗fndµ for all x∗ ∈ X∗

i.e., xn,A = (CP )
∫
A
fndµ. Since limn→∞ (C)

∫
A
x∗fndµ = (C)

∫
A
x∗fdµ

for all x∗ ∈ X∗, (xn,A) is a weak Cauchy sequence in X. Since X
is a reflexive Banach space, the sequence (xn,A) converges weakly to
some xA ∈ X. Thus limn→∞ x

∗(xn,A) = x∗(xA) for all x∗ ∈ X∗.
Hence x∗(xA) = (C)

∫
A
x∗fdµ for all x∗ ∈ X∗. Thus f is Choquet-

Pettis integrable and xA = (CP )
∫
A
fdµ. In particular, (CP )

∫
fndµ→

(CP )
∫
fdµ weakly.

In the sequel, we assume that Ω is a locally compact Hausdorff space,
B is the class of Borel subsets of Ω, C is the class of compact subsets of
Ω and O is the class of open subsets of Ω.

Definition 3.8.[8]. Let µ be a fuzzy measure on the measurable
space (Ω,B). µ is said to be outer regular if

µ(B) = inf{µ(O)|O ∈ O, O ⊃ B}
for all B ∈ B.

The outer regular fuzzy measure µ is said to be regular if

µ(O) = inf{µ(C)|C ∈ C, C ⊂ O}
for all O ∈ O.

The next theorem follows immediately from [8, Proposition 3.3].

Theorem 3.9. Let µ be a regular fuzzy measure.

(1) If fn ∈ LSC+ for n = 1, 2, · · · and fn ↑ f on Ω, then f is Choquet
integrable and

lim
n→∞

(C)

∫
fndµ = (C)

∫
fdµ.
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(2) If fn ∈ USCC+ for n = 1, 2, · · · and fn ↓ f on Ω, then f is Choquet
integrable and

lim
n→∞

(C)

∫
fndµ = (C)

∫
fdµ.

Theorem 3.10. Let µ be a finite and regular fuzzy measure. If (fn)
is a sequence of continuous real-valued functions with compact support
and fn ↑ f on Ω, then f is Choquet integrable and

lim
n→∞

(C)

∫
fndµ = (C)

∫
fdµ.

Proof. Since (fn) is a sequence of continuous real-valued functions
with compact support and fn ↑ f on Ω, f+

n ∈ LSC+ for n = 1, 2, · · ·
and f+

n ↑ f+. By Theorem 3.9,

lim
n→∞

(C)

∫
f+
n dµ = (C)

∫
f+dµ.

Since (fn) is a sequence of continuous real-valued functions with compact
support and fn ↑ f on Ω, f−n ∈ USCC+ for n = 1, 2, · · · and f−n ↓ f−.
By Theorem 3.9,

lim
n→∞

(C)

∫
f−n dµ = (C)

∫
f−dµ.

Hence f is Choquet integrable and

lim
n→∞

(C)

∫
fndµ = lim

n→∞

[
(C)

∫
f+
n dµ− (C)

∫
f−n dµ

]
= lim

n→∞
(C)

∫
f+
n dµ− lim

n→∞
(C)

∫
f−n dµ

= (C)

∫
f+dµ− (C)

∫
f−dµ

= (C)

∫
fdµ.

Theorem 3.11. Let µ be a finite and regular fuzzy measure and let X
be a reflexive Banach space. If (fn) is a sequence of continuous Choquet-
Pettis integrable X-valued functions with compact support and fn ↑ f
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weakly on Ω, then f is Choquet-Pettis integrable and

lim
n→∞

(CP )

∫
fndµ = (CP )

∫
fdµ weakly.

Proof. Let A ∈ Σ. Since (fn) is a sequence of continuous X-valued
functions with compact support, (x∗fn) is a sequence of continuous real-
valued functions with compact support for all x∗ ∈ X∗. Since fn ↑ f
weakly on Ω, x∗fn ↑ x∗f on Ω for all x∗ ∈ X∗. By Theorem 3.10,
x∗f is Choquet integrable for all x∗ ∈ X∗ and limn→∞(C)

∫
A
x∗fndµ =

(C)
∫
A
x∗fdµ for all x∗ ∈ X∗. Since fn is Choquet-Pettis integrable for

n = 1, 2, · · · , there exists xn,A ∈ X such that x∗(xn,A) = (C)
∫
A
x∗fndµ

for all x∗ ∈ X∗ and n = 1, 2, · · · . That is, xn,A = (CP )
∫
A
fndµ for

n = 1, 2, · · · . Thus (xn,A) is a weak Cauchy sequence in X. Since
X is a reflexive Banach space, the sequence (xn,A) converges weakly
to some xA ∈ X. Thus limn→∞ x

∗(xn,A) = x∗(xA) for all x∗ ∈ X∗.
Hence x∗(xA) = (C)

∫
A
x∗fdµ for all x∗ ∈ X∗. Thus f is Choquet-Pettis

integrable and xA = (CP )
∫
A
fdµ for each A ∈ Σ. In particular,

lim
n→∞

(CP )

∫
fndµ = (CP )

∫
fdµ weakly.
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