ABSOLUTE CONTINUITY OF THE REPRESENTING MEASURES OF THE HYPERGEOMETRIC TRANSLATION OPERATORS ATTACHED TO THE ROOT SYSTEM OF TYPE B_2 AND C_2

Khalifa Trimèche

ABSTRACT. We prove in this paper the absolute continuity of the representing measures of the hypergeometric translation operators \mathcal{T}_x and \mathcal{T}_x^W associated respectively to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type B_2 and C_2 which are studied in [9].

1. Introduction

We consider the differential-difference operators T_j , j = 1, 2, ...d associated with a root system \mathcal{R} , a Weyl group W and a multiplicity function k, introduced by I. Cherednik in [2], and called the Cherednik operators in the literature. These operators are helpful for the extension and simplification of the theory of Heckman-Opdam, which is a generalization of the harmonic analysis on the symmetric spaces G|K (see [3, 4, 5, 7]).

Received June 9, 2014. Revised December 10, 2014. Accepted December 10, 2014. 2010 Mathematics Subject Classification: 51F15, 33C80, 33E30, 47B34.

Key words and phrases: Hypergeometric translation operators, Absolute continuity of the representing measures, Cherednik operators, Heckman-Opdam theory

The work here is supported by FRGSTOPDOWN/2013/ST06/UKM/01/1 and the authors would like to thank the referee for the comments to improve the manuscript.

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The notion of hypergeometric translation operators introduced in [8] is basic in the harmonic analysis associated to the Cherednik operators and the Heckman-Opdam theory. We have considered in [9] the hypergeometric translation operators \mathcal{T}_x , and \mathcal{T}_x^W , $x \in \mathbb{R}^2$, associated respectively to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type B_2 and C_2 we have proved that these operators are integral transforms, more precisely, for all function f in $\mathcal{E}(\mathbb{R}^2)$ (the space of C^{∞} -functions on \mathbb{R}^2) we have

$$\forall t \in \mathbb{R}^2, \mathcal{T}_x(f)(t) = \int_{\mathbb{R}^2} f(z) dm_{x,t}(z), \tag{1.1}$$

where $m_{x,t}$ is a positive measure with compact support contained in the set $\{z \in \mathbb{R}^2 : |||x|| - ||t||| \le ||z|| \le ||x|| + ||t||\}$, and of norm equal to 1. From this result we have deduced that for all function f in $\mathcal{E}(\mathbb{R}^2)^W$ (the subspace of $\mathcal{E}(\mathbb{R}^2)$ of W-invariant functions), we have

$$\forall t \in \mathbb{R}^2, \mathcal{T}_x^W(f)(t) = \int_{\mathbb{R}^2} f(z) dm_{x,t}^W(z), \tag{1.2}$$

where

$$m_{x,t}^{W} = \frac{1}{|W|^2} \sum_{w,w' \in W} m_{wx,w't}.$$
 (1.3)

In this paper we prove that for all $x, t \in \mathbb{R}^2_{reg}$ (the regular part of \mathbb{R}^2) the measures $m_{x,t}$ and $m_{x,t}^W$ are absolute continuous with respect to the Lebesgue measure on \mathbb{R}^2 . More precisely there exist positive functions $\mathcal{W}(x,t,.)$ and $\mathcal{W}^W(x,t,.)$ such that

$$dm_{x,t}(z) = \mathcal{W}(x,t,z)\mathcal{A}_k(z)dz, \tag{1.4}$$

$$dm_{x,t}^W(z) = \mathcal{W}^W(x,t,z)\mathcal{A}_k(z)dz, \qquad (1.5)$$

where A_k is a weight function on \mathbb{R}^2 which will be given in the following section (see (2.8)).

The functions $z \to \mathcal{W}(x, t, z)$ and $z \to \mathcal{W}^W(x, t, z)$ have their support contained in the set $\{z \in \mathbb{R}^2; |||x|| - ||t||| \le ||z|| \le ||x|| + ||t||\}$ and satisfy

$$\int_{\mathbb{R}^2} \mathcal{W}(x,t,z) \mathcal{A}_k(z) dz = 1, \tag{1.6}$$

and

$$\int_{\mathbb{R}^2} \mathcal{W}^W(x,t,z) \mathcal{A}_k(z) dz = 1.$$
 (1.7)

As applications of the previous results, we prove that for all $\lambda \in \mathbb{C}^2$, the Opdam-Cherednik kernel G_{λ} and the Heckmann-Opdam hypergeometric function F_{λ} possess the following product formulas

$$\forall x, t \in \mathbb{R}^2_{reg}, G_{\lambda}(x)G_{\lambda}(t) = \int_{\mathbb{R}^2} G_{\lambda}(z)\mathcal{W}(x, t, z)\mathcal{A}_k(z)dz, \qquad (1.8)$$

and

$$\forall x, t \in \mathbb{R}^2_{reg}, F_{\lambda}(x)F_{\lambda}(t) = \int_{\mathbb{R}^2} F_{\lambda}(z)\mathcal{W}^W(x, t, z)\mathcal{A}_k(z)dz. \tag{1.9}$$

2. The Cherednik operators and their eigenfunctions

We consider \mathbb{R}^2 with the standard basis $\{e_1, e_2\}$ and inner product $\langle ., . \rangle$ for which this basis is orthonormal. We extend this inner product to a complex bilinear form on \mathbb{C}^2 .

2.1. The root systems of type B_2 and C_2 and the multiplicity functions.

The root system of type B_2 can be identified with the set \mathcal{R} given by

$$\mathcal{R} = \{ \pm e_1, \pm e_2 \} \cup \{ \pm e_1 \pm e_2 \}, \tag{2.1}$$

which can also be written in the form

$$\mathcal{R} = \{ \pm \alpha_1, \pm \alpha_2, \pm \alpha_3 \pm \alpha_4 \},\$$

with

$$\alpha_1 = e_1, \alpha_2 = e_2, \alpha_3 = (e_1 - e_2), \alpha_4 = (e_1 + e_2).$$
 (2.2)

We denote by \mathcal{R}_+ the set of positive roots

$$\mathcal{R}_{+} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\},\tag{2.3}$$

and by \mathcal{R}_+^o the set of positive indivisible roots i.e, the roots $\alpha \in \mathcal{R}_+$ such that $\frac{\alpha}{2} \notin \mathcal{R}_+$. Then we have

$$\mathcal{R}_{+}^{0} = \mathcal{R}_{+}.\tag{2.4}$$

For $\alpha \in \mathcal{R}$, we consider

$$r_{\alpha}(x) = x - \langle \breve{\alpha}, x \rangle \alpha, \text{ with } \breve{\alpha} = \frac{2\alpha}{\|\alpha\|^2},$$
 (2.5)

the reflection in the hyperplan $H_{\alpha} \subset \mathbb{R}^2$ orthogonal to α . The reflections $r_{\alpha}, \alpha \in \mathcal{R}$, generate a finite group $W \subset O(2)$, called the Weyl group associated with \mathcal{R} . In this case W is isomorphic to the hyperoctahedral

group which is generated by permutations and sign changes of the e_i , i = 1, 2,...

The multiplicity function $k : \mathcal{R} \to]0, +\infty[$ can be written in the form $k = (k_1, k_2)$ where k_1 is the value on the roots α_1, α_2 , and k_2 is the value on the roots α_3, α_4 .

The positive Weyl chamber denoted by \mathfrak{a}^+ is given by

$$\mathfrak{a}^+ = \{ x \in \mathbb{R}^2 ; \forall \ \alpha \in \mathcal{R}_+, \langle \alpha, x \rangle > 0 \}, \tag{2.6}$$

it can also be written in the form

$$\mathfrak{a}^+ = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 > x_2 > 0 \}. \tag{2.7}$$

Let also \mathbb{R}^2_{reg} be the subset of regular elements in \mathbb{R}^2 , i.e., those elements which belong to no hyperplane $H_{\alpha} = \{x \in \mathbb{R}^2; \langle \alpha, x \rangle = 0\}, \alpha \in \mathcal{R}$.

Let \mathcal{A}_k denote the weight function

$$\forall x \in \mathbb{R}^2, \mathcal{A}_k(x) = \prod_{\alpha \in \mathcal{R}_+} |\sinh\langle \frac{\alpha}{2}, x \rangle|^{2k(\alpha)}. \tag{2.8}$$

REMARK 2.1. The root system of type C_2 can be identified with the set \mathcal{R} given by

$$\mathcal{R} = \{ \pm 2e_1, \pm 2e_2 \} \cup \{ \pm e_1 \pm e_2 \},\$$

which can also be written in the form

$$\mathcal{R} = \{ \pm \alpha_1, \pm \alpha_2, \pm \alpha_3, \pm \alpha_4 \},\$$

with

$$\alpha_1 = 2e_1, \alpha_2 = 2e_2, \alpha_3 = (e_1 - e_2), \alpha_4 = (e_1 + e_2).$$

The set of positive roots is the following

$$\mathcal{R}_+ = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}.$$

If we denote by $W(C_2)$ the Weyl group associated to the root system \mathcal{R} of type C_2 , then we have

$$W(C_2) = W(B_2).$$

We denote also by $k = (k_1, k_2)$ the multiplicity function of the root system \mathcal{R} of C_2 , where k_1 is the value on the roots α_1, α_2 , and k_2 is the value on the roots α_3, α_4 .

In the remainder of the paper we shall give the results and their proofs only for the root system of type B_2 . It is easy to obtain the analogous of these results in the case of the root system of type C_2 .

2.2. The Cherednik operators attached to the root system of type B_2 .

The Cherednik operators $T_j, j = 1, 2$, on \mathbb{R}^2 associated with the Weyl group W and the multiplicity function k are defined for f of class C^1 on \mathbb{R}^2 and $x \in \mathbb{R}_{reg} = \mathbb{R}^2 \setminus \bigcup_{j=1}^n H_{\alpha}$ by

$$T_{j}f(x) = \frac{\partial}{\partial x_{j}}f(x) + \sum_{\alpha \in \mathcal{R}_{+}} \frac{k(\alpha)\alpha^{j}}{1 - e^{-\langle \alpha, x \rangle}} \{f(x) - f(r_{\alpha}x)\} - \rho_{j}f(x), \quad (2.9)$$

with

$$\rho_j = \frac{1}{2} \sum_{\alpha \in \mathcal{R}} k(\alpha) \alpha^j, \quad \text{and } \alpha^j = \langle \alpha, e_j \rangle.$$
(2.10)

These operators can also be written in the following form

$$T_{1}f(x) = \frac{\partial}{\partial x_{1}}f(x) + k_{1}\frac{\{f(x) - f(r_{\alpha_{1}}x)\}}{1 - e^{-\langle \alpha_{1}, x \rangle}} + k_{2}\left[\frac{f(x) - f(r_{\alpha_{3}}x)}{1 - e^{-\langle \alpha_{3}, x \rangle}} + \frac{f(x) - f(r_{\alpha_{4}}x)}{1 - e^{-\langle \alpha_{4}, x \rangle}}\right] - (\frac{1}{2}k_{1} + k_{2})f(x).$$

$$T_{2}f(x) = \frac{\partial}{\partial x_{1}}f(x) + k_{1}\frac{\{f(x) - f(r_{\alpha_{2}}x)\}}{1 - e^{-\langle \alpha_{3}, x \rangle}}$$
(2.11)

$$T_{2}f(x) = \frac{\partial}{\partial x_{2}}f(x) + k_{1}\frac{\{f(x) - f(r_{\alpha_{2}}x)\}}{1 - e^{-\langle \alpha_{2}, x \rangle}} + k_{2}\left[-\frac{f(x) - f(r_{\alpha_{3}}x)}{1 - e^{-\langle \alpha_{3}, x \rangle}} + \frac{f(x) - f(r_{\alpha_{4}}x)}{1 - e^{-\langle \alpha_{4}, x \rangle}} \right] - \frac{1}{2}k_{1}f(x).$$
(2.12)

2.3. The eigenfunctions of the Cherednik operators attached to the root system of type B_2 .

We denote by G_{λ} , $\lambda \in \mathbb{C}^2$, the eigenfunction of the operators T_j , j = 1, 2. It is the unique analytic function on \mathbb{R}^2 which satisfies the differential difference system

$$\begin{cases}
T_j G_{\lambda}(x) &= -i\lambda_j G_{\lambda}(x), x \in \mathbb{R}^2, j = 1, 2, \\
G_{\lambda}(0) &= 1
\end{cases}$$
(2.13)

It is called the Opdam-Cherednik kernel.

We consider the function $F_{\lambda}, \lambda \in \mathbb{C}^2$, defined by

$$\forall x \in \mathbb{R}^2, F_{\lambda}(x) = \frac{1}{|W|} \sum_{w \in W} G_{\lambda}(wx). \tag{2.14}$$

This function is the unique analytic W-invariant function on \mathbb{R}^2 , which satisfies the partial differential equation

$$\begin{cases}
 p(T)F_{\lambda}(x) &= p(-i\lambda)F_{\lambda}(x), \quad x \in \mathbb{R}^2, \\
 F_{\lambda}(0) &= 1,
\end{cases} (2.15)$$

for all W-invariant polynomials p on \mathbb{R}^2 and $p(T) = p(T_1, T_2)$. It is called the Heckman-Opdam hypergeometric function.

The functions G_{λ} and F_{λ} possess the following properties

- i) For all $x \in \mathbb{R}^2$ the function $\lambda \to G_{\lambda}(x)$ is entire on \mathbb{C}^2 .
- ii) We have

$$\forall x \in \mathbb{R}^2, \ \forall \ \lambda \in \mathbb{C}^2, \ \overline{G_{\lambda}(x)} = G_{-\overline{\lambda}}(x).$$
 (2.16)

iii) We have

$$\forall x \in \mathbb{R}^2, \ \forall \ \lambda \in \mathbb{C}^2, \ |G_{\lambda}(x)| \le G_{iIm(\lambda)}(x). \tag{2.17}$$

iv) We have

$$\forall x \in \mathbb{R}^2, \forall \lambda \in \mathbb{R}^2, |G_{\lambda}(x)| \le 1.$$
 (2.18)

$$\forall x \in \mathbb{R}^2, \ \forall \ \lambda \in \mathbb{R}^2, |F_{\lambda}(x)| \le 1. \tag{2.19}$$

v) The function G_{λ} , $\lambda \in \mathbb{C}^2$, admits the following Laplace type representation

$$\forall x \in \mathbb{R}^2, G_{\lambda}(x) = \int_{\mathbb{R}^2} e^{-i\langle \lambda, y \rangle} d\mu_x(y), \qquad (2.20)$$

where μ_x is a positive measure on \mathbb{R}^2 with support in $\Gamma = \text{conv}\{wx, w \in W\}$ (the convexe hull of the orbit of x under W).

vi) From (2.14), (2.20) we deduce that the function F_{λ} , $\lambda \in \mathbb{C}^2$, possesses the Laplace type representation

$$\forall x \in \mathbb{R}^2, F_{\lambda}(x) = \int_{\mathbb{R}^2} e^{-i\langle \lambda, y \rangle} d\mu_x^W(y), \qquad (2.21)$$

where μ_x^W is the positive measure with support in Γ given by

$$\mu_x^W = \frac{1}{|W|} \sum_{w \in W} \mu_{wx}.$$
 (2.22)

3. The hypergeometric translation operator \mathcal{T}_x

We consider the hypergeometric translation operator \mathcal{T}_x , $x \in \mathbb{R}^2$, given by the relation (1.1). In the following we give some properties of this operator (see [9]).

i) For all $x \in \mathbb{R}^2$, the operator \mathcal{T}_x is continuous from $\mathcal{E}(\mathbb{R}^2)$ (resp. $\mathcal{D}(\mathbb{R}^2)$ the space of C^{∞} -functions on \mathbb{R}^2 with compact support) into itself, and for all f in $\mathcal{D}(\mathbb{R}^2)$ with support in the closed ball $\bar{B}(0,a)$ of center 0 and radius a > 0, we have

$$supp\mathcal{T}_x(f) \subset \bar{B}(0, a + ||x||). \tag{3.1}$$

ii) For all f in $\mathcal{E}(\mathbb{R}^2)$ and $x, y \in \mathbb{R}^2$, we have

$$\mathcal{T}_x(f)(0) = f(x), \quad \text{and } \mathcal{T}_x(f)(y) = \mathcal{T}_y(f)(x).$$
 (3.2)

iii) For $x \in \mathbb{R}^2$, $g \in \mathcal{E}(\mathbb{R}^2)$ and f in $\mathcal{D}(\mathbb{R}^2)$, we have

$$\int_{\mathbb{R}^2} \mathcal{T}_x(g)(y) f(y) \mathcal{A}_k(y) dy = \int_{\mathbb{R}^2} g(z) \mathcal{T}_x(\check{f})(-z) \mathcal{A}_k(z) dz, \tag{3.3}$$

where \check{f} is the function given by

$$\forall x \in \mathbb{R}^2, \ \breve{f}(x) = f(-x).$$

REMARK 3.1. The hypergeometric translation operator $\mathcal{T}_x^W, x \in \mathbb{R}^2$, given by the relation (1.2) satisfies the same properties as for the operator $\mathcal{T}_x, x \in \mathbb{R}^2$, by considering the spaces $\mathcal{E}(\mathbb{R}^2)^W$ and $\mathcal{D}(\mathbb{R}^2)^W$ (the subspace of $\mathcal{D}(\mathbb{R}^2)$ of W-invariant functions).

Notation. We denote by B(c, a) the open ball of \mathbb{R}^2 of center c in \mathbb{R}^2 and radius a > 0, and by $\bar{B}(c, a)$ its closure.

PROPOSITION 3.2. Let $y_0 \in \mathbb{R}^2$ and a > 0. We consider the sequence $\{f_n\}_{n \in \mathbb{N} \setminus \{0\}}$ of functions in $\mathcal{D}(\mathbb{R}^2)$, positive, increasing such that :

$$\forall n \in \mathbb{N} \setminus \{0\}, supp f_n \subset \bar{B}(y_0, a), \forall t \in B(y_0, a - \frac{1}{n}), f_n(t) = 1,$$

and

$$\forall t \in \mathbb{R}^2, \lim_{n \to +\infty} f_n(t) = 1_{B(y_0, a)}(t),$$

where $1_{B(y_0,a)}$ is the characteristic function of the ball $B(y_0,a)$. We have

$$\forall x, z \in \mathbb{R}^2, \lim_{n \to +\infty} \mathcal{T}_x(f_n)(z) = \lim_{n \to +\infty} \int_{\mathbb{R}^2} f_n(t) dm_{x,z}(t)$$
$$= \int_{\mathbb{R}^2} 1_{B(y_0,a)}(t) dm_{x,z}(t).$$

The function $z \to m_{x,z}(B(y_0,a)) = \int_{\mathbb{R}^2} 1_{B(y_0,a)}(t) dm_{x,z}(t)$, which can also be denoted by $\mathcal{T}_x(1_{B(y_0,a)})(z)$ is defined almost every where on \mathbb{R}^2 (see [1] p. 17), measurable and for all function h in $\mathcal{D}(\mathbb{R}^2)$ we have

$$\int_{\mathbb{R}^2} m_{x,z}(B(y_0, a))h(z)\mathcal{A}_k(z)dz = \int_{B(y_0, a)} \mathcal{T}_x(\check{h})(-t)\mathcal{A}_k(t)dt.$$
 (3.4)

Proof. For all $x \in \mathbb{R}^2$ and $n \in \mathbb{N} \setminus \{0\}$, the function $\mathcal{T}_x(f_n)$ belongs to $\mathcal{D}(\mathbb{R}^2)$. Then we obtain the results of this proposition from the monotonic convergence theorem and the relation (3.3).

REMARK 3.3. There exists a σ -algebra \mathfrak{m} in \mathbb{R}^2 which contains all Borel sets in \mathbb{R}^2 . Then for all $E \in \mathfrak{m}$, the function $z \to m_{x,z}(E)$ is defined almost every where on \mathbb{R}^2 , measurable and we have the following relation

$$\int_{\mathbb{R}^2} m_{x,z}(E)h(z)\mathcal{A}_k(z)dz = \int_E \mathcal{T}_x(\check{h})(-t)\mathcal{A}_k(t)dt, \quad h \in \mathcal{D}(\mathbb{R}^2). \quad (3.5)$$

In this section we shall prove that for all $x \in \mathbb{R}^2_{reg}$, $t \in \mathbb{R}^2$, the measures $m_{x,t}$ and $m_{x,t}^W$ given by the relations (1.1) and (1.3) are absolute continuous with respect to the Lebesgue measure on \mathbb{R}^2 .

3.1. Absolute continuity of the measure $m_{x,z}$.

Notation. We denote by λ the Lebesgue measure on \mathbb{R}^2 .

PROPOSITION 3.4. For $x \in \mathbb{R}^2_{reg}$, $z \in \mathbb{R}^2$, there exists a unique positive function $\ominus(x,z,.)$ integrable on \mathbb{R}^2 with respect to the Lebesgue measure λ , and a positive measure $m^s_{x,z}$ on \mathbb{R}^2 such that for every Borel set E, we have

$$m_{x,z}(E) = \int_{E} \ominus(x,z,t)dt + m_{x,z}^{s}(E).$$
 (3.6)

Proof. We deduce (3.6) from (1.1) and Theorem 6.9 of [6] p.129-130, and Theorem 8.6 and its Corollary of [6] p. 166.

Remark 3.5.

- i) The supports of the function $t \to \ominus(x, z, t)$ and the measure $m_{x, z}^s$ are contained in the set $\{t \in \mathbb{R}^2; |\|x\| \|z\|| \le \|t\| \le \|x\| + \|z\|\}$.
- ii) The measures $m_{x,z}^s$ and the Lebesgue mesure λ are mutually singular.
- iii) From Theorem 8.6, p.166 and Definition 8.3, p.164, of [6], we have

$$\ominus(x,z,t) = \lim_{a \to 0} \frac{m_{x,z}(B(t,a))}{\lambda(B(t,a))}.$$
 (3.7)

PROPOSITION 3.6. We consider $x \in \mathbb{R}^2_{reg}$ and a positive function h in $\mathcal{D}(\mathbb{R}^2)$ with support contained in the ball $\bar{B}(0,R)$, R > 0.

i) For all Borel set E, we have

$$\int_{E} \mathcal{N}_{x}^{h}(t)dt = \int_{\bar{B}(0,R)} h(z)m_{x,z}^{s}(E)\mathcal{A}_{k}(z)dz, \qquad (3.8)$$

where

$$\mathcal{N}_x^h(t) = \mathcal{T}_x(\check{h})(-t)\mathcal{A}_k(t) - \int_{\bar{B}(0,R)} \Theta(x,z,t)h(z)\mathcal{A}_k(z)dz. \tag{3.9}$$

ii) We have

$$\forall t \in \mathbb{R}^2, \mathcal{N}_x^h(t) \ge 0. \tag{3.10}$$

Proof.

i) By using the relations (3.5), (3.6), we obtain

$$\int_{E} \mathcal{T}_{x}(\check{h})(-t)\mathcal{A}_{k}(t)dt = \int_{\bar{B}(0,R)} m_{x,z}(E)h(z)\mathcal{A}_{k}(z)dz$$

$$= \int_{\bar{B}(0,R)} \left[\int_{E} \ominus(x,z,t)dt + m_{x,z}^{s}(E) \right] h(z)\mathcal{A}_{k}(z)dz.$$

We deduce (3.8) by applying Fubini-Tonelli's theorem to the second member.

ii) From the relation (3.8), the positivity of the measure $m_{x,z}^s$ implies that for all Borel set E, we have

$$\int_{E} \mathcal{N}_{x}^{h}(t)dt \ge 0.$$

Thus

$$\forall t \in \mathbb{R}^2, \mathcal{N}_x^h(t) \ge 0.$$

PROPOSITION 3.7. The measure Λ_x^h on \mathbb{R}^2 given for all Borel set E by

$$\Lambda_x^h(E) = \int_E \mathcal{N}_x^h(t)dt, \qquad (3.11)$$

is positive and bounded.

Proof.

- The relation (3.10) gives the positivity of the measure Λ_x^h .
- From the relation (3.11) (3.8), for all Borel set E we have

$$\Lambda_x^h(E) \le \int_{\bar{B}(0,R)} \|m_{x,z}^s\|h(z)\mathcal{A}_k(z)dz.$$
(3.12)

On the other hand by using (3.6), we obtain for all $z \in \mathbb{R}^2_{reg}$,

$$m_{x,z}^s(E) \leq m_{x,z}(E),$$

thus

$$||m_{x,z}^s|| \le ||m_{x,z}|| = 1.$$

By using this result, the relation (3.12) implies that for all Borel set E, we have

$$\Lambda_x^h(E) \leq M_h$$

where

$$M_h = \int_{\bar{B}(0,R)} h(z) \mathcal{A}_k(z) dz.$$

Then the measure Λ_x^h is bounded.

PROPOSITION 3.8. Let $x \in \mathbb{R}^2_{reg}$ and h be a positive function in $\mathcal{D}(\mathbb{R}^2)$ with support contained in the ball $\bar{B}(0,R), R > 0$.

i) For all Borel set E we have

$$\Lambda_x^h(E) = 0 (3.13)$$

ii) For $x, t \in \mathbb{R}^2_{reg}$, we have

$$\mathcal{T}_x(h)(t) = \int_{\bar{B}(0,R)} h(z) \mathcal{W}(x,t,z) \mathcal{A}_k(z) dz, \qquad (3.14)$$

with

$$W(x,t,z) = \frac{\Theta(x,-z,-t)}{A_k(t)}$$
(3.15)

Proof.

i) From the relations (3.11), (3.8), for all Borel set E the measure Λ_x^h possesses also the following form

$$\Lambda_x^h(E) = \int_{\bar{B}(0,R)} m_{x,z}^s(E)h(z)\mathcal{A}_k(z)dz. \tag{3.16}$$

On the other hand from Proposition 3.7 the measure Λ_x^h is absolute continuous with respect to the Lebesgue measure λ and from Remark 3.5 ii) the measure $m_{x,z}^s, z \in \bar{B}(0,R)$ and the Lebesgue measure λ are mutually singular. Then from Proposition 6.8,(f), p. 129, of [6], the measure Λ_x^h and $m_{x,z}^s, z \in \bar{B}(0,R)$, are mutually singular. By using the definition of measures mutually singular (see p. 128 of [6]), we deduce (3.13) from (3.16).

ii) By using the i) and (3.11), (3.9), we get

$$\mathcal{T}_x(\check{h})(-t)\mathcal{A}_k(t) = \int_{\bar{B}(0,R)} \Theta(x,z,t)h(z)\mathcal{A}_k(z)dz$$
 (3.17)

As

$$\mathcal{A}_k(t) \neq 0 \Leftrightarrow t \in \mathbb{R}^2_{reg}$$

then for $t \in \mathbb{R}^2_{reg}$, we deduce (3.14), (3.15) from (3.17).

THEOREM 3.9. For all f in $\mathcal{E}(\mathbb{R}^2)$ and $x, t \in \mathbb{R}^2_{reg}$, we have

$$\mathcal{T}_x(f)(t) = \int_{\mathbb{R}^2} f(z) \mathcal{W}(x, t, z) \mathcal{A}_k(z) dz, \qquad (3.18)$$

with

$$\forall z \in \mathbb{R}^2, \quad \mathcal{W}(x, t, z) = \mathcal{W}(t, x, z). \tag{3.19}$$

Proof. We obtain (3.18), (3.19) by writing $f = f^+ - f^-$ and by using Proposition 3.8, and the properties i), ii) of the operator \mathcal{T}_x .

REMARK 3.10. Theorem 3.9 shows that for all $x \in \mathbb{R}^2_{reg}$, $t \in \mathbb{R}^2$ the measure $m_{x,t}$ is absolute continuous with respect to the measure $\mathcal{A}_k(z)dz$. More precisely for all $z \in \mathbb{R}^2$, we have

$$dm_{x,t}(z) = \mathcal{W}(x,t,z)\mathcal{A}_k(z)dz. \tag{3.20}$$

Corollary 3.11.

i) For all $\lambda \in \mathbb{C}^2$ and $x, t \in \mathbb{R}^2_{reg}$, we have

$$G_{\lambda}(x)G_{\lambda}(t) = \int_{\mathbb{R}^2} G_{\lambda}(z)\mathcal{W}(x,t,z)\mathcal{A}_k(z)dz. \tag{3.21}$$

ii) For all $x, t \in \mathbb{R}^2_{reg}$, we have

$$\int_{\mathbb{R}^2} \mathcal{W}(x,t,z) \mathcal{A}_k(z) dz = 1.$$
 (3.22)

iii) For all $x, t \in \mathbb{R}^2_{reg}$, the support of the function $z \to \mathcal{W}(x, t, z)$ is contained in the set $\{z \in \mathbb{R}^d : |||x|| - ||t||| \le ||z|| \le ||x|| + ||t||\}$.

Proof. We deduce the results of this Corollary from (1.1), (3.20), Theorem 3.9 and the product formula for the Opdam-Cherednik kernel $G_{\lambda}, \lambda \in \mathbb{C}^2$, (see [9] p. 24).

3.2. Absolute continuity of the measure m_{xt}^W .

PROPOSITION 3.12. For all $x, t \in \mathbb{R}^2_{reg}$ the measure $m_{x,t}^W$ is absolute continuous with respect to the Lebesgue measure on \mathbb{R}^2 . More precisely for all $z \in \mathbb{R}^2$, we have

$$dm_{x,t}^W(z) = \mathcal{W}^W(x,t,z)\mathcal{A}_k(z)dz, \qquad (3.23)$$

where $W^W(x,t,z)$ is the function given by

$$W^{W}(x,t,z) = \frac{1}{|W|^{2}} \sum_{w,w' \in W} W(wx, w't, z).$$
 (3.24)

Proof. The relation (1.3) and Theorem 3.9 imply (3.23), (3.24). \Box COROLLARY 3.13.

i) For all $\lambda \in \mathbb{C}^2$ and $x, t \in \mathbb{R}^2_{req}$, we have

$$F_{\lambda}(x)F_{\lambda}(t) = \int_{\mathbb{R}^2} F_{\lambda}(z)\mathcal{W}^W(x,t,z)\mathcal{A}_k(z)dz. \tag{3.25}$$

ii) For all $x, t \in \mathbb{R}^2_{reg}$, we have

$$\int_{\mathbb{R}^2} \mathcal{W}^W(x,t,z) \mathcal{A}_k(z) dz = 1.$$
 (3.26)

iii) For all $x, t \in \mathbb{R}^2_{reg}$, the support of the function $z \to \mathcal{W}^W(x, t, z)$ is contained in the set $\{z \in \mathbb{R}^2; |||x|| - ||t||| \le ||z|| \le ||x|| + ||t||\}$.

Proof. We obtain the results of this Corollary from the relation (1.2), Proposition 3.12, and the product formula for the Heckman-Opdam hypergeometric function $F_{\lambda}, \lambda \in \mathbb{C}^2$, (see [9] p. 27).

References

- [1] N. Bourbaki, Elements de Mathematiques Fascule XXI. Intégration des mesures, Chapitre 5, Hermann, Paris, 1967.
- [2] I. Cherednik, A unification of Knizhnik-Zamolodchnikov equations and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411–432.
- [3] G.H.Heckman and E.M.Opdam, Root systems and hypergeometric functions. I, Compositio. Math. **64** (1987), 329–352.
- [4] G.J.Heckman and H. Schlichtkrull, *Harmonic analysis and special functions on symmetric spaces*, Academic Press 1994.
- [5] E.M.Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), 75–121.
- [6] W. Rudin. Real and complex analysis, Mc Graw Hill Inc. second edition. 1974.
- [7] B.Schapira, Contributions to the hypergeometric function theroy of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel, Geom. Funct. Anal. 18 (2008), 222–250.
- [8] K. Trimèche, Harmonic analysis associated with the Cherednik operators and the Heckman-Opdam theory, Adv. Pure Appl. Math. 2 (2011), 23–46.
- [9] K. Trimèche, The positivity of the hypergeometric translation operators associated to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type B₂ and C₂, Korean J. Math. **22** (1) (2014), 1–28.

Khalifa Trimèche Department of Mathemtaics Faculty of sciences of Tunis University Tunis El-Manar CAMPUS, 2092 Tunis, Tunisia

E-mail: khlifa.trimeche@fst.rnu.tn