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A STUDY ON QUADRATIC CURVES AND

GENERALIZED ECCENTRICITY IN POLAR TAXICAB

GEOMETRY

Kyung Rok Kim, Hyun Gyu Park, Il Seog Ko, and
Byung Hak Kim†

Abstract. Over the years, there has been much research conducted
on quadratic curves and the set of points with the generalized notion
of eccentricity in a plane with metrics such as taxicab distance or
Chinese-checker distance. On the other hand, polar taxicab distance
has been newly proposed on the polar coordinate system, a type
of curvilinear coordinate system, to overcome the limitation of pre-
existing metrics in terms of describing curved routes. Previous study
has looked into the fundamental properties of this metric. From this
point of view, we study the quadratic curves and the set of points
with the generalized notion of eccentricity in a plane with polar
taxicab distance.

1. Introduction

Euclidean Geometry is widely used since it is easy to understand intu-
itively and is appropriate for applying to various theories. Nevertheless,
in modern cities, it is sometimes impossible to follow the path defined
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by Euclidean distance in order to move from one place to another. Con-
sequently, the idea of how a taxi travels in modern cities was developed
into a practical distance notion, taxicab distance[6]. Since not all motions
consist of horizontal and vertical movements, taxicab distance has been
generalized to alpha-distance, which includes Chinese-checker distance as
well[9]. In addition, generalized absolute value metric was proposed as a
generalization of the distance functions mentioned above[2]. Meanwhile,
unlike metrics such as taxicab distance, alpha-distance, and generalized
absolute value metric, which are defined on the Cartesian coordinate sys-
tem, a new metric called polar taxicab distance was defined on the polar
coordinate system, a type of curvilinear system[5]. Distance functions on
the Cartesian coordinate system have been studied steadily[1, 3, 7, 8],
and especially, research on quadratic curves has advanced significantly
using those distance functions.

Some authors even studied the set of points with the generalization
of eccentricity, CAB(k), in Euclidean geometry[3]. Contrary to the other
distance functions which have been studied a lot, only basic research
has been conducted about polar taxicab distance. Considering this, this
study looks at the geometric properties and classifications of CAB(k) in
a plane with polar taxicab distance.

2. Polar Taxicab Distance and Quadratic Curves

In [5], polar taxicab distance, a metric in the polar coordinate system,
was introduced. From now on, all the coordinates are defined on polar
coordinate system. Polar taxicab distance between two points in R2 is
defined as follows.

Definition 1. [5] The polar taxicab distance between two points
A(r1, θ1) and B(r2, θ2) with r1 ≥ 0, r2 ≥ 0, 0 ≤ θ1 < 2π, and 0 ≤ θ2 < 2π
on the plane with polar coordinates is defined as follows.

dPT (A,B) =

{
min{r1, r2} × |θ2 − θ1|+ |r2 − r1| (0 ≤ |θ2 − θ1| ≤ 2),

r1 + r2 (2 < |θ2 − θ1| ≤ π).

In [5], the following lemma is also proved.

Lemma 2. The rotation around the origin preserves the polar taxicab
distance between the two points.
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(a) (b)

Figure 1.

Now quadratic curves in a plane with polar taxicab distance will be
examined. An ellipse in a plane with polar taxicab distance is defined
analogously as it is defined in Euclidean geometry. It is defined as follows.

Definition 3. An ellipse in polar taxicab geometry is the set of all
points in a plane, the sum of whose polar taxicab distances from two
fixed points is a given positive constant.

If the two foci are symmetric about the origin, then the shape of the
ellipse in a polar taxicab plane is determined by the ratio of the length
of the major axis and the polar taxicab distance between the origin and
the focus. This can be summarized as the following theorem.

Theorem 4. In polar taxicab geometry, an ellipse can have only two
shapes as seen in Figure 1 if the two foci F1 and F2 are symmetric about
the origin.

Proof. Since Lemma 2 guarantees that the rotation around the origin
preserves the shape of a figure, we can rotate the ellipse to place F1 and
F2 on the axis. Without loss of generality, let the coordinates of two foci
be F1(f, 0) and F2(f, π). Let P (r, θ) be an arbitrary point on the ellipse.
Then, dPT (P, F1) + dPT (P, F2) = 2a holds, where a is a given constant.
Since the figure is an ellipse, we have a ≥ f by using the definition of
the distance function.

Without loss of generality, we only consider P (r, θ) with 0 ≤ θ ≤ π
2
.

Since the polar taxicab distance between two points depends on the
difference of their arguments, we should divide it into the following cases:
1) 0 ≤ θ ≤ π − 2 and 2) π − 2 < θ < π

2
.

Case 1) 0 ≤ θ ≤ π − 2
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If r ≤ f , then we obtain rθ = 2(a− f) by the definition of the ellipse
in polar taxicab geometry. r ≤ f leads to 2(a − f) ≤ f(π − 2). Hence,
a ≤ π

2
. This implies that if a ≤ π

2
f , we cannot find such ellipse. If r > f ,

then we obtain r = 2a−fθ
2

. The inequality r > f implies θ < 2a
f
− 2. The

fact that a ≥ f leads us to find P on r > f and θ < 2a
f
− 2.

Case 2) π − 2 < θ < π
2

If r ≤ f , then a ≤ π
2
f is similarly obtained. If r > f , then we get

a > π
2
f in the same way.

From our discussion, we conclude that only a and f can change the
shape of the figure. We also conclude that the ellipse in polar taxicab
geometry can have only two shapes. Namely, the shape is Figure 1(a) if
f ≤ a ≤ π

2
f , and Figure 1(b) if π

2
f < a.

If a is smaller than π
2
f , then the shape of the ellipse is Figure 1(a).

As a increases, the shape gradually changes from Figure 1(a) to Figure
1(b). If a grows larger than π

2
f , then the shape of the ellipse is Figure

1(b), and the scale becomes larger.
Next, hyperbola will be examined. A hyperbola in a plane with polar

taxicab distance is also defined analogously as it is defined in Euclidean
geometry. It is defined as follows.

Definition 5. A hyperbola in polar taxicab geometry is the set of
all points in a plane, the difference of whose polar taxicab distances from
the two fixed points is a given positive constant.

If the two foci are symmetric about the origin, then the shape of the
hyperbola in a polar taxicab plane is determined by the ratio of the
length of the major axis and the polar taxicab distance between the
origin and the focus. This can be summarized as the following theorem.

Theorem 6. In polar taxicab geometry, a hyperbola can have only
two shapes as seen in Figure 2 if the two foci F1 and F2 are symmetric
about the origin.

Proof. Using the discussion in Theorem 4, we can assume that the
coordinates of F1 and F2 are (f, 0) and (f, π), respectively. Let P (r, θ)
be a point and |dPT (P, F1) − dPT (P, F2)| = 2a, where a is a constant.
Since the figure is a hyperbola, we have a ≤ f by using the definition of
the distance function. We divide it into the following cases as in Theorem
4 : 1) 0 ≤ θ ≤ π − 2 and 2) π − 2 < θ < π

2
.
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(a) (b)

Figure 2.

Case 1) 0 ≤ θ ≤ π − 2
If r ≤ f , then we obtain r(2 − θ) = 2a by the definition of the

hyperbola in polar taxicab geometry. r ≤ f leads to θ ≤ 2− 2a
f

. Therefore,

we can find P on r ≤ f and θ ≤ 2− 2a
f

. If r > f , then we conclude that(
2− π

2

)
f ≤ a ≤ f in the same way.

Case 2) π − 2 < θ < π
2

If r ≤ f , then we obtain r|π − 2θ| = 2a. Because of the fact that
2a ≤ f |π − 2θ| and π − 2 < θ ≤ π

2
, we cannot find such hyperbola if

a ≥
(
2− π

2

)
f . If r > f , then we obtain θ = π

2
± a

f
. Since π− 2 < θ ≤ π

2
,

we conclude that a <
(
2− π

2

)
f .

From our discussion, we conclude that only a and f can change the
shape of the figure. We also conclude that the hyperbola in polar taxicab
geometry can have only two shapes. Namely, the shape is Figure 2(a) if
a <

(
2− π

2

)
f , and Figure 2(b) if

(
2− π

2

)
f ≤ a ≤ f .

If a is smaller than
(
2− π

2

)
f , then the shape of the hyperbola is

Figure 2(a). As a increases, the shape gradually changes from Figure
2(a) to Figure 2(b). If a grows larger than

(
2− π

2

)
f , then the shape of

the hyperbola is Figure 2(b), and the scale becomes larger.
Next, Apollonius circle will be examined. An Apollonius circle in a

plane with polar taxicab distance is also defined analogously as it is
defined in Euclidean geometry. It is defined as follows.

Definition 7. An Apollonius circle in polar taxicab geometry is the
set of all points in a plane, the ratio of whose polar taxicab distances
from two fixed points is a given positive constant.
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If the two foci are symmetric about the origin, then the shape of
the an Apollonius circle in a polar taxicab plane is determined by the
constant. This can be summarized as the following theorem.

Theorem 8. In polar taxicab geometry, an Apollonius circle can
have only two shapes as seen in Figure 3 if the two foci F1 and F2 are
symmetric about the origin.

(a) (b)

Figure 3.

Proof. Using the discussion in Theorem 4, we can assume that the
coordinates of F1 and F2 are (f, 0) and (f, π), respectively. Let P (r, θ)
be a point and dPT (P, F1) = kdPT (P, F2), where k is a constant. If
0 < k < 1, then k′dPT (P, F1) = dPT (P, F2), and k′ > 1 holds for k′ = 1

k
.

Therefore, we assume k > 1 without loss of generality. Also, we only
consider P (r, θ) with 0 ≤ θ ≤ π without loss of generality. Since the polar
taxicab distance between two points depends on the difference of their
arguments, we should divide it into the following cases: 1) 0 ≤ θ ≤ π−2,
2) π − 2 < θ < 2, and 3) 2 ≤ θ ≤ π.
Case 1) 0 ≤ θ ≤ π − 2

If 0 ≤ r ≤ f , then we obtain rθ = (k−1)f+(k+1)r by the definition
of the Apollonius circle in polar taxicab geometry. 0 ≤ θ ≤ π − 2 leads
to two inequalities, (1−k)f ≤ (k+1)r and (k−1)f ≤ r(π−3−k). Since
0 < (k− 1)f and r(π− 3− k) < r(π− 4) < 0 lead us to a contradiction,
we cannot find such part of Apollonius circle. If r > f , then it is also
proved similarly that we cannot find such part of Apollonius circle.
Case 2) π − 2 < θ < 2

If 0 ≤ r ≤ f , then we obtain (k−1)f = r{(k+1)θ−1−k(π−1)}. Since
k > 1, θ satisfies θ > kπ−k+1

k+1
. Meanwhile, π − 2 < θ leads to k < 1

π−3 .
The inequality 0 < (k+ 1)θ−1−k(π−1) < 1− (π−3)k holds as θ < 2.
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Hence, k−1
1−(π−3)kf < r. At the time, r ≤ f leads to k < 2

π−2 . If r > f ,

then we obtain fθ(k + 1) = (k − 1)r + f(kπ − k + 1). The inequality
π−2 < θ < 2 is equivalent to f(−k+π−3) < (k−1)r < f(−kπ+3k+1),
and k > 1 guarantees f(−k + π − 3) < (k − 1)r. Hence, we can find P

on r < (3−π)k+1
k−1 f . At the time, r > f leads to k < 2

π−2 .

Case 3) 2 ≤ θ ≤ π
If 0 ≤ r ≤ f , then we obtain r{1 − k(π − θ − 1)} = (k − 1)f . Since

k > 1, we can find P on θ > π − 1− 1
k
. Using the inequality 0 ≤ r ≤ f ,

we conclude that P can be found on 0 ≤ r ≤ f and θ ≥ π− 2
k
. If r > f ,

then we obtain (k − 1)r = {1 − k(π − θ − 1)}f . Using the inequalities
k > 1 and r > f , we conclude that θ > π − 1− 1

k
and θ > π − 2

k
.

From our discussion, we conclude that only k can change the shape
of the figure. We also conclude that Apollonius circle in polar taxicab
geometry can have only two shapes. Namely, the shape is Figure 3(a) if
k < 2

π−2 , and Figure 3(b) if 2
π−2 ≤ k.

If k is smaller than 2
π−2 , then the shape of the Apollonius circle is

Figure 3(a). As k increases, the shape gradually changes from Figure
3(a) to Figure 3(b). If k grows larger than 2

π−2 , then the shape of the
Apollonius circle is Figure 3(b), and the scale becomes larger.

For the final subject of this section, lemniscate will be examined. A
lemniscate in a polar taxicab plane is also defined analogously as it is
defined in Euclidean geometry. It is defined as follows.

Definition 9. A lemniscate in polar taxicab geometry is a set of all
points in the plane, the product of whose polar taxicab distances from
two fixed points is a given positive constant.

If the two foci are symmetric about the origin, then the shape of the
lemniscate in a polar taxicab plane is determined by the ratio of the
constant and the square of the polar taxicab distance between the origin
and the focus. This can be summarized as the following theorem.

Theorem 10. In polar taxicab geometry, a lemniscate can have only
four shapes as seen in Figure 4 if the two foci F1 and F2 are symmetric
about the origin.

Proof. Using the discussion in Theorem 4, we can assume that the
coordinates of F1 and F2 are (f, 0) and (f, π), respectively. Let P (r, θ)
be a point and dPT (P, F1)×dPT (P, F2) = k, where k is a given constant.
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(a) (b)

(c) (d)

Figure 4.

We also divide the cases as we did in Theorem 4: 1) 0 ≤ θ ≤ π − 2 and
2) π − 2 < θ < π

2
.

Case 1) 0 ≤ θ ≤ π − 2
If 0 ≤ r ≤ f , then we obtain r(r+ f)θ = k− f 2 + r2 by the definition

of the lemniscate in polar taxicab geometry. 0 ≤ θ ≤ π − 2 implies
two inequalities f 2 − k ≤ r2 and (π − 3)r2 + f(π − 2)r + f 2 − k ≥ 0.

Since
√
f 2 − k ≤ r ≤ f , we conclude that k ≤ (2π − 4)f 2 by using the

properties of quadratic functions. If r > f , we can similarly conclude
that k ≤ (2π − 4)f 2.
Case 2) π − 2 < θ < π

2

If 0 ≤ r ≤ f , let φ = π
2
− θ, where 0 ≤ φ ≤ 2 − π

2
. The definition

of φ and 0 ≤ φ ≤ 2 − π
2

lead to
{
r
(
π
2
− 1
)

+ f
}2 − k = φ2r2, and

(r + f){(π − 3)r + f} ≤ k ≤
{
r
(
π
2
− 1
)

+ f
}2

, respectively. In the

same way as we did, we get f 2 ≤ k ≤ π2

4
f 2. If r > f , let d = r − f

and φ = π
2
− θ, where d ≥ 0 and 0 ≤ φ ≤ 2 − π

2
. The definition

of φ and 0 ≤ φ ≤ 2 − π
2

lead to d2 + πfd + π2

4
f 2 − k = φ2f 2, and

d2 + πfd+ (−k − 4f 2 + 2πf 2) ≤ 0 ≤ d2 + πfd+ π2

4
f 2 − k, respectively.

In the same way as we did, we get (2π − 4)f 2 ≤ k.
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From our discussion, we conclude that only k and f can change the
shape of the figure. We also conclude that the lemniscate in polar taxicab
geometry can have only four shapes. Namely, the shape is Figure 4(a) if
0 ≤ k ≤ f 2, Figure 4(b) if f 2 ≤ k ≤ (2π−4)2, Figure 4(c) if (2π−4)f 2 ≤
k ≤ π2f2

4
, and Figure 4(d) if π2f2

4
≤ k.

If k is smaller than f 2, then the shape of the lemniscate is Figure
4(a). As k increases, the shape gradually changes from Figure 4(a) to
Figure 4(b), then Figure 4(c), and eventually Figure 4(d). If k grows

larger than π2f2

4
, then the shape of the lemniscate is Figure 4(d), and

the scale becomes larger.

3. Generalized Eccentricity in Polar Taxicab Geometry

Let A and B denote a point, a line, or a circle, respectively, in the plane.
For a positive constant k, CAB(k) is a locus of points P whose distances
from A and B are, respectively, in a constant ratio k. In [4], equivalent
conditions for conic sections in Euclidean geometry were studied. Now,
we consider CAB(k) on polar taxicab plane.

Let us define polar taxicab distance between a point and a circle
whose center is the origin. The circumstances in which the polar taxicab
distance from a point to the points on the circle becomes minimal are
stated in the following theorem.

Theorem 11. For a fixed point X(x, α) and a point Q(R, φ) on the
circle whose center is the origin, dPT (X,Q) has the minimum value at
φ = α.

Proof. It is clear that dPT (X,Q) ≥ |x− R|, and equality holds when
φ = α. Therefore, dPT (X,Q) has the minimum value when φ = α.

Referring to Theorem 11, we can find out the polar taxicab distance
between a point and a circle centered at the origin.

Corollary 12. For a point P (r, θ) and a circle Γ whose center is
the origin and radius is R, the polar taxicab distance between P and Γ
is dPT (Γ, P ) = |R− r|.

Now, CAB(k) will be examined, where A is a point, and B is a circle
whose center is the origin.
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Theorem 13. Let a point and a circle whose center is the origin are
given. The locus of the point whose ratio of polar taxicab distances to
the given point and the given circle, respectively, is constant can have
only four shapes as seen in Figure 5.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.
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Proof. Let A and B denote a given point and a circle, respectively.
Let P (r, θ) be a point on CAB(k) = {P | dPT (A,P ) = kdPT (B,P )}. Us-
ing the discussion in Theorem 4, we can assume that the coordinate of
A is (f, 0). Let the radius of B be R, where f > R. Since the polar
taxicab distance between two points depends on the difference of their
arguments, we should divide it into the following cases: 1) 0 ≤ θ ≤ 2
and 2) 2 ≤ θ ≤ π.
Case 1) 0 ≤ θ ≤ 2

If r ≤ R, then we obtain r(θ + k = 1) = kR − f by the definition of
CAB(k). If kR− f < 0, then we can find P on θ < 1− k. Hence, k < 1.
In this case, r ≤ R leads to θ ≤ 1 − f

R
, which is a contradiction since

θ ≥ 0. Therefore, we cannot find such part of CAB(k). If kR − f ≥ 0,
then k ≥ f

R
≥ 1. If R < r < f , then we obtain r(k + 1 − θ) = kR + f ,

and we can find P on θ < k + 1. It is easily shown that P is found

on R < r < f and 1 − f
R
< θ <

(
1− R

f

)
k. If f ≤ r, then we obtain

r(k − 1)− fθ = kR − f . If k < 1, it is easily shown that P is found on

f ≤ r and θ ≤ k
(

1− R
f

)
. If k ≥ 1, then f ≤ r leads to k

(
1− R

f

)
≤ θ.

Hence, k ≤ 2f
f−R .

Case 2) 2 ≤ θ ≤ π

If r ≤ R, then we obtain r = kR−f
k+1

, and 0 ≤ r ≤ R implies k ≥ f
R

and
0 ≤ f + R. If R < r, then we obtain (k − 1)r = kR + f , so that k > 1.
Then, we can find P on 2 ≤ θ ≤ π.

From our discussion, we conclude that only k, f and R can change
the shape of the figure. We also conclude that the figure can have only
four shapes. Suppose that f ≤ 3R. Then the shape is Figure 5(a) if
k < 1, Figure 5(b) if 1 ≤ k < f

R
, Figure 5(c) if f

R
≤ k ≤ 2f

f−R , and

Figure 5(d) if 2f
f−R < k. On the contrary, suppose that f > 3R. Then the

shape is Figure 5(e) if k < 1, Figure 5(f) if 1 ≤ k < 2f
f−R , Figure 5(g) if

2f
f−R ≤ k ≤ f

R
, and Figure 5(h) if f

R
< k.

Suppose that f ≤ 3R. If k is smaller than 1, then the shape of CAB(k)
is Figure 5(a). As k increases, the shape gradually changes from Figure
5(a) to Figure 5(b), then Figure 5(c), and eventually Figure 5(d). If
k grows larger than 2f

f−R , then the shape is Figure 5(d), and the scale

becomes larger. On the other hand, suppose that f > 3R. If k is smaller
than 1, then the shape is Figure 5(e). As k increases, the shape gradually
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changes from Figure 5(e) to Figure 5(f), then Figure 5(g), and eventually
Figure 5(h). If k grows larger than f

R
, then the shape is Figure 5(h), and

the scale becomes larger.
Next, the case when A is a point and B is the line θ = π

2
will be

examined. Let us define polar taxicab distance between a point and the
line B. The circumstances that the polar taxicab distance from the point
to the points on the line become minimal are stated in the following
theorem.

Theorem 14. For a fixed point X(x, α)
(
x > 0 , 0 ≤ α ≤ π

2

)
and a

point Q
(
t, π

2

)
on the line θ = π

2
, dPT (X < Q) has the minimum value

at t = 0 if 0 ≤ α ≤ π
2
, and t = x if π

2
− 1 ≤ α ≤ π

2
.

Proof. Let Y
(
y, π

2

)
and Y ′

(
−y, π

2

)
be points on the line θ = π

2
,

where y is a positive number. dPT (X, Y ′) = x + y ≥ y = dPT (X,O)
if α ≥ 2 − π

2
, and dPT (X, Y ′) = |x − y| + min(x, y)

∣∣α + π
2

∣∣ ≥ |x −
y| + min(x, y)

∣∣π
2
− φ
∣∣ = dPT (X, Y ) if α < 2 − π

2
. Thus, Y ′ is not

the point where the polar taxicab distance has the minimum value. If
0 ≤ φ ≤ π

2
−1, we obtain dPT (X,Q) = x−t+t

(
π
2
− φ
)
≥ x = dPT (X,O)

if t ≤ x, and dPT (X,Q) = t − x + x
(
π
2
− φ
)
> x = dPT (X,O) if

t > x. Equality holds when t = 0. If π
2
− 1 ≤ φ ≤ π

2
, then we obtain

dPT (X,Q) = x − t + t
(
π
2
− φ
)
≥ x

(
π
2
− φ
)

if t ≤ x and dPT (X,Q) =

t−x+x
(
π
2
− φ
)
≥ x

(
π
2
− φ
)

if t > x. Equality holds when t = x. Thus,
t = 0 when 0 ≤ α ≤ π

2
− 1 and t = x when π

2
− 1 ≤ α ≤ π

2
in order for

dPT (X,Q) to be minimum.

Referring to Theorem 14, we can find out the polar taxicab distance
between a point and the line θ = π

2
.

Corollary 15. For a point P (r, θ) and the line l: θ = π
2
, polar

taxicab distance between P and l is

dPT (l, P ) =

{
r,

(
0 ≤ θ ≤ π

2
− 1
)
,

r
(
π
2
− θ
) (

π
2
− 1 < θ ≤ π

2

)
.

Now, we study about the case when A is a point and B is the line
θ = π

2
.

Theorem 16. Let the line θ = π
2

and a point on the line θ = 0 be
given. The locus of the point whose ratio of polar taxicab distances to
the given point and the given line, respectively, is constant can have only
four shapes as seen in Figure 6.
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(a) (b)

(c) (d)

Figure 6.

Proof. Let A and B denote the given point and the line θ = π
2
. Let

P (r, θ) be a point on CAB(k) = {P | dPT (A,P ) = kdPT (B,P )}. Using
the discussion in Theorem 4, we can assume that the coordinate of A
is (R, 0). Since the polar taxicab distance from a point to another point
or the line θ = π

2
depends on the arguments of a point or the points,

we should divide it into the following cases: 1) 0 ≤ θ ≤ π
2
− 1, 2)

π
2
− 1 < θ < 2, 3) 2 ≤ θ ≤ π

2
+ 1, and 4) π

2
+ 1 ≤ θ ≤ π.

Case 1) 0 ≤ θ ≤ π
2
− 1

If r ≤ R, then we obtain r(k+1−θ) = R by the definition of CAB(k).
Thus, we can find P on θ ≤ k + 1. Since r ≤ R implies θ ≤ k, we can
find P on r ≤ R and θ ≤ k. If R < r, then we obtain r(1−k) +Rθ = R.
If k < 1, then we can find P on R < r and θ < k. If k ≥ 1, then R < r
implies k < θ, and 1 ≤ k < θ leads us to a contradiction since θ ≤ π

2
−1.

Therefore, we cannot find such part of CAB(k).

Case 2) π
2
− 1 < θ < 2
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If r ≤ R, then we obtain r
{
π
2
k + 1− (k + 1)θ

}
= R. We can find

P on θ < πk+2
2(k+1)

. Since π
2
− 2 < k, there always exists θ such that

θ < πk+2
2(k+1)

. Meanwhile, r ≤ R leads to θ ≤ π
2(k+1)

. Since π
2

= 1 < θ, we

obtain π
2
− 1 < k. If R < r, then we obtain r

(
1− π

2
k + kθ

)
+ Rθ = R.

When θ ≤ π
2
− 1

k
, we can say that 1 < k. The inequality R < r leads to

πk
2(k−1) < θ. Hence, 4

4−π < k. When θ ≥ π
2
− 1

k
, the inequality R < r leads

to θ < πk
2(k+1)

. It is proved similarly that π
2
− 1 < k.

Case 3) 2 ≤ θ ≤ π
2

+ 1

We obtain r
(
kθ − π

2
k − 1

)
= R, and P is found on θ > π

2
+ 1

k
. There-

fore, k > 1.
Case 4) π

2
+ 1 ≤ θ ≤ π

We obtain (k − 1)r = R. Therefore, k > 1.
From our discussion, we conclude that only k can change the shape of

the figure. We also conclude that the figure can have only four shapes.
Namely, the shape is Figure 6(a) if k ≤ π

2
−1, Figure 6(b) if π

2
−1 < k ≤ 1,

Figure 6(c) if 1 < k < 4
4−π , and Figure 6(d) if 4

4−π < k.

If k is smaller than π
2
− 1, then the shape of the ellipse is Figure 6(a).

As k increases, the shape gradually changes from Figure 6(a) to Figure
6(b), then Figure 6(c), and eventually Figure 6(d). If k grows larger than
4

4−π , then the shape of the ellipse is Figure 6(d), and the scale becomes
larger.
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