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LINEARLIZATION OF GENERALIZED FIBONACCI
SEQUENCES

YouNG Ho JANG AND SANG Pyo Jun'

ABSTRACT. In this paper, we give linearization of generalized Fi-
bonacci sequences {g,} and {g¢,}, respectively, defined by Eq.(5)
and Eq.(6) below and use this result to give the matrix form of the
nth power of a companion matrix of {g,} and {¢,}, respectively.
Then we re-prove the Cassini’s identity for {g,} and {g.}, respec-
tively.

1. Introduction

Let Q = } (1)

{fn} defined by the second-order linear recurrence relation
fO =0, fl =1, fn = fn—l +fn—2 (’I’L > 2)

Then, by an inductive argument ([10], [7], [8]), the nth power Q™ has
the matrix form

) =5 ) wz

be a companion matrix of the Fibonacci sequence
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This property provides an alternate proof of the Cassini’s identity for

{fn}
fnflfn+1 - fr% - (_1)n (n > 1)

Now, let’s think of the other access method in order to give the matrix
form Eq.(1) of @™. This method give the motivation of our research.
That is, our research is based on the following observation: It is well
known [5] that the usual Fibonacci numbers can be expressed using

Binet’s formula

1 [(1ev5)" [(1-v5\| a"-p

V5 2 2  a—-B"
where «, 3 are the roots of the quadratic equation z?> —z — 1 = 0 and
a > (. From the Binet’s formula Eq.(2), we have for any integer n > 1

B an _Bn 6(0&”71 - ﬁnfl) B Oénil((l/ o /3) R
(3) fn Bfnfl— Oé—ﬁ Oz—ﬁ - Oé—ﬂ =« .
Multipling Eq.(3) by «, using af = —1, and if we change a and [ role
above process, we obtain the linearization of {f,}

a = fna+fn—1a
Bn = fnﬁ + fnfl'

In Eq.(4), if we change «, 5 into the companion matrix () and change
fn_1 into the matrix f,_1I, where I is the 2 x 2 identity matrix, then
we obtain the matrix form Eq.(1) of Q"

n __ _ fn 1 fn
@ =rQ+hoat (= (5 ).

The Fibonacci sequence has been generalized in many ways, for ex-
ample, by changing the recurrence relation while preserving the initial
terms, by altering the initial terms but maintaining the recurrence rela-
tion, by combining of these two techniques, and so on (for more details
see [2,3, 4,7, 11]).

In this paper, we consider two types of generalized Fibonacci se-
quences which are basically different. One is the sequence {g,} de-
fined by Gupta et al. [4] depending on four positive integer parameters
9o, g1, @ and b used in the secon-order linear recurrence relation:

(5) gn = Qfn—1 + bgn—Q (n > 2)

(2) fn =

(4) Linearization of {f,} : {
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Another is the sequence {g,} defined by Edson et al. [2] depending on
two positive integer parameters a and b used in the secon-order non-
linear recurrence relation:

aqn—1 + Gn_o, if n is even
pu— pr— = . . >
© =0 a =1 g = i T RO (2
In this paper, as mentioned above, we provide linearlization of {g,}
and {g,}, respectively, and use this result to give the matrix form of the
nth power of a companion matrix of {g,} and {¢,}, repectively. Then
we re-prove the Cassini’s identity for {g,} and {g,}, respectively.

2. Linearlization of the generalized Fibonacci sequences {g,}

Many number theory texts(see for example, Niven and Zuckermann
[9]) prove that the analogous Binet’s formula for the generalized Fi-
bonacci sequence {g,} defined by Eq.(5) is

(7) (= B)gn = q1(a" = B") + go(ap™ — Ba"),

where «a, 8 are the roots of the quadratic equation z?> —ax — b = 0
provided a? + 4b # 0.
In [12], using an inductive argument, authors give the matrix form of

the nth power of a companion matrix M = (CIL 8) of {g.}
) A (92 91) _ (gn+2 9n+1) |
gi 9o In+1 Gn

And then give the Cassini’s identity for {g, } by taking determinant both
sides of the matrix form Eq.(8)

(9) GnGn+2 — Gor1 = (=b)" (9092 — 91)-

In this subsection, we give the linealization of {g,} and then use this
result to obtain the matrix form Eq.(8).

THEOREM 2.1. Let {g,}, o and 8 be as above. Then we have for all
integer n > 1

. . . a” a+b = gny10¢ + b ns
10 mearkation of (5.} { G105 L) Z0s e
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Proof. Using the Binet’s formula Eq.(7), we have

(= B)gns1 — Bla = B)gn
— g1(oz"+1 _ Bn-i—l) +§]0(04ﬁn+1 _ Ban—&-l)
—giB(@" = ") = go(ap™! — 5*a")
= qa"(a = f) = gofa" (o = B).

Since a # 3, we get

(11) In+1 — Bgn = 1" — gofa”.

Multiplying Eq.(11) by « and using a5 = —b, we have
Gnt1 + bgn = 1™ + bgoa™ = o (grar + bgo).

If we change a and 3 role above process, we obtain the desired result
Eq.(10). O

We can re-prove equations Eq.(8) and Eq.(9) by using the linearliza-
tion Eq.(10) of {g,}.

COROLLARY 2.2. Let M = be a companion matrix of {g,}.

a
10
Then the matrix form of the nth power M" is given by Eq.(8) and the
Cassini’s identity for {g,} is given by Eq.(9).

Proof. In Eq.(10), if we change «, § into the matrix M and change
bg, into the matrix bg, I, then we have

(12) M"(g1M +bgol) = gnt1M + bgnl.

In fact, Eq.(12) holds for the following reason: Since

M( Gn ) _ (gn+1) and M <g1) _ <9n+1) |
gn—1 dn 90 dn
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we have

M™(giM + bgol) (j;)

— MnJrl gl> —|—b Mn <gl> — (gn+2) +b (gn+1)
& (90 g0 90) " I \gurr) TN g

— gy ("9 + bgn Fbg (91 = bg19n + (ag1 + bgo)gn+1
Gnt1 9n bgogn + 919n+1

bg1Gn + G20n+1 92 g
p— p— n b n
<bgogn+glgn+1 It g, ) TP9m \ g
= gppM (gl) + bgn (gl) = (gn+1 M + bg, 1) (gl) :
9o 90 90

Thus from Eq.(12) we have

g1 bgo
nfg2 g1\ (1 O
=M
(91 90) (0 b)’

agn+1 + bgn bgn+1) (gn+2 bgnJrl)
wir M+ bg, I = =
ot g ( Gnt1 bgn Gns1 bgn

_ In+2 Gn+1 1 0
In+1 9n 0 b))

(1) 2 is invertible, we obtain the desired result
Eq.(8) and by taking determinant both sides of the matrix form Eq.(8)
we obtain the desired result Eq.(9). O

Since the matrix

3. Linearlization of the generalized Fibonacci sequences {¢,}
Edson et al. [2] give the generating function for the generalized Fi-
bonacci sequence {g,} defined by Eq.(6)

 z(l+ax—2?)
~1—(ab+2)22 + 2*
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and then give the extended Binet’s formula by using the generating
function F(x)

1—§(n) a” — Bn
(13) n = n—=£&(n ’
(ab) EECTRY RN
where o, 3 are the roots of the quadratic equation x? — abx — ab = 0
provided a?b? + 4ab # 0 and

0 if n is even,
(1) cw={ ] nho

is the parity function. Also, using the extended Binet’s formula Eq.(13),
give the Cassini’s identity:

(15) QIEREM G EpEm g2 g q)n,

In this subsection, we give the linealization of {¢,} and then use this
result to obtain the matrix form of the nth power of a companion matrix

of {q.}.

THEOREM 3.1. Let {q,}, o, 8 and {(n) be as above. Then we have
for all integer n > 1

(16)
o 1 ndEm) bm b
Linearization of {¢,} : - an+§( ) Cy I ta q" b
A =ata" 2 —— 5 qnﬁJra 5 b 1.

Proof. Since Eq.(16) holds for n = 1, let n > 2. Using the extended
Binet’s formula Eq.(13), we have
62

gn — E%—z

_ a[lfg(n) o — ﬁn /82 alfﬁ(an) an*2 _ /BTLfZ
(@)= a8 ab (@)= ) a8




Linearlization of generalized Fibonacci sequences 449

Since £(n) = €&(n —2) and a+ B = ab, we get
52 B al—f(n)

(17) n — %C]nﬁ = W@

Multiplying Eq.(17) by 2 — o +1 and using aff = —ab, we have

ab
al_g(n) n
G0+ (Gn — Gn—2) = ———gy "
(ab)
From the definitions Eq.(6) and Eq.(14), we have ¢, — ¢,_2
= a'€MpEMg. . Thus we have
al_g(n)

—a"
(ab) n—g(n)
Also, if we change o and [ role above process, we obtain the desired
result Eq.(16). O

Remark. For some positive integer k, if a = b = k, then {¢,} is the
k-Fibonacci sequence {fi,} (for more details see [1]). In this case, let

Q= <11f (1)) be a companion matrix of {fx,} and

¢ = %(k+\/k2+4), o= %(k— Vk?+4)

be the roots of the quadratic equation 22 —kx—1 = 0 provided k?+4 # 0.
Then

1 1
o=k + VE +417) = k¢, B =S(k - VIS + 4k2) = ko,

1 ntin)  n—t(n) _ n—g(n) | n+é(n)
ala 2 b2 =K' a2 b 2 =k"

Thus we have

(k)" = k" finkd + K fin 1,
Ea.(16) < { (k)" = ki K .

N " = fen® + frn—1,
Qpn - fk,nSO + fk,n—l-

and if we change ¢, ¢ into the matrix () and change f ,,—1 into the matrix
fren—11, then the matrix form of the nth power Q" is given by

Q" = fkn@Q + fom—1l = (f/}::1 f{’:l) (see [6], page 2)
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and we obtain the Cassini’s identity for { f.,}
Jrn—1fent1 — f,f,n = (=1)" (see [1], Proposition 3).

LEMMA 3.2. Let M = C;b 8) be a companion matrix of the gener-
alized Fibonacci sequence {q,} defined by Eq.(6). Then we have for all

integer n > 1,

“8> e () = ()
and
o i (3) = o (%)

Proof. We will use the induction method on n. If n = 1, then

LHS of Eq.(18) - M ((h) _ <ab b) (Ch) _ (b(a% —I-CJO)) _ (bQZ)
do a 0/ \q aqi aqi
= RHS of Eq.(18).
We suppose that Eq.(18) holds for n = 2,3,--- ,m, i.e.,

M2n—1 <q1> — (ab)n—l ( bq2n ) ]
qo0 aqan—1

Now, we show that Eq.(18) holds for n = m + 1. By assumption, we
have

e (§) = o (4o (G
do do ag2m—1
= () (7 0) ()
(e (1 ) (b
o (2 ) ()
(e ) ()

= (ab)™ (b(aCIzmH + (J2m))

aq2m+1
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= (ab)™ <qum+2> )
aqom+1
Next, using Eq.(18) we obtain Eq.(19) as follows:
MZTL q1 - M M2n—1 q1 - M (ab)n—l bq2n
do qo0 aqon—1
B no1 [ab b bqon
= (ab) (a 0) (CLQ2n—1

— (ab)n—l (a62QQn + abCJ2n—1)

&ban
— (ab)n bq2n+q2n71
Qon
n [ 92n+1
= b :
(a ) ( q2n )
O]
THEOREM 3.3. Let M = C;b 8 be a companion matrix of the

generalized Fibonacci sequence {q,} defined by Eq.(6). For all integer
n > 1, the matrix form of the nth power M™ is given by

M2l — (ab)n—l ( bqan bQ2n1)

aqon—1 bgan—2

(20)
M2n — (ab)nflb (aq2n+1 bq2n ) ]

aqon  A42p—1
Proof. From Eq.(16) we have
a2n—1 = (ab)n_l((hn—la + bq2n—2)7
ﬁ2n—1 = (ab)n_l(anflﬁ + bq2n72)7
)

and OéQn = (ab>n_1b<q2na + agan—1),
6271 = (@b)n_lb(%nﬂ + CLQ2n71)-

In Eq.(21), if we change «, 8 into the matrix M and change bqa,, 2, aga, 1
into the matrix bgs, oI, aqo,_11, then we have

(22) M2n71 = (ab)nil(QQn—lM + qun—QI)v
M2n = (ab)”_lb(qan + (ICJ2n—1I)-

(21)
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In fact, Eq.(22) holds for the following reason: using Eq.(18) and Eq.(19)

in Lemma 3.2,
M2n71 q1 — (ab)nfl bq2n
qo0 aqon—1

(ab)"(gan—1 M + bgan_»I) (ch)>

_ (ab)nfl (abQ2n1 + bgan—2 bQ2n1) (fh)

aqon—1 bgan—2 do

and

(ab) _1 (abgan—1 + bgan—2
aqon—1
_ (ab)n—l b(agan—1 + qan—2)
aqon—1
v (

bQZn
aqon—1)
M?n q1) — (ab)n <q2n+1)
do Qon,

(ab)”_lb((pnM + GQ2n—1]) <g(1))

— (ab)n—lb (abq2n + ag2n—1 bq2n > <q1>

aqan aqan—1 qo0

— (&b)n_lb (abq2n + aq2n2>
aqaon,

— (ab)" b (a(bQ2n + 92n1))

aqgon

= (ab)" b (a%“)

aqon

= (ab)" (‘IZ’;) .

Similarly,

and
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Thus from Eq.(22) we obtain the desired result Eq.(20) as follows:
M = (ab)" N gan1 M + bgan—T)

= (ab)™! <q2n_1 (C;b 8)+qun—2 ((1) (1)>>

o (ab)n—l b(aq2n—1 + q2n—2) bq2n—1
agon—1 bon—2

aqon—1 bgan—2
and

M = (ab)" 'b(g2n M + agap—11)

= (ab)"b (qzn (C;b 8) g (é (1)))

— (ab)”*lb <a(bq2n + q2n—1) bq2n )

aqgon aqan—1

— (ab)"‘lb (GCI2n+1 bq2n ) )

aqan ag2n—1

]

Remark. By taking determinant both sides of the matrix form Eq.(20)
in Theorem 3.3, we have

2n—1
b b n— bgan  bgon—
(C; O) - ‘(ab> ! < 2 72 1) ’ & —a = bq2n—2q2n_aq§nfl

agon—1 bgan—2
and

ab b\
a 0
that is, using the parity function £(n) defined by Eq.(14), we obtain the

Cassini’s identity Eq.(15) for {¢,}
QIR o E =S 2 (),

1, (a b
(ab)n 1b < 327:'1 anQn’l) ’ & a = aqap—-192n+1 — bqgn’
n n—
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