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HAMILTONIAN SYSTEM WITH THE

SUPERQUADRATIC NONLINEARITY AND THE LIMIT

RELATIVE CATEGORY THEORY

Tacksun Jung∗ and Q-Heung Choi†

Abstract. We investigate the number of the weak periodic solu-
tions for the bifurcation problem of the Hamiltonian system with the
superquadratic nonlinearity. We get one theorem which shows the
existence of at least two weak periodic solutions for this system. We
obtain this result by using variational method, critical point theory
induced from the limit relative category theory.

1. Introduction

LetG(t, z(t)) be a C2 function defined onR1×R2n which is 2π−periodic
with respect to the first variable t and λ ∈ R. In this paper we inves-
tigate the multiplicity of the 2π-periodic solutions for the bifurcation
problem of the following Hamiltonian system

˙p(t) = −λq(t)−Gq(t, p(t), q(t)), (1.1)
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˙q(t) = λp(t) +Gp(t, p(t), q(t)),

where p, q ∈ Rn. Let z = (p, q) and J be the standard symplectic
structure on R2n, i. e.,

J =

(
0 −In
In 0

)
,

where In is the n× n identity matrix. Then (1.1) can be rewritten as

−Jż = λz +Gz(t, z(t)), (1.2)

where ż = dz
dt

and Gz is the gradient of G. We assume that G ∈ C2(R1×
R2n, R1) satisfies the following conditions:
(G1) G ∈ C2(R1 ×R2n, R), G(0, θ) = 0, where θ = (0, · · · , 0).
(G2) There exist 1 < p1 ≤ p2 < 2p1 + 1, α1 > 0, α2 > 0, β1 ≥ 0 such
that

α1‖z(t)‖R2n
p1+1−β1 ≤ G(t, z(t)) ≤ α2‖z(t)‖R2n

p2+1, for every z ∈ R2n.

(G3) G is 2π−periodic function with respect to t.
Several authors ([1], [5], [6], [7] etc.) studied the nonlinear Hamilton-

ian system. Jung and Choi ([5], [6], [7]) considered (1.1) with nonsingular
potential nonlinearity or jumping nonlinearity crossing one eigenvalue,
or two eigenvalues, or several eigenvalues. Chang ([1]) proved that (1.1)
has at least two nontrivial 2π−periodic weak solutions under some as-
ymptotic nonlinearity. Jung and Choi ([5]) proved that (1.1) has at least
m weak solutions, which are geometrically distinct and nonconstant un-
der some jumping nonlinearity.

We are looking for the weak solutions of (1.1) under the conditions
(G1)-(G3). The 2π-periodic weak solution z = (p, q) ∈ E of (1.1) satis-
fies ∫ 2π

0

(ż − λz(t)− JGz(t, z(t))) · Jwdt = 0 for all w ∈ E,

i.e.,∫ 2π

0

[(ṗ+ λq(t) +Gq(t, z(t))) · ψ − (q̇ − λp(t)−Gp(t, z(t))) · φ]dt = 0

for all ζ = (φ, ψ) ∈ E,

where E is introduced in section 2.
Our main result is as follows:
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Theorem 1.1. Assume that G satisfies the conditions (G1)−(G3),
and that j0, j1 are negative integers with j1 < j0 < 0. Then there exists
a small number δ > 0 such that for any λ with j1− δ < λ < j1 < j0 < 0,
system (1.1) has at least two nontrivial 2π-periodic solutions.

The outline of the proof of Theorem 1.1 is as follows: In section
2, we introduce the perturbed operator Aε = εI + A of the operator
A (A(z(t)) = −Jż(t)) because of the lack of the compactness of the
operator A−1, approach the variational method, obtain some results on
the corresponding functional of the perturbed problem Aε(z) = λz+εz+
Gz(t, z(t)) of (1.1) and recall the critical point theory induced from the
limit relative category, which plays a crucial role to prove the multiplicity
result. In section 3, we prove Theorem 1.1 by the critical point theory
induced from the limit relative category.

2. Variational Formulation

Let L2([0, 2π], R2n) denote the set of 2n-tuples of the square integrable
2π−periodic functions and choose z ∈ L2([0, 2π], R2n). Then it has a

Fourier expansion z(t) =
∑k=+∞

k=−∞ ake
ikt, with ak = 1

2π

∫ 2π

0
z(t)e−iktdt ∈

C2n, a−k = āk and
∑

k∈Z |ak|2 <∞. Let

A : z(t) 7→ −Jż(t)

with domain

D(A) = {z(t) ∈ H1([0, 2π], R2n)| z(0) = z(2π)}
= {z(t) ∈ L2([0, 2π], R2n)|

∑
k∈Z

(ε+ |k|)2|ak|2 < +∞},

where ε is a positive small number. Then A is self-adjoint operator. Let
{Mλ} be the spectral resolution of A, and let τ be a positive number
such that τ /∈ σ(A) and [−τ, τ ] contains only one element 0 of σ(A). Let

P0 =

∫ τ

−τ
dMλ, P+ =

∫ +∞

τ

dMλ, P− =

∫ −τ
−∞

dMλ,

P(−∞,j1−1] =

∫ j1−1

−∞
dMλ, P[j1,j0] =

∫ j0

j1

dMλ.

Let

L0 = P0L
2([0, 2π], R2n), L+ = P+L

2([0, 2π], R2n), L− = P−L
2([0, 2π], R2n),
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L(−∞,j1−1] = P(−∞,j1−1]L
2([0, 2π], R2n), L[j1,j0] = P[j1,j0]L

2([0, 2π], R2n).

For each u ∈ L2([0, 2π], R2n), we have the composition

u = u0 + u+ + u−,

where u0 ∈ L0, u+ ∈ L+, u− ∈ L−. According to A, there exists a small
number ε > 0 such that −ε /∈ σ(A). Let us define the space E as follows:

E = D(|A|
1
2 ) = {z ∈ L2([0, 2π], R2n)|

∑
k∈Z

(ε+ |k|)|ak|2 <∞}

with the scalar product

(z, w)E = ε(z, w)L2 + (|A|
1
2 z, |A|

1
2w)L2

and the norm

‖z‖ = (z, z)
1
2
E = (

∑
k∈Z

(ε+ |k|)|ak|2)
1
2 .

The space E endowed with this norm is a real Hilbert space continuously
embedded in L2([0, 2π], R2n). The scalar product in L2 naturally extends

as the duality pairing between E and E ′ = W− 1
2
,2([0, 2π], R2n). We

note that the operator (ε + |A|)−1 is a compact linear operator from
L2([0, 2π], R2n) to E such that

((ε+ |A|)−1w, z)E =

∫ 2π

0

(w(t), z(t))dt.

Let

Aε = εI + A.

Let

E0 = |Aε|−
1
2L0, E+ = |Aε|−

1
2L+, E− = |Aε|−

1
2L−,

E(−∞,j1−1] = |Aε|−
1
2L(−∞,j1−1], E[j1,j0] = |Aε|−

1
2L[j1,j0].

Then E = E0 ⊕ E+ ⊕ E−, and for z ∈ E, z has the decomposition
z = z0 + z+ + z− ∈ E, where

z0 = |Aε|−
1
2u0, z+ = |Aε|−

1
2u+, z− = |Aε|−

1
2u−. (2.1)

Thus we have

‖z0‖E0 = ‖u0‖L0 , ‖z+‖E+ = ‖u+‖L+ , ‖z−‖E− = ‖u−‖L−
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and that E0, E+, E− are isomorphic to L0, L+, L−, respectively. More-
over E = E(−∞,j1−1] ⊕ E[j1,j2] ⊕ E+. Let us define a functional

f(u) =
1

2
(‖u+‖2

L2 + ‖M+u0‖2
L2 − ‖M−u0‖2

L2 − ‖u−‖2
L2)− ψε(z),

where ψε(z) = ψ(z) + ε
2
‖z‖2

L2 , ψ(z) =
∫ 2π

0
[λ

2
z(t)2 + G(t, z(t))]dt, M+ =∫∞

0
dMλ, M− =

∫ 0

−∞ dMλ. By G ∈ C2, ψ(z) =
∫ 2π

0
[λ

2
z(t)2 +G(t, z(t))] ∈

C2. Let

F (z) = λz(t)+Gz(t, z(t)), Fε(z) = εz+F (z) = εz+λz(t)+Gz(t, z(t)).

Then (1.2) can be rewritten as

Aε(z) = Fε(z). (2.2)

The Euler equation of the functional f(u) is the system

u+ = |Aε|−
1
2P+Fε(z), (2.3)

u− = −|Aε|−
1
2P−Fε(z), (2.4)

M+u0 = |Aε|−
1
2M+P0Fε(z) M−u0 = −|Aε|−

1
2M−P0Fε(z). (2.5)

The system (2.3)-(2.5) is reduced to

Aεz+ = P+Fε(z0 + z+ + z−) or z+ = (Aε)
−1P+Fε(z0 + z+ + z−), (2.6)

Aεz− = P−Fε(z0 + z+ + z−) or z− = (Aε)
−1P−Fε(z0 + z+ + z−), (2.7)

AεM+z0 = M+P0Fε(z0 + z+ + z−), AεM−z0 = M−P0Fε(z0 + z+ + z−),
(2.8)

It follows from (2.3)-(2.8) that z = z0 + z+ + z− is a solution of (1.2) if
and only if u = u0 + u+ + u− is a critical point of f . By (2.1), we define
a functional

I(z) = f(u(z)).

The functional I(z) is of the form

I(z) =
1

2
(‖|Aε|

1
2 z+‖2

L2 + ‖|Aε|
1
2M+z0‖2

L2 − ‖(−|Aε|)
1
2 z−‖2

L2

−‖(−|Aε|)
1
2M−z0‖2

L2)− ψε(z).

Thus it suffices to find the critical points of the functional I to find the
critical points of the functional f . By the following Lemma 2.1, the weak
solutions of (2.2) coincide with the critical points of the functional I(z).
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Lemma 2.1. Assume that G satisfies the conditions (G1) − (G3)
and λ /∈ σ(A), λ < 0. Then I(z) is continuous and Fréchet differentiable
in E with Fréchet derivative

DI(z)w =

∫ 2π

0

(JAεz(t)−(λ+ε)Jz(t)−JGz(t, z(t)))·Jwdt for all w ∈ E,

(2.9)
Moreover DI ∈ C. That is, I ∈ C1.

Proof. First we prove that I(z) =
∫ 2π

0
[1
2
Aεz − ε+λ

2
z2 −G(t, z(t))]dt is

continuous in E. For z, w ∈ E,

|I(z + w)− I(z)|

= |
∫ 2π

0

1

2
Aε(z + w) · (z + w)−

∫ 2π

0

[G(t, z + w) +
ε+ λ

2
(z + w)2]

−
∫ 2π

0

1

2
Aε(z) · z +

∫ 2π

0

[G(t, z) +
ε+ λ

2
z2]

= |
∫ 2π

0

1

2
[Aε(z) · w + Aε(w) · z + Aε(w) · w]

−
∫ 2π

0

[G(t, z + w)−G(t, z) +
ε+ λ

2
(2z · w + w2))]|.

We note that

|
∫ 2π

0

1

2
[Aε(z) · w + Aε(w) · z + Aε(w) · w| = O(‖w‖R2n)

and

|
∫ 2π

0

[G(t, z + w)−G(t, z)]dt| ≤ |
∫ 2π

0

[Gz(t, z(t)) · w +O(‖w‖R2n)]dt|

= O(‖w‖R2n). (2.10)

Thus we have

|I(z + w)− I(z)| = O(‖w‖R2n).
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Next we shall prove that I(z) is Fréchet differentiable in E. For z, w ∈
E,

|I(z + w)− I(z)−DI(z)w|

= |
∫ 2π

0

1

2
Aε(z + w) · (z + w)−

∫ 2π

0

[G(t, z + w) +
ε+ λ

2
(z + w)2]

−
∫ 2π

0

1

2
Aε(z) · z +

∫ 2π

0

[G(t, z) +
ε+ λ

2
z2]

−
∫ 2π

0

JAε(z) · Jw +

∫ 2π

0

[JGz(t, z) · Jw + (ε+ λ)Jz · Jw]|

= |
∫ 2π

0

1

2
[Aε(w) · z + Aε(w) · w]

−
∫ 2π

0

[G(t, z + w)−G(t, z)−Gz(t, z) · w +
ε+ λ

2
w2)]|.

By (2.10), we have∫ 2π

0

[G(t, z + w)−G(t, z)−Gz(t, z)]dt = O(‖w‖R2n).

Thus
|I(z + w)− I(z)−DI(z)w| = O(‖w‖R2n).

Now, we recall the critical point theory on the manifold with bound-
ary. Let E be a Hilbert space and M be the closure of an open subset of
E such that M can be endowed with the structure of C2 manifold with
boundary. Let f : W → R be a C1,1 functional, where W is an open set
containing M . For applying the usual topological methods of the critical
points theory we need a suitable notion of critical point for f on M . We
recall the following notions: lower gradient of f on M , (P.S.)∗c condition
and the limit relative category (see [4]).

Definition 2.1. If z ∈ M , the lower gradient of f on M at z is
defined by

grad−Mf(z) =

{
Df(z) if z ∈ int(M),
Df(z) + [< Df(z), ν(z) >]−ν(z) if z ∈ ∂M , (2.11)

where we denote by ν(z) the unit normal vector to ∂M at the point
z, pointing outwards. We say that z is a lower critical for f on M , if
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grad−Mf(z) = 0.
Since the functional I(z) is strongly indefinite, the notion of the (P.S.)∗c
condition and the limit relative category is a very useful tool for the
proof of the main theorems.
Let (En)n be a sequence of closed subspaces of E with the conditions:

En = En− ⊕ E0 ⊕ En+, where En+ ⊂ E+, En− ⊂ E− for all n, (2.12)

(En+ and En− are subspaces of E),

dimEn < +∞, En ⊂ En+1,∪n∈NEn is dense in E.

Let PEn be the orthogonal projections from E onto En. Mn = M ∩ En,
for any n, be the closure of an open subset of En and has the structure
of a C2 manifold with boundary in En. We assume that for any n there
exists a retraction rn : M → Mn. For given B ⊂ E, we will write
Bn = B ∩ En.

Definition 2.2. Let c ∈ R. We say that f satisfies the (P.S.)∗c
condition with respect to (Mn)n, on the manifold M with boundary, if
for any sequence (kn)n in N and any sequence (un)n in M such that
kn → ∞, un ∈ Mkn , ∀n, f(un) → c, grad−Mkn

f(un) → 0, there exists

a subsequence of (un)n which converges to a point u ∈ M such that
grad−Mf(u) = 0.

Let Y be a closed subspace of M .

Definition 2.3. Let B be a closed subset of M with Y ⊂ B.
We define the relative category catM,Y (B) of B in (M,Y), as the least
integer h such that there exist h + 1 closed subsets U0, U1, . . ., Uh with
the following properties:
B ⊂ U0 ∪ U1 ∪ . . . ∪ Uh;
U1, . . . , Uh are contractible in M ;
Y ⊂ U0 and there exists a continuous map F : U0 × [0, 1] → M such
that

F (x, 0) = x ∀x ∈ U0,

F (x, t) ∈ Y ∀x ∈ Y, ∀t ∈ [0, 1],

F (x, 1) ∈ Y ∀x ∈ U0.

If such an h does not exist, we say that catM,Y (B) = +∞.
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Definition 2.4. Let (X, Y ) be a topological pair and (Xn)n be
a sequence of subsets of X. For any subset B of X we define the limit
relative category of B in (X, Y ), with respect to (Xn)n, by

cat∗(X,Y )(B) = lim sup
n→∞

cat(Xn,Yn)(Bn). (2.13)

Now we consider a theorem which gives an estimate of the number of
critical points of a functional, in terms of the limit relative category of
its sublevels. The theorem is proved repeating the classical arguments,
using the nonsmooth version of the classical Deformation Lemma for
functions on manifolds with boundary.

Let Y be a fixed subset of M . We set

Bi = {B ⊂ M| cat∗
(M,Y)

(B) ≥ i}, (2.14)

ci = inf
B∈Bi

sup
x∈B

f(x). (2.15)

We have the following multiplicity theorem.

Theorem 2.1. Let i ∈ N and assume that
(1) ci < +∞,
(2) supx∈Y f(x) < ci,
(3) the (P.S.)∗ci condition with respect to (Mn)n holds.
Then there exists a lower critical point x such that f(x) = ci. If

ci = ci+1 = . . . = ci+k−1 = c,

then

catM({x ∈M |f(x) = c, grad−Mf(x) = 0}) ≥ k.

Proof. Let c = ci; using the (P.S.)∗c condition, with respect to (Mn)n,
one can prove that, for any neighborhood N of

Kc = {x| f(x) = c, grad−Mf(x) = 0},

there exist n0 in N and δ > 0 such that ‖grad−M‖ ≥ δ for all n ≥ n0 and
all x ∈ En\N with c − δ ≤ f(x) ≤ c + δ. Moreover it is not difficult

to see that, for all n, the function f̃n : En → R ∪ {+∞} defined by

f̃n = f(x), if x ∈Mn, f̃n(x) = +∞, otherwise, is φ-convex of order two,
according to the definitions of [7]. Then the conclusion follows using
the same arguments of [1, 8] and the nonsmooth version of the classical
Deformation Lemma.
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Now we state the following multiplicity result (for the proof see The-
orem 4.6 of [8]) which will be used in the proof of our main theorem.

Theorem 2.2. Let E be a Hilbert space and let E = X1⊕X2⊕X3,
where X1, X2, X3 are three closed subspaces of E with X1, X2 of finite
dimension. For a given subspace X of E, let PX be the orthogonal
projection from E onto X. Set

C = {x ∈ E| ‖PX2x‖ ≥ 1}
and let f : W → R be a C1,1 function defined on a neighborhood W of
C. Let 1 < ρ < R, R1 > 0. We define

∆ = {x1 + x2| x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, 1 ≤ ‖x2‖ ≤ R},
Σ = {x1 + x2| x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, ‖x2‖ = 1}

∪{x1 + x2| x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, ‖x2‖ = R}
∪{x1 + x2| x1 ∈ X1, x2 ∈ X2, ‖x1‖ = R1, 1 ≤ ‖x2‖ ≤ R},

S = {x ∈ X2 ⊕X3| ‖x‖ = ρ},
B = {x ∈ X2 ⊕X3| ‖x‖ ≤ ρ}.

(a) Assume that
sup f(Σ) < inf f(S)

and (b) that the (P.S.)c condition holds for f on C, with respect to the
sequence (Cn)n, ∀c ∈ [α, β], where

α = inf f(S), β = sup f(∆).

(c) Moreover we assume β < +∞ and f |X1⊕X3 has no critical points z
in X1 ⊕X3 with α ≤ f(z) ≤ β.
Then there exist two lower critical points z1, z2 for f on C such that
α ≤ f(zi) ≤ β, i = 1.2.

3. Proof of Theorem 1.1

Throughout this section we assume that G satisfies the conditions
(G1) − (G3), λ /∈ Z and λ < 0. Let I(z) be the functional defined in
section 2, i.e.,

I(z) =
1

2
(‖|Aε|

1
2 z+‖2

L2 + ‖|Aε|
1
2M+z0‖2

L2 − ‖(−|Aε|)
1
2 z−‖2

L2

−‖(−|Aε|)
1
2M−z0‖2

L2)− ψε(z),
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where ψε(z) = ψ(z) + ε
2
‖z‖2

L2 , ψ(z) =
∫ 2π

0
[λ

2
z(t)2 + G(t, z(t))]dt, M+ =∫∞

0
dMλ, M− =

∫ 0

−∞ dMλ.

We shall show that the functional I(z) satisfies the geometric assump-
tions of Theorem 2.2.

Lemma 3.1. ((P.S.)∗ condition)
Assume that G satisfies the conditions (G1) − (G3) and λ /∈ Z. Then
I(z) satisfies the (P.S.)∗γ condition with respect to (En)n, for any γ ∈ R.

Proof. Let (kn)n and (zn)n be two sequences such that kn → +∞,
and for any sequence (zn)n with zn ∈ Ekn ,

I(zn)→ γ

and

DIkn(zn)→ θ,

where Ikn is a restriction of I on Ekn and θ = (0, · · · , 0). It follows from
DIkn(zn)→ 0 that

PEkn
zn − PEkn

A−1
ε ((λ+ ε)zn +Gz(t, zn(t))) −→ θ,

where A−1
ε is a compact operator. We claim that (zn)n is bounded. By

contradiction, we suppose that ‖zn‖ → ∞. If wn = zn
‖zn‖ , we can suppose

that wn ⇀ w0 weakly for some w0 ∈ E. We have

0←− 〈PEkn
wn − A−1

ε PEkn
((λ+ ε)wn +

Gz(t, zn(t))

‖zn‖
), wn〉

= PEkn
〈wn, wn〉 − 〈A−1

ε PEkn
((λ+ ε)wn +

Gz(t, zn(t))

‖zn‖
), wn〉.

Since A−1
ε is a compact operator, (λ+ε)wn is bounded and Gz(t,zn(t))

‖zn‖ → 0,

A−1
ε (PEkn

((λ + ε)wn + Gz(t,zn(t))
‖zn‖ )) converges to A−1

ε ((λ + ε)w0) and we

have

0 = 〈w0, w0〉 − 〈A−1
ε ((λ+ ε)w0), w0〉 = ‖w0‖2 − 〈A−1

ε (λ+ ε))w0, w0〉,

from which w0 is a solution of the equation

Aεw = (λ+ ε)w.

Since λ /∈ σ(A), w0 = 0, which is a contradiction to the fact that ‖w0‖ =
1. Thus (zn)n is bounded. We can suppose that zn ⇀ z0 weakly in E,
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for some z0 in E. We have

〈PEkn
DI(zn), P+zn + P−zn〉 = ‖PEkn

P+zn‖2 − ‖PEkn
P−zn‖2

− PEkn

∫ 2π

0

(λzn(t) + εzn(t) +Gz(t, zn))(P+zn + P−zn)→ 0.

By (G1) and the boundedness of Gz(t, zn) · (P+zn + P−zn),

lim
n→∞

‖PEkn
P+zn‖2 − ‖PEkn

P−zn‖2 =

∫ 2π

0

(λz(t) + εz(t) +Gz(t, z))z,

i.e., ‖PEkn
P+zn‖2−‖PEkn

P−zn‖2 converges strongly, which implies that,
up to a subsequence, PEkn

zn converges strongly to z, and we prove the
lemma and have

DI(z) = lim
n→∞

PEkn
DI(zn) = 0,

so z is the critical point of I.

Let us set

X1 = E(−∞,j1−1], X2 = E[j1,j0], X3 = E+.

Then E is the topological direct sum of the subspaces X1, X2 and X3.
Let PX be the orthogonal projection from E onto X. Let us set

C = {z ∈ E| ‖PX2z‖ ≥ 1} (3.1)

Then C is the smooth manifold with boundary. Let Cn = C ∩ En. Let
us define a functional Ψ : E \ {X1 ⊕X3} → E by

Ψ(z) = z − PX2z

‖PX2z‖
= PX1⊕X3z + (1− 1

‖PX2z‖
)PX2z. (3.2)

We have

∇Ψ(z) · w = w − 1

‖PX2z‖
(PX2w − 〈

PX2z

‖PX2z‖
, w〉 PX2z

‖PX2z‖
). (3.3)

Let us define the constrained functional Ĩ : C → R by

Ĩ = I ◦Ψ. (3.4)

Then Ĩ ∈ C1,1
loc . It turns out that

grad−C Ĩ(z̃) =

{
PX1⊕X3DI(z) + (1− 1

‖PX2
z̃‖E

)PX2DI(z) if z ∈ int(C),

PX1⊕X3DI(z)− 〈DI(z),
PX2

z̃

‖PX2
z̃‖E
〉+ PX2

z̃

‖PX2
z̃‖E

if z ∈ ∂C.

(3.5)
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We note that if z̃ is the critical point of Ĩ and lies in the interior of
C, then z = Ψ(z̃) is the critical point of I. Thus it suffices to find the
critical points, which lies in the interior of C, for Ĩ. We also note that

‖grad−C Ĩ(z̃)‖E ≥ ‖PX1⊕X3DI(Ψ(z̃))‖E ∀z̃ ∈ ∂C. (3.6)

Let us set

S23(ρ) = {z ∈ X2 ⊕X3| ‖z‖E = ρ}, ρ > 0,

˜S23(ρ) = Ψ−1(S23(ρ)),

∆12(R,R1) = {z1 + z2| z1 ∈ X1, z2 ∈ X2, ‖z1‖E ≤ R1, 1 ≤ ‖z2‖E ≤ R},
˜∆12(R,R1) = Ψ−1(∆12(R,R1))

Σ12(R,R1) = {z1 + z2| z1 ∈ X1, z2 ∈ X2, ‖z1‖E ≤ R1, ‖z2‖E = 1}
∪{z1 + z2| z1 ∈ X1, z2 ∈ X2, ‖z1‖E ≤ R1, ‖z2‖E = R}
∪{z1 + z2| z1 ∈ X1, z2 ∈ X2, ‖z1‖E = R1, 1 ≤ ‖z2‖E ≤ R},

˜Σ12(R,R1) = Ψ−1(Σ12(R,R1)).

We will prove the multiplicity result by using Theorem 2.2 for Ĩ, C,
˜S23(ρ), ˜∆12(R,R1) and ˜Σ12(R,R1). Now we have the following linking

geometry for Ĩ.

Lemma 3.2. Assume that G satisfies the conditions (G1)− (G3),
and that j0, j1 are negative integers with j1 < j0 < 0. Then there exist
a small number δ1 > 0, R > ρ > 0, R1 > 0, R > 1 and ρ > 0 with R > ρ
such that for any λ with j1 − δ1 < λ < j1 < j0 < 0,

sup
z̃∈ ˜Σ12(R,R1)

Ĩ(z̃) < 0 < inf
w̃∈ ˜S23(ρ)

Ĩ(w̃). (3.7)

Moreover

−∞ < inf
w̃∈ ˜B23(ρ)

Ĩ(w̃), sup
z̃∈ ˜∆12(R,R1)

Ĩ(z̃) <∞.

Proof. It suffices to show that there exist R > ρ > 0, R1 > 0 and
R > 1 such that for z = ψ(z̃), w = ψ(w̃),

sup
z∈Σ12(R,R1)

I(z) < inf
w∈S23(ρ)

I(w).
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because

sup
z̃∈ ˜Σ12(R,R1)

Ĩ(z̃) = sup
z∈Σ12(R,R1)

I(z), inf
w̃∈ ˜S23(ρ)

Ĩ(w̃) = inf
w∈S23(ρ)

I(w).

(3.8)
Let z = z1 + z2 ∈ X1 ⊕X2. By (G2) we have

I(z) =
1

2
(‖|Aε|

1
2 z+‖2

L2 + ‖|Aε|
1
2M+z0‖2 − ‖(−|Aε|)

1
2 z−‖2

L2

−‖(−|Aε|)
1
2M−z0‖2)−

∫ 2π

0

[
1

2
(λ+ ε)z2 +G(t, z(t))]dt

≤ j1 + ε− λ− ε
2

‖z2‖2
L2 +

j0 + ε− λ− ε
2

‖z2‖2
L2

−
∫ 2π

0

[α1|z|p1+1 − β1]dt.

≤ δ1

2
‖z2‖2

L2 +
j0 + ε− λ− ε

2
‖z2‖2

L2 −
∫ 2π

0

[α1|z|p1+1 − β1]dt.

Since j0−λ > 0 and p1+1 > 2, there exist a small number δ1 > 0, R > 0,
R1 > 0 and R > 1 such that for z ∈ X1 ⊕X2, supz∈Σ12(R,R1) I(z) < 0. If

z ∈ ∆12(R,R1), then supz∈∆12(R,R1) I(z) < δ1
2
‖z2‖2

L2 + j0+ε−λ−ε
2
‖z2‖2

L2 +
2πβ1 <∞. On the other hand, if z ∈ X2 ⊕X3, then

I(z) =
1

2
(‖|Aε|

1
2 z+‖2

L2 + ‖|Aε|
1
2M+z0‖2 − ‖(−|Aε|)

1
2 z−‖2

L2

−‖(−|Aε|)
1
2M−z0‖2)−

∫ 2π

0

[
1

2
(λ+ ε)z2 +G(t, z(t))]dt

≥ j1 + ε− λ− ε
2

‖z‖2
L2 −

∫ 2π

0

α2|z|p2+1dt.

Since j1− λ > 0 and p2 + 1 > 2, there exists a small number ρ > 0 with
R > ρ > 0 such that for z ∈ X2⊕X3, infz∈S23(ρ)I(z) > 0. If z ∈ B23(ρ),
then infz∈B23(ρ)I(z) > −∞. Thus we prove the lemma.

Lemma 3.3. Assume that G satisfies the conditions (G1)− (G3),
and that j0, j1 are negative integers with j1 < j0 < 0. Then for any λ
with j1 − 1 ≤ λ < 0, Ĩ has no critical point z̃ such that Ĩ(z̃) = c and
z̃ ∈ ∂C, where inf z̃∈ ˜B23(ρ) Ĩ(z̃) ≤ c ≤ supz̃∈ ˜Σ12(R,R1) Ĩ(z̃) < 0.

Proof. It suffices to prove that I has no critical point z = ψ(z̃) such
that I(z) = c and z ∈ X1 ⊕ X3. We notice that from Lemma 3.2, for
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fixed z1 ∈ X1, the functional z3 7→ I(z1 + z3) is weakly convex in X3,
while, for fixed z3 ∈ X3, the functional z1 7→ I(z1 +z3) is strictly concave
in X1. Moreover (0, 0) is a critical point in X1⊕X3 with I(0, 0) = 0. So
if z = z1 + z3 is another critical point for I|X1⊕X3 , then we have

0 = I(0, 0) ≤ I(z3) ≤ I(z1 + z3) ≤ I(z1) ≤ I(0, 0) = 0.

So I(z1 + z3) = I(0, 0) = 0.

Lemma 3.4. Assume that G satisfies the conditions (G1)− (G3),
and that j0, j1 are negative integers with j1 < j0 < 0. Then there exists
a constant δ2 > 0 such that for any λ with j1 − 1 − δ2 ≤ λ < j1 <
j0 < 0, Ĩ has no critical point z̃ such that inf z̃∈ ˜B23(ρ) Ĩ(z̃) ≤ Ĩ(z̃) ≤
supz̃∈ ˜Σ12(R,R1) Ĩ(z̃) < 0 and z̃ ∈ ∂C.

Proof. It suffices to show that I(z) has no critical point z such that
infz∈B23(ρ) I(z) ≤ I(z) ≤ supz∈Σ12(R,R1) I(z) < 0 and z ∈ X1 ⊕ X3. By
contradiction we suppose that we can find two sequences (λn)n in R with
λn ∈ (j1−1−δ2, j1) and (zn)n in X1⊕X3 such that λn → λ ∈ [j1−1, j1),
infz∈B23(ρ) I(z) ≤ I(z) ≤ supz∈Σ12(R,R1) I(z) < 0 and DI|X1⊕X3(zn) = 0.
We claim that (zn)n is bounded. If not we can suppose that ‖zn‖ →
+∞ and set wn = zn

‖zn‖ . Since wn is bounded, up to a subsequence wn
converges weakly to w0, for some w0 ∈ X1 ⊕ X3. Furthermore since
PX1zn ∈ E−, ‖P+PX1zn‖ = 0 and we have

〈DI(zn), PX1zn〉 = ‖P+PX1zn‖2 − ‖P−PX1zn‖2

−〈(λ+ ε)zn +Gz(t, zn), PX1zn〉
= −‖P−PX1zn‖2 − 〈(λ+ ε)zn +Gz(t, zn), PX1zn〉
−→ 0. (3.9)

Moreover since PX3zn ∈ E+, ‖P−PX3zn‖ = 0 and we have

〈DI(zn), PX3zn〉 = ‖P+PX3zn‖2 − 〈(λ+ ε)zn +Gz(t, zn), PX3zn〉 −→ 0.
(3.10)

Adding (3.9) to (3.10), we have

lim
n→∞

(‖P+PX3zn‖2−‖P−PX1zn‖2) = lim
n→∞
〈(λ+ε)zn+Gz(t, zn), PX1⊕X3zn〉.

(3.11)
Dividing (3.11) by ‖zn‖2 and going to the limit, we get

‖P+PX3w0‖2 − ‖P−PX1w0‖2 = 〈(λ+ ε)w0, PX1⊕X3w0〉, (3.12)
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from which w0 is the unique solution of the linear equation

Aεz = (λ+ ε)z.

Since λ /∈ σ(A), w0 = 0, which is a contradiction to the fact ‖w0‖ = 1.
Thus (zn)n is bounded. By the same arguments used for (wn)n, we get,
up to a subsequence, (zn)n converges strongly to a point z ∈ X1⊕X3 with
infz∈B23(ρ) I(z) ≤ I(z) ≤ supz∈Σ12(R,R1) I(z) < 0 and DI|X1⊕X3(z) = 0,
which contradicts Lemma 3.3. Thus we prove the lemma.

Lemma 3.5. The functional −Ĩ satisfies the (P.S.)∗−c̃ condition
with respect to (Cn)n for any −c̃ such that

0 < inf
z̃∈ ˜Σ12(R,R1)

(−Ĩ)(z̃) ≤ −c̃ ≤ sup
z̃∈ ˜B23(ρ)

(−Ĩ)(z̃).

Proof. Let (hn)n be a sequence in N with hn → +∞ and (z̃n)n be a se-
quence in C with z̃n ∈ Chn for all n, −Ĩ(z̃n)→ −c̃ and grad−Chn

(−Ĩ|Ehn
)(z̃n)

→ 0. Set zn = Ψ(z̃n). Then I(zn) → c. We first consider the case
z̃n /∈ ∂Chn for large n. Since for large n PEn ◦ PX2 = PX2 ◦ PEn = PX2 ,
we have

grad−Chn
(−Ĩ)(z̃n) = PEhn

Ψ′(z̃n)D(−I)(zn) = Ψ′(z̃n)(PEhn
D(−I)(zn))

= PEhn
PX1⊕X3D(−I)(zn) + PEhn

(1− 1

‖PX2 z̃n‖E
)PX2D(−I)(zn)→ 0.

Thus
PX1⊕X3PEhn

D(−I)(zn)→ 0 and (3.13)

(1− 1

‖PX2 z̃n‖E
)PX2D(−I)(zn)→ 0. (3.14)

It is impossible that ‖PX2 z̃n‖E → 1 because dist(zn, X2) → 0. Thus
PEhn

D(−I)(zn) → 0. Using (P.S.)∗c for I of Lemma 3.1 it follows that
(zn)n has a subsequence (zkn)n such that zkn → z for some z in X2.
Since Ψ is invertible in int(C), ˜zkn → Ψ−1(z). Next we consider the case
z̃n ∈ ∂Chn for infinitely many n. We claim that this case cannot occur.
If z̃n ∈ ∂Chn , then ‖PX2 z̃n‖E = 1. Thus we have

grad−Chn
(−Ĩ)(z̃n) = PEhn

(PX1⊕X3D(−I)(zn)

− 〈D(−I)(zn), PX2 z̃n〉+PX2 z̃n)→ 0.

Using the properties of the projections, we get

PEhn
PX1⊕X3D(−I)(zn)→ 0,
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which contradicts to Lemma 3.3. In fact, let z̃ be the limit point of the
subsequence ˜zkn of z̃n, then z̃ ∈ ∂C and

grad−C(−Ĩ)(z̃) = PX1⊕X3grad(−I)(z)− 〈grad(−I)(z), PX2 z̃〉PX2 z̃.

Proof of Theorem 1.1

Assume that G satisfies the conditions (G1)−(G3), and that j0, j1 are
negative integers with j1 < j0 < 0. Let λ /∈ Z and λ < 0. We note that
the critical points of the functional Ĩ coincide with the critical points
of the functional −Ĩ. Thus it suffices to find the number of the critical
points of −Ĩ, which is appropriate functional for applying Theorem 2.2,
to find the number of the critical points of I. The common part of
(j1 − δ1, j1) and (j1 − 1− δ2, j1) is

(j1 − δ1, j1),

where δ1 and δ2 are small numbers introduced in Lemma 3.2 and Lemma
3.4 respectively. Let us set

δ = δ1.

By Lemma 3.2, there exist R > ρ > 0, R1 > 0, R > 1 and ρ > 0 with
R > ρ such that for any λ with j1 − δ < λ < j1 < j0 < 0,

sup
z̃∈ ˜S23(ρ)

(−Ĩ)(z̃) = sup
z∈S23(ρ)

(−I)(z) < 0 < inf
z∈Σ12(R,R1)

(−I)(z)

= inf
z̃∈ ˜Σ12(R,R1)

(−Ĩ)(z).

and
inf

z̃∈ ˜∆12(R,R1)
(−Ĩ)(z) = − sup

z̃∈ ˜∆12(R,R1)

Ĩ(z) > −∞,

sup
z̃∈ ˜B23(ρ)

(−Ĩ)(z̃) = − inf
z̃∈ ˜B23(ρ)

Ĩ(z̃) <∞,

so the condition (a) of Theorem 2.2 for the functional −Ĩ is satisfied.
By Lemma 3.5, the functional −Ĩ satisfies the (P.S.)∗−c̃ condition with

respect to (Cn)n for any −c̃ ∈ [α, β], where α = inf z̃∈ ˜Σ12(R,R1)(−Ĩ)(z̃) and

β = supz̃∈ ˜B23(ρ)(−Ĩ)(z̃), so the condition (b) of Theorem 2.2 is satisfied.

By Lemma 3.4, for any λ with j1 − δ < λ < j1 < j0 < 0, Ĩ has no
critical point z̃ such that inf z̃∈ ˜B23(ρ) Ĩ(z̃) ≤ Ĩ(z̃) ≤ supz̃∈ ˜Σ12(R,R1) Ĩ(z̃) < 0

and z̃ ∈ ∂C, so the condition (c) of Theorem 2.2 is satisfied. Thus by
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Theorem 2.2, for any λ with j1 − δ < λ < j1 < j0 < 0 there exists two
lower critical points z̃1, z̃2 for −Ĩ on C such that

0 < inf
z̃∈ ˜Σ12(R,R1)

(−Ĩ)(z̃) ≤ (−Ĩ)(z̃i) ≤ sup
z̃∈ ˜B23(ρ)

(−Ĩ)(z̃), i = 1.2.

Thus the functional I has at least two lower critical points z1, z2 on X2

with

inf
z∈B23(ρ)

I(z) ≤ I(zi) ≤ sup
z∈Σ12(R,R1)

I(z) < 0, i = 1.2.

Thus system (1.2) has at least two nontrivial solutions. Thus Theorem
1.1 is proved.
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