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DYNAMICAL BIFURCATION OF THE

ONE-DIMENSIONAL CONVECTIVE CAHN-HILLIARD

EQUATION

Yuncherl Choi

Abstract. In this paper, we study the dynamical behavior of the
one-dimensional convective Cahn-Hilliard equation(CCHE) on a pe-
riodic cell [−π, π]. We prove that as the control parameter passes
through the critical number, the CCHE bifurcates from the triv-
ial solution to an attractor. We describe the bifurcated attractor
in detail which gives the final patterns of solutions near the trivial
solution.

1. Introduction

In this paper, we consider the one-dimensional convective Cahn-Hilliard
equation(CCHE):

(1.1)
ut = −(λu− u3 + αuxx)xx + uux

= −αuxxxx − λuxx + uux + 6uu2x + 3u2uxx.

Here, u : R × [0,∞) → R, λ ∈ R is a control parameter related to
the driving force of the system, and α is a positive real number. The
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CCHE has been suggested recently for the description of several physi-
cal phenomena, including spinodal decomposition of (driven) phase sep-
arating systems in an external field, instability of steps moving on a
crystal surface, and thermodynamically unstable surfaces [11, 13]. The
CCHE contains nonlinearities typical of both the Kuramoto-Sivashinsky
equation(KSE) and the Cahn-Hilliard equation(CHE): uux for KSE and
(u3)xx for CHE. Thus, one may expect the dynamical aspects of both
equations in CCHE [3].

In this paper, we are interested in the dynamical behavior of CCHE
which provides us the final patterns of the evolutionary solutions. The
final patterns near the trivial solution u ≡ 0 is closely related to the
value of the control parameter λ. As soon as λ crosses the critical value,
the trivial solution becomes unstable and bifurcates to an attractor.
This attractor is responsible for the long-time dynamics of solutions
near the trivial solution. So, the key ingredient in this study is to verify
the structure of the attractor. Recently, there have been lots of studies
in this direction for various phase transition equations. For example, see
[2, 4, 5, 6, 7, 8, 9, 10, 12]. To set up our problem, we consider the CCHE
(1.1) under the periodic boundary condition on Ω = [−π, π]. For the
functional setting of the periodic CCHE, let

H =
{
u ∈ L2(Ω;R) : u(−π) = u(π) and

ˆ π

−π
u(x)dx = 0

}
,

H4
per(Ω;R) =

{
u ∈ H4(Ω;R) :

∂ju

∂xj
(−π) =

∂ju

∂xj
(π) for j = 0, 1, 2, 3

}
,

H1 = H4
per(Ω;R) ∩H.

On the other hand, it is easy to see that the CCHE (1.1) is invariant
under the odd periodic condition. So, we also study the CCHE on Ω
under the odd periodic condition. For this, we define H̃ = H ∩ {u ∈
L2(Ω;R) : u(−x) = −u(x), x ∈ [0, π]} and H̃1 = H̃ ∩H1.

We formulate (1.1) in an abstract equation

(1.2)


du

dt
= Lu+G(u),

u(0) = u0,

by setting

Lu = −
(
α
∂4

∂x4
+ λ

∂2

∂x2

)
u,
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and the nonlinear operator G(u) = G2(u, u) +G3(u, u, u), where

G2(u, v) = uvx and G3(u, v, w) = 3uvwxx + 6uvxwx.

Then, L : H1 → H is well-defined. Similarly, L : H̃1 → H̃ is also well-
defined.

The signs of eigenvalues of the linear operator L plays an important
role in the dynamical bifurcation. If all the eigenvalues are negative,
then the trivial solution is asymptotically stable. As λ varies and passes
through a certain number, some of the eigenvalues are positive and the
trivial solution becomes unstable. In the sequel, the CCHE bifurcates
to an attractor which determines the final patterns of solutions near the
trivial solution. A direct calculation show that L allows an eigenvalue
sequence

βn(λ) = n2(λ− αn2), n = 1, 2, · · ·
with the corresponding eigenvectors

φn(x) = sinnx, ψn(x) = cosnx

for n ≥ 1. In H̃, φn are only eigenvectors for n ≥ 1. We note that the
eigenvectors are orthogonal to each other and

‖φn‖H = ‖ψn‖H =
√
π (‖φn‖H̃ =

√
π, resp.)

for all n ≥ 1. We are interested in the first instant that some eigenvalues
are positive. For the periodic case, this happens when n = 1. Indeed, if
λ is slightly bigger than α, then

β1 > 0 and βn < 0 for all n ≥ 2.

The final pattern of solutions near the trivial solution are determined
by the center manifold of the trivial solution. Thus, it is important to
reduce the CCHE on the center manifold of the trivial solution. Gen-
erally, it is not easy to find a center manifold function in exact form.
Recently, Ma and Wang derive a formula of a center manifold function
(see Theorem 3.8 in [7]). We will analyze the behavior of solutions on the
center manifold by use of this formula. The main results of this paper
are the following.

Theorem 1.1. As λ passes through α, CCHE (1.1) defined in H̃
bifurcates to two steady points

(1.3) u± = ±ραφ1 + o(λ− α),
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where ρα > 0 and

(1.4) ρ2α =
48αβ1

36α + 1
+ o(λ− α).

So, we have a pitchfork bifurcation.

Theorem 1.2. As λ passes through α, CCHE (1.1) defined in H
bifurcates to an attractor A1(λ, α) which is homeomorphic to S1 and
consists of steady solutions given by{

u = w1φ1 + w2ψ1 + o(λ− α) : w2
1 + w2

2 = ρ2α
}
.

We prove Theorem 1.1 and Theorem 1.2 in subsequent sections. We
follow the method in [1] where the center manifold reduction was made
by using of Theorem 3.8 in [7].

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We assume that λ is slightly
bigger than α. We note that

β1(α) = λ− α.(2.1)

Let Ẽ1 = span{φ1} and Ẽ2 = Ẽ⊥1 in H̃. Let P̃j : H̃ → Ẽj be the canonical

projections and L̃j = L|Ẽj
, for j = 1, 2. For u ∈ H̃, we write

u =
∞∑
n=1

ynφn = y1φ1 +
∞∑
n=2

ynφn ≡ v + Φ̃(v),

where Φ̃ : Ẽ1 → Ẽ2 is a center manifold function and v = P̃1u = y1φ1.
The reduced equation of (1.2) on the center manifold is

(2.2)
dv

dt
= L̃1v + P̃1G

(
y1φ1 + Φ̃(y1φ1)

)
.

By taking the inner product of (2.2) with φ1, we have the following:

(2.3)
dy1
dt

= β1y1 + g(y1),

where

g(y1) =
1

π

〈
G2(y1φ1 + Φ̃(y1φ1)), φ1

〉
+

1

π

〈
G3(y1φ1 + Φ̃(y1φ1)), φ1

〉
.
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By means of Theorem 3.8 in [7], the center manifold function Φ̃ can be
expressed as

(2.4)
Φ̃(y1φ1) = (−L̃2)

−1P̃2G2(y1φ1) +O(|β1| · π|y1|2) + o(π|y1|2)
= (−L̃2)

−1P̃2G2(y1φ1) + o(|y1|2),

where the last equality comes from (2.1).

By direct computation, we have

G2(y1φ1) = (y1φ1)(y1φ1)x = y21 sinx cosx

=
y21
2

sin 2x =
y21
2
φ2.

From (2.4), since Lφ2 = β2φ2, the center manifold function becomes

Φ̃(y1φ1) = −y
2
1

2

φ2

β2
+ o(|y1|2).

Then

G2(y1φ1 + Φ̃(y1φ1))

=
(
y1φ1 + Φ̃(y1φ1)

)(
y1φ1 + Φ̃(y1φ1)

)
x

=
(
y1φ1 −

y21
2

φ2

β2
+ o(|y1|2)

)(
y1ψ1 −

y21
β2
ψ2 + o(|y1|2)

)
= y21φ1ψ1 −

y31
β2
φ1ψ2 −

y31
2β2

φ2ψ1 + o(|y1|3)

=
y21
2
φ2 −

y31
2β2

(−φ1 + φ3)−
y31
4β2

(φ1 + φ3) + o(|y1|3)

=
y31
4β2

φ1 +
y21
2
φ2 −

3y31
4β2

φ3 + o(|y1|3),

and

G3(y1φ1 + Φ̃(y1))

= 3
(
y1φ1 + Φ̃(y1φ1)

)2(
y1φ1 + Φ̃(y1φ1)

)
xx

+ 6
(
y1φ1 + Φ̃(y1φ1)

)(
y1φ1 + Φ̃(y1φ1)

)2
x
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= 3
(
y1φ1 −

y21
2

φ2

β2
+ o(|y1|2)

)2(
− y1φ1 +

2y21
β2

φ2 + o(|y1|2)
)

+ 6
(
y1φ1 −

y21
2

φ2

β2
+ o(|y1|2)

)(
y1ψ1 −

y21
β2
ψ2 + o(|y1|2)

)2
= −3y31φ

3
1 + 6y31φ1ψ

2
1 + o(|y1|3) = −3y31

3φ1 − φ3

4
+ 6y31

φ1 + φ3

4
+ o(|y1|3)

= −3y31
4
φ1 +

9y31
4
φ3 + o(|y1|3).

Therefore we have

1

π

〈
G2(y1φ1 + Φ̃(y1)), φ1

〉
=

1

4β2
y31 + o(|y1|3),

1

π

〈
G3(y1φ1 + Φ̃(y1)), φ1

〉
= −3

4
y31 + o(|y1|3).

Hence, (2.3) becomes

(2.5)
dy1
dt

= β1y1 − d1y31 + o(|y1|3).

where

(2.6) d1 = d1(α, λ) =
3

4
− 1

4β2
=

3β2 − 1

4β2
.

We note that (2.5) has two steady points y1 = ±ρα with ρα > 0, where

(2.7) ρ2α =
β1
d1

=
4β1β2

3β2 − 1
.

Since λ is slightly bigger than α, we have

(2.8) β2 = 4(λ− 4α) < 0

and hence ρα is well-defined. The formulas (2.8) also provides an exact
form of (2.7) as

ρ2α =
48αβ1

36α + 1
− 16β1(λ− α)

(36α + 1)2
+ o(λ− α) =

48αβ1
36α + 1

+ o(λ− α),

which yields (1.4). Now we have two solutions given by (1.3). It is easy
to check that the solutions u± are stable. This completes the proof.
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3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We proceed as in the proof of
Theorem 1.1. Let E1 = span{φ1, ψ1} and E2 = E⊥1 in H. Let Pj : H →
Ej be the canonical projection and Lj = L|Ej

, for j = 1, 2. For u ∈ H,
we write

u =
∞∑
n=1

(ynφn + znψn).

If Φ : E1 → E2 is a center manifold function and v = P1u = y1φ1 + z1ψ1,
then the reduced equation of (1.1) on the center manifold is

(3.1)
dv

dt
= Lα1 v + P1G

(
y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)

)
.

By taking the inner product of (3.1) with φ1 and ψ1, we have the fol-
lowing:

(3.2)


dy1
dt

= β1y1 + F1(y1, z1),

dz1
dt

= β1z1 + F2(y1, z1).

Here,

F1(y1, z1) =
1

π
〈G2(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)), φ1〉

+
1

π
〈G3(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)), φ1〉

and

F2(y1, z1) =
1

π
〈G2(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)), ψ1〉

+
1

π
〈G3(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)), ψ1〉 .

For the computation of F1 and F2, we need to derive a formula for Φ.
As in the proof of Theorem 1.1 we utilize Theorem 3.8 in [7]. The center
manifold function Φ can be expressed as

(3.3)

Φ(y1φ1 + z1ψ1) = (−L2)
−1P2G2(y1φ1 + z1ψ1)

+O
(
|β1| · π(y21 + z21)

)
+ o(π(y21 + z21))

= (−L2)
−1P2G2(y1φ1 + z1ψ1) + o(y21 + z21)
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where the last equality comes from (2.1). By direct computation, we
have

G2(y1φ1 + z1ψ1) = (y1φ1 + z1ψ1)(y1φ1 + z1ψ1)x

=
(
y1φ1 + z1ψ1

)(
y1ψ1 − z1φ1

)
= (y21 − z21)φ1ψ1 + y1z1(ψ

2
1 − φ2

1)

=
y21 − z21

2
φ2 + y1z1ψ2.

Hence, from (3.3), we obtain

Φ(y1φ1 + z1ψ1) = −y
2
1 − z21

2

φ2

β2
− y1z1

ψ2

β2
+ o(y21 + z21).

As a consequence,

G2(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1))

=
(
y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)

)(
y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)

)
x

=
(
y1φ1 + z1ψ1 −

y21 − z21
2

φ2

β2
− y1z1

ψ2

β2
+ o(y21 + z21)

)
×
(
y1ψ1 − z1φ1 −

y21 − z21
β2

ψ2 +
2y1z1
β2

φ2 + o(y21 + z21)
)

= (y21 − z21)φ1ψ1 + y1z1(ψ
2
1 − φ2

1)−
y31 − 2y1z

2
1

β2
φ1ψ2 +

5y21z1 − z31
2β2

φ1φ2

+
5y1z

2
1 − y31

2β2
ψ1φ2 +

z31 − 2y21z1
β2

ψ1ψ2 + o(y31 + z31).

Using elementary properties of the trigonometric functions, we obtain

G2(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1))

= (y21 − z21)
φ2

2
+ y1z1ψ2 −

y31 − 2y1z
2
1

β2

−φ1 + φ3

2
+

5y21z1 − z31
2β2

ψ1 − ψ3

2

+
5y1z

2
1 − y31

2β2

φ1 + φ3

2
+
z31 − 2y21z1

β2

ψ1 + ψ3

2
+ o(|y1|3 + |z1|3)

=
y31 + y1z

2
1

4β2
φ1 +

y21 − z21
2

φ2 +
y21z1 + z31

4β2
ψ1 + y1z1ψ2

+
−3y31 + 9y1z

2
1

4β2
φ3 +

−9y21z1 + 3z31
4β2

ψ3 + o(|y1|3 + |z1|3).
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As a consequence, we are led to

1

π
〈G2(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)), φ1〉

=
y31 + y1z

2
1

4β2
+ o(|y1|3 + |z1|3),

1

π
〈G2(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)), ψ1〉

=
y21z1 + z31

4β2
+ o(|y1|3 + |z1|3).

On the other hand,

G3(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1))

=3
(
y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)

)2(
y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)

)
xx

+ 6
(
y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)

)(
y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)

)2
x

=3
(
y1φ1 + z1ψ1 −

µ(y21 − z21)

2

φ2

β2
+ µy1z1

ψ2

β2
+ o(y21 + z21)

)2
×
(
− y1φ1 − z1ψ1 +

2µ(y21 − z21)

β2
φ2 −

4µy1z1
β2

ψ2 + o(y21 + z21)
)

+ 6
(
y1φ1 + z1ψ1 −

µ(y21 − z21)

2

φ2

β2
+ µy1z1

ψ2

β2
+ o(y21 + z21)

)
×
(
y1ψ1 − z1φ1 −

µ(y21 − z21)

β2
ψ2 −

2µy1z1
β2

φ2 + o(y21 + z21)
)2
.

Using elementary properties of trigonometric functions, we deduce that

G3(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1))

= 3
(
y21φ

2
1 + 2y1z1φ1ψ1 + z21ψ

2
1

)(
− y1φ1 − z1ψ1

)
+ o(y21 + z21)

+ 6
(
y1φ1 + z1ψ1

)(
y21ψ

2
1 − 2y1z1φ1ψ1 + z21φ

2
1

)
+ o(y21 + z21)

= −3
(
y31φ

3
1 + 3y21z1φ

2
1ψ1 + 3y1z

2
1φ1ψ

2
1 + z31ψ

3
1

)
+ 6
(
y1z

2
1φ

3
1 + (−2y21z1 + z31)φ2

1ψ1 + (y31 − 2y1z
2
1)φ1ψ

2
1 + y21z1ψ

3
1

)
+ o(y21 + z21)
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= −3
(

(y31 − 2y1z
2
1)φ3

1 + (7y21z1 − 2z31)φ2
1ψ1

+ (z31 − 2y21z1)ψ
3
1

)
+ o(y21 + z21)

= −3
(

(y31 − 2y1z
2
1)

3φ1 − φ3

4
+ (7y21z1 − 2z31)

ψ1 − ψ3

4

+ (7y1z
2
1 − 2y31)

φ1 + φ3

4
+ (z31 − 2y21z1)

3ψ1 + ψ3

4

)
+ o(y21 + z21)

= −3
(y31 + y1z

2
1

4
φ1 +

9y1z
2
1 − 3y31
4

φ3 +
y21z1 + z31

4
ψ1 +

3z31 − 9y21z1
4

ψ3

)
+ o(y21 + z21)

which yields that

1

π
〈G3(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)), φ1〉

= −3

4
(y31 + y1z

2
1) + o(|y1|3 + |z1|3),

1

π
〈G3(y1φ1 + z1ψ1 + Φ(y1φ1 + z1ψ1)), ψ1〉

= −3

4
(y21z1 + z31) + o(|y1|3 + |z1|3).

In the sequel, (3.2) becomes

(3.4)
dy

dt
= β1y − F(y) + o(|y|3),

where y = (y1, z1) and

F(y) = d1(y
3
1 + y1z

2
1 , y

2
1z1 + z31).

Here, d1 is the number defined by (2.6). The equation (3.4) also ap-
pears as a bifurcation equation of the one-dimensional modified Swift-
Hohenberg equation [1] and produces a similar patterns of solutions.
Here, we provide the analysis of (3.4) for the sake of completeness.

Since β2 < 0, we obtain that d1 > 0. Furthermore, since

〈F(y),y〉 = d1(y
2
1 + z21)2 = d1|y|4,

we have the following:

d1|y|4 ≤ 〈F(y),y〉 ≤ 2d1|y|4.
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This implies by Theorem 5.10 of [7] that (3.4) bifurcates from the trivial
solution to an attractor A1(λ, α) as λ passes through α which is home-
omorphic to S1.

We recall that the CCHE (1.1) is invariant under the odd periodic
condition. We have seen that the CCHE bifurcates an attractor in H̃
consisting of two steady solutions ±ραφ1 + o(λ − α). Since the CCHE
is invariant in H under the spatial translation, the static solution u =
ραφ1 + o(λ − α) generates one parameter family of static solutions as
follows: for θ ∈ R,

ρα cos(x+ θ) + o(λ− α)

= ρα cos θ · sinx + ρα sin θ · cosx + o(λ− α)

= w1φ1 + w2ψ1 + o(λ− α).

Since w2
1 + w2

2 = ρ2α, this set of static solutions form an invariant circle.
It is obvious that this circle is contained in the attractor A1(λ, α). Since
A1(λ, α) is already homeomorphic to S1, we conclude that A1(λ, α) con-
sists of static solutions. This finishes the proof.
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