THE CLASSIFICATION OF SELF-ORTHOGONAL CODES OVER \mathbb{Z}_{p^2} OF LENGTHS ≤ 3

Whan-hyuk Choi, Kwang Ho Kim and Sook Young Park*

ABSTRACT. In this paper, we find all inequivalent classes of self-orthogonal codes over \mathbb{Z}_{p^2} of lengths $l \leq 3$ for all primes p, using similar method as in [3]. We find that the classification of self-orthogonal codes over \mathbb{Z}_{p^2} includes the classification of all codes over \mathbb{Z}_p . Consequently, we classify all the codes over \mathbb{Z}_p and self-orthogonal codes over \mathbb{Z}_{p^2} of lengths $l \leq 3$ according to the automorphism group of each code.

1. Introduction

As concerns about codes over rings are increasing, many results about the codes over \mathbb{Z}_m for an integer m and especially over \mathbb{Z}_{p^e} for a prime pare published. In [3], [6], [7] and [8], authors found that the construction and classification of the self-dual codes over \mathbb{Z}_m is based on the classification of the self-orthogonal codes over \mathbb{Z}_p and \mathbb{Z}_{p^2} of length 4. In this paper, we focused on the classification of self-orthogonal codes over \mathbb{Z}_{p^2} of length 3 upon which the classification of codes of length 4 is based.

We begin by giving the necessary definitions and notations. A code over \mathbb{Z}_{p^2} of length n is a \mathbb{Z}_{p^2} -submodule of $\mathbb{Z}_{p^2}^n$. A code \mathcal{C} of length n over \mathbb{Z}_{p^2} has generator matrices permutation equivalent to the standard

Received December 1, 2014. Revised December 10, 2014. Accepted December 10, 2014.

²⁰¹⁰ Mathematics Subject Classification: 94B05.

Key words and phrases: codes over rings, self-orthogonal codes, classification.

^{*}Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

form

(1)
$$G = \begin{pmatrix} I_{k_1} & A_1 & B_1 + pB_2 \\ 0 & pI_{k_2} & pC_1 \end{pmatrix},$$

where the columns are grouped into blocks of sizes k_1, k_2 and $n - k_1 - k_2$ and A_1, B_1, B_2 and C_1 are matrices over \mathbb{Z}_p [7]. A matrix with this standard form is said to be of type

$$(2) 1^{k_1} p^{k_2}.$$

The number of nonzero rows is called the rank of C and denoted by rank C. k_1 is called the $free\ rank$.

Associated with \mathcal{C} there are two codes over \mathbb{Z}_p , the residue code $R(\mathcal{C}) = \{x \in \mathbb{Z}_p^n \mid \exists y \in \mathbb{Z}_p^n \text{ such that } x + py \in \mathcal{C}\}$ and the torsion $code\ T(\mathcal{C}) = \{y \in \mathbb{Z}_p^n \mid py \in \mathcal{C}\}$ which have generator matrices

$$G_1 = (I_{k_1} \ A_1 \ B_1), \ G_2 = \begin{pmatrix} I_{k_1} & A_1 & B_1 \\ 0 & I_{k_2} & C_1 \end{pmatrix}$$

respectively.

The dual code \mathcal{C}^{\perp} of \mathcal{C} is defined by

$$\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{Z}_{p^e}^n | \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in \mathcal{C} \}.$$

 \mathcal{C} is called *self-orthogonal* (resp. *self-dual*) if $\mathcal{C} \subset \mathcal{C}^{\perp}$ (resp. $\mathcal{C} = \mathcal{C}^{\perp}$). For any code \mathcal{C} of length n over \mathbb{Z}_{p^2}

$$|\mathcal{C}||\mathcal{C}^{\perp}| = p^{2n}.$$

Hence if \mathcal{C} is self-orthogonal code over \mathbb{Z}_{p^2} of length n then $|\mathcal{C}| \leq p^n$, and if \mathcal{C} is self-dual then $|\mathcal{C}| = p^n$.

 \mathbb{T}_m^n , the group of all monomial transformations on \mathbb{Z}_m^n is defined by

$$\mathbb{T}_m^n = \{ \gamma \sigma \mid \gamma \in \mathbb{D}_m^n, \sigma \in S_n \}.$$

where S_n is the symmetric group of length n and \mathbb{D}_m^n is the set of diagonal matrices with elements $\gamma_i \in \mathbb{Z}_m$ and $\gamma_i^2 = 1$. Note that we take γ_i 's in \mathbb{Z}_p or \mathbb{Z}_p^2 occasionally according to the context. Any element $t \in \mathbb{T}_m^n$ has a unique representation $t = \gamma \sigma$ for $\gamma \in \mathbb{D}_m^n$ and $\sigma \in S_n$. γ will be called the $sign\ (part)$ of t, and σ will be called the $permutation\ part$ of t.

The group \mathbb{T}_m^n acts on the set of codes over \mathbb{Z}_m by $\mathcal{C}t = \{ct \mid c \in \mathcal{C}\}$. Notice that this is indeed a right action but $\sigma \gamma = \gamma^{\sigma} \sigma$ as well where $\gamma^{\sigma} = \sigma \gamma \sigma^{-1}$. Two codes \mathcal{C} and \mathcal{C}' are equivalent (denoted $\mathcal{C} \sim \mathcal{C}'$) if there exists an element $t \in \mathbb{T}_m^n$ such that $\mathcal{C}t = \mathcal{C}'$. The group of all automorphisms of \mathcal{C} will be denoted by $\operatorname{Aut}(\mathcal{C})$.

For a subgroup $\operatorname{Aut}(\mathcal{C})$ of \mathbb{T}_m^n ,

$$p(\mathcal{C}) = \{ \sigma \mid \gamma \sigma \in \operatorname{Aut}(\mathcal{C}) \text{ for some } \gamma \in \mathbb{D}_m^n \}$$

is a subgroup of S_n , called the *permutation parts* of $Aut(\mathcal{C})$. Elements in $s(\mathcal{C}) = \operatorname{Aut}(\mathcal{C}) \cap \mathbb{D}_m^n$ are called the *pure signs* of $\operatorname{Aut}(\mathcal{C})$.

Since what is important to us is the cardinality $k = |s(\mathcal{C})|$ and the group $p(\mathcal{C})$ of permutation parts of Aut(\mathcal{C}), we will write

(3)
$$\operatorname{Aut}(\mathcal{C}) = k.p(\mathcal{C}).$$

THEOREM 1.1. If C is a code over \mathbb{Z}_{p^2} with type $1^0p^{k_2}$, then $\operatorname{Aut}(\mathcal{C}) =$ $\operatorname{Aut}(T(\mathcal{C})).$

Proof. Since \mathcal{C} is of type $1^0p^{k_2}$, it is easily deduced that for a codeword $c \in \mathcal{C}$ there exists a $c' \in T(\mathcal{C})$ such that c = pc' and there is an oneto-one correspondence between \mathcal{C} and $T(\mathcal{C})$. Let $t \in \operatorname{Aut}(\mathcal{C})$. Then for any $c_1 \in \mathcal{C}$ there exists $c_2 \in \mathcal{C}$ such that $c_1 t = c_2$. Then there exist c'_1 and c_2' in $T(\mathcal{C})$ such that $c_1t = pc_1't = pc_2' = c_2 \Leftrightarrow c_1't = c_2'$. Therefore $t \in \operatorname{Aut}(T(\mathcal{C}))$. Conversely, let $t \in \operatorname{Aut}(T(\mathcal{C}))$. Then for any $c'_1 \in T(\mathcal{C})$ there exists $c_2' \in T(\mathcal{C})$ such that $c_1't = c_2'$. So $c_1't = c_2' \Leftrightarrow pc_1't = pc_2' \Leftrightarrow$ $c_1t = c_2$. Therefore $t \in Aut(\mathcal{C})$.

The following theorems are directly from [3].

THEOREM 1.2. [3] If C is a self-dual code over \mathbb{Z}_{p^2} with type $1^1p^{k_2}$, then $\operatorname{Aut}(\mathcal{C}) = \operatorname{Aut}(R(\mathcal{C})).$

Next theorem tells us that the automorphism of rank 1 code can be obtained easily.

THEOREM 1.3. [3] Let C be a code over \mathbb{Z}_{p^e} of length 3 for odd prime p with generator matrix $(a_1 \ a_2 \ a_3)$. Let (ij) and (123) be elements in S_3 and $\omega \in \mathbb{Z}_p$ such that $\omega^6 = 1, \omega \neq \pm 1$.

- (i) If $a_i^2 = a_j^2$, then $(ij) \in p(\mathcal{C})$.
- (ii) If $(ij) \in p(\mathcal{C})$ and $a_i^2 \neq a_j^2$, then $a_i^2 = -a_j^2$. Hence if $a_i^4 \neq a_j^4$ then $(ij) \notin p(\mathcal{C}).$
- (iii) $a_1^2 = a_2^2 = a_3^2$ if and only if $p(\mathcal{C}) = S_3$. (iv) If $a_2^2 = \omega^2 a_1^2$, $a_3^2 = \omega^4 a_1^2$, then (123) $\in p(\mathcal{C})$ and $S_3 \neq p(\mathcal{C})$.
- (v) If the number of a_i 's which are zero is m, then $|s(\mathcal{C})| = 2^{1+m}$. Moreover, this is also true when \mathcal{C} has an arbitrary length with rank 1.

A code is called *decomposable* if the code is a direct sum of two or more codes. If a code is not decomposable, it is called *indecomposable*. Next theorem tells us about automorphism of a decomposable code.

THEOREM 1.4. [2] If $C = C_1 \oplus C_2$ then $Aut(C) \supseteq Aut(C_1) \times Aut(C_2)$.

2. Mass formula for self-orthogonal codes

THEOREM 2.1. [9,10] Let $\sigma_p(n,k)$ be the number of self-orthogonal codes of length n and dimension k over \mathbb{Z}_p , where p is odd prime. Then:

1. If n is odd,

$$\sigma_p(n,k) = \frac{\prod_{i=0}^{k-1} (p^{(n-1-2i)} - 1)}{\prod_{i=1}^k (p^i - 1)}, \quad (k \ge 1).$$

2. If n is even,

$$\sigma_p(n,k) = \frac{(p^{n-k}-1-\eta((-1)^{\frac{n}{2}})(p^{n/2-k}-p^{n/2}))\prod_{i=1}^{k-1}(p^{n-2i}-1)}{\prod_{i=1}^k(p^i-1)}, (k \ge 2)$$

$$\sigma_p(n,1) = \frac{p^{n-1}-1-\eta((-1)^{\frac{n}{2}})(p^{n/2-1}-p^{n/2})}{p-1}$$

where $\eta(x)$ is 1 if x is a square, -1 if x is not a square and 0 if x = 0.

Note that $\sigma_p(n,0) = 1$ for all n.

The number of self-orthogonal codes of length n over \mathbb{Z}_{p^2} is computed separately by the following theorem.

THEOREM 2.2. [1] Let p be an odd prime. Then the number of distinct self-orthogonal codes of length n over \mathbb{Z}_{p^2} of type $1^{k_1}p^{k_2}$ is

(4)
$$M_{p^2}(k_1, k_2) = \sigma_p(n, k_1) \begin{bmatrix} n - 2k_1 \\ k_2 \end{bmatrix}_p p^{k_1(2n - 3k_1 - 1 - 2k_2)/2},$$

where

$$\begin{bmatrix} n \\ k \end{bmatrix}_p = \frac{(p^n - 1)(p^n - p)\cdots(p^n - p^{k-1})}{(p^k - 1)(p^k - p)\cdots(p^k - p^{k-1})}.$$

For given n, p, k_1 and k_2 , we now know the total number of self-orthogonal codes of length n over \mathbb{Z}_{p^2} of type $1^{k_1}p^{k_2}$. Thus we can create mass formula which plays a key role in the classification problem.

(5)
$$\sum_{i} \frac{|\mathbb{T}_m^n|}{|\operatorname{Aut}(\mathcal{C}_i)|} = M_{p^2}(k_1, k_2),$$

where C_i 's are all inequivalent codes of type $1^{k_1}p^{k_2}$.

3. Classification of self-orthogonal codes over \mathbb{Z}_{p^2} of length 1 and 2

From now on p is an odd prime, we will denote a code \mathcal{C} with generator matrix G by $\mathcal{C}: G$. And a solution of $x^2 + 1 = 0$ in \mathbb{Z}_p (or \mathbb{Z}_{p^2}) by $\pm i$.

- 3.1. self-orthogonal codes over \mathbb{Z}_{p^2} of length 1. (p) generates the unique self-orthogonal codes of length 1 over \mathbb{Z}_{p^2} . Generally, pI_n generates the unique self-orthogonal codes over \mathbb{Z}_{p^2} of length n and rank n for all primes p with the automorphism $2^n.S_n$. This type of code is called the trivial code. Actually, a trivial code over \mathbb{Z}_{p^2} is a self-dual code.
- 3.2. self-orthogonal codes over \mathbb{Z}_{p^2} of length 2. Since $|\mathcal{C}| \leq p^n$ for a self-orthogonal code \mathcal{C} of length n over \mathbb{Z}_{p^2} , we have $p^{2k_1+k_2} \leq p^2$, i.e., $2k_1 + k_2 = 1$ or 2. Thus there exist only three types of codes of length 2, of 1^0p^2 , 1^1p^0 and 1^0p^1 . Any self-orthogonal code \mathcal{C} of length 2 over \mathbb{Z}_{n^2} is equivalent to one of following types.
 - (1) Type 1^0p^2 code, trivial code $p \oplus p : pI_2$.

 - (2) Type 1^1p^0 code $C_a^{1,0}$: $(1 \ a)$ where $a \in \mathbb{Z}_{p^2}$. (3) Type 1^0p^1 code $C_a^{0,1}$: $(p \ pa)$ where $a \in \mathbb{Z}_p$.

Note that $C_a^{k_1,k_2} \sim C_{-a}^{k_1,k_2}$.

Theorem 3.1. There is a unique self-orthogonal code $\mathcal{C}_a^{1,0}$ up to equivalence if and only if $p \equiv 1 \pmod{4}$. In this case, $\operatorname{Aut}(\mathcal{C}_a^{1,0}) = 2.S_2$.

Proof. By Theorem 1.3.(v), the number of pure signs is $2^1 = 2$. By self-orthogonality, a is a solution of $1 + x^2 = 0$ in \mathbb{Z}_{p^2} and we can take a=i. It is well-known that this equation has solutions when $p\equiv 1\pmod 4$. Let $\gamma\sigma=(1,-1)(12)\in\mathbb{T}_{p^2}^2$ act on $\mathcal{C}_i^{1,0}:(1,i)$. Then $(1,i)\gamma\sigma=(1,i)$ (i, -1) = i(1, i). Thus $(12) \in p(\mathcal{C})$.

Theorem 3.2. The self-orthogonal code $\mathcal{C}_a^{0,1}$ is equivalent to one of the following classes of inequivalent codes:

(i)
$$C_a^{0,1}$$
 with $a = 0$, $Aut(C_a^{0,1}) = 4.(1)$.

Proof. By Theorem 1.3.(v), the number of pure signs is obtained easily. To find the permutation parts, by Theorem 1.1, it suffices to classify permutation parts of codes over \mathbb{Z}_p with generator matrix $(1 \ a)$. For $\gamma \sigma \in \mathbb{T}_p^2$, $\gamma \sigma \in \operatorname{Aut}(\mathcal{C}_a^{0,1})$ if and only if there exists nonzero $k \in \mathbb{Z}_p$ such that

$$(1, a)\gamma\sigma = k(1, a).$$

Thus according to each solution of above equation, we can determine permutation parts.

- (i) It is trivial that $p(\mathcal{C}_a^{0,1}) = (1)$ when a = 0.
- (ii) Let a = 1. It is obvious that (1,1)(1,1)(12) = (1,1), it means $(12) \in p(\mathcal{C}).$
- (iii) Let a = i. (1, i)(1, -1)(12) = (-i, 1) = -i(1, i). Thus $(12) \in p(\mathcal{C})$.
- (iv) Suppose that (12) $\in \operatorname{Aut}(\mathcal{C}_a^{0,1})$. This means that there exist γ and ksuch that $(1, a)(\gamma_1, \gamma_2)(12) = k(1, a)$ i.e., $(a\gamma_2, \gamma_1) = (k, ka)$. Hence $a^2 = \pm 1$. Thus if $a^4 \neq 1$ then $\operatorname{Aut}(\mathcal{C}_a^{0,1}) = (1)$.

THEOREM 3.3. Let N_1, N_2, N_3 and N_4 be the numbers of code $C_a^{0,1}$ in the class (i),(ii),(iii) and (iv), respectively, up to equivalence. Then,

- (i) Class (i) code $C_0^{0,1}$ exists uniquely up to equivalence for all primes
- (ii) Class (ii) code $C_1^{0,1}$ exists uniquely up to equivalence for all primes
- (iii) Class (iii) code $C_i^{0,1}$ exists uniquely up to equivalence for all primes $p \equiv 1 \pmod{4}$.
- (iv) Class (iv) codes $C_a^{0,1}$ exists for all primes $p \geq 7$, and

$$N_4 = \begin{cases} \frac{p-5}{4}, & p \equiv 1 \pmod{4} \\ \frac{p-3}{4}, & p \equiv 3 \pmod{4}. \end{cases}$$

So, N_1, N_2, N_3 and N_4 are determined as the following table.

$p \pmod{4}$	N_1	N_2	N_3	N_4
1	1	1	1	$\frac{p-5}{4}$
3	1	1	0	$\frac{p-3}{4}$

Proof. Class (i), (ii) and (iii) are obvious. In the case of class (iv), we use the mass formula. The total number of distinct self-orthogonal codes $C_a^{0,1}$ is

$$M_{p^2}(0,1) = \sigma_p(2,0) \begin{bmatrix} 2\\1 \end{bmatrix}_p p^0 = \frac{p^2 - 1}{p - 1} = p + 1.$$

By the mass formula (5),

$$\sum_{\mathcal{C}} \frac{2^2 \times 2!}{|\operatorname{Aut}(\mathcal{C})|} = p + 1.$$

By Theorem 3.2, this implies that

$$2N_1 + 2N_2 + 2N_3 + 4N_4 = p + 1.$$

As a consequence,

$$N_4 = \begin{cases} \frac{p-5}{4}, & p \equiv 1 \pmod{4} \\ \frac{p-3}{4}, & p \equiv 3 \pmod{4}. \end{cases}$$

4. Classification of self-orthogonal codes over \mathbb{Z}_{p^2} of length 3

By the same argument as in the case of length 2, there are selforthogonal codes \mathcal{C} of length 3 over \mathbb{Z}_{p^2} equivalent to one of following types.

- (1) Type 1^0p^3 code, trivial code $p \oplus p \oplus p : pI_3$. (2) Type 1^1p^0 code $C_{a,b}^{1,0} : (1 \ a \ b)$, where $a, b \in \mathbb{Z}_{p^2}$. (3) Type 1^0p^1 code $C_{a,b}^{0,1} : (p \ pa \ pb)$, where $a, b \in \mathbb{Z}_p$.
- (4) Type 1^1p^1 code $C_{a,b}^{1,1}:\begin{pmatrix} 1 & a & b \\ 0 & p & pc \end{pmatrix}$, where $a, c \in \mathbb{Z}_p$, $b \in \mathbb{Z}_{p^2}$ and c is determined by a and b.
- (5) Type 1^0p^2 code $C_{a,b}^{0,2}:\begin{pmatrix} p & 0 & pa \\ 0 & p & pb \end{pmatrix}$, where $a,b \in \mathbb{Z}_p$. Note that it is obvious that $C_{a,b}^{k_1,k_2} \sim C_{a,-b}^{k_1,k_2} \sim C_{-a,b}^{k_1,k_2} \sim C_{-a,-b}^{k_1,k_2}$

4.1. Self-orthogonal codes of type 1^1p^0 .

Theorem 4.1. Self-orthogonal code $C_{a,b}^{1,0}$ is equivalent to one of the following classes of inequivalent codes:

- (i) C_{a,b}^{1,0} with a = 0, b² + 1 = 0, Aut(C_{a,b}^{1,0}) = 4.⟨(13)⟩. Note that C_{0,b}^{1,0} ~ C_{b,0}^{1,0}.
 (ii) C_{a,b}^{1,0} with a² = 1, Aut(C_{a,b}^{1,0}) = 2.S₂. Note that C_{1,b}^{1,0} ~ C_{a,b}^{1,0} when a² = b² ≠ 1.
 (iii) C_{a,b}^{1,0} with a⁶ = 1, a⁴ ≠ 1, Aut(C_{a,b}^{1,0}) = 2.⟨(123)⟩. In this case b² = a⁴. When b⁶ = 1, b⁴ ≠ 1, C_{a,b}^{1,0} is also equivalent to the code of this along
- class. (iv) $C_{a,b}^{1,0}$ with $ab \neq 0$, $a^6 \neq 1$, $b^6 \neq 1$, $a^4 \neq 1$, $b^4 \neq 1$, $a^4 \neq b^2$, $b^4 \neq a^2$ and $a^4 \neq b^4$, $\operatorname{Aut}(C_{a,b}^{1,0}) = 2.(1)$.

Proof. By the self-orthogonality $1 + a^2 + b^2 \equiv 0 \pmod{p^2}$ and by Theorem 1.3.(v), the number of pure signs is obtained easily.

- (i) Assume a = 0. Let $\gamma \sigma = (1, 1, -1)(13) \in \mathbb{T}_{n^2}^3$. Then (1,0,i)(1,1,-1)(13) = -i(1,0,i). Thus $(13) \in p(\mathcal{C})$. Now suppose that $(12) \in p(\mathcal{C})$ such that $\mathcal{C}\gamma(12) = \mathcal{C}$. Then there exist γ and nonzero k such that $(1,0,i)\gamma(12)=k(1,0,i)$, which implies k=0, a contradiction. Hence (12) $\notin p(\mathcal{C})$. Similarly, (23) $\notin p(\mathcal{C})$. Suppose that $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,0,i)\gamma(123)=k(1,0,i)$. It implies that k=0, which is a contradiction. Therefore $(123) \notin p(\mathcal{C})$.
- (ii) Let a = 1. By Theorem 1.3, $(12) \in p(\mathcal{C})$. To show that $(13) \notin p(\mathcal{C})$, suppose that there exists $\gamma = (\gamma_1, \gamma_2, \gamma_3) \in \mathbb{D}_{p^2}^3$ such that $\mathcal{C}\gamma(13) = \mathcal{C}$. Then there exist γ and nonzero k such that $(b\gamma_3, \gamma_2, \gamma_1) = (b\gamma_3, \gamma_2, \gamma_1)$ k(1,1,b), which implies $b^2=1$. It is a contradiction to the condition $b^2 + 2 = 0$. Similarly, $(23) \notin p(\mathcal{C})$.

Now, Suppose (123) $\in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,1,b)\gamma(123) = k(1,1,b)$, which implies $b^4 = 1$, a contradiction. Therefore (123) $\notin p(\mathcal{C})$, and along the same lines, $(132) \notin p(\mathcal{C}).$

(iii) By Theorem 1.3.(iv), (123) $\in p(\mathcal{C})$. Thus it suffices to show that $(12) \notin p(\mathcal{C})$. Suppose that there exits γ and nonzero k such that $(a\gamma_2, \gamma_1, b\gamma_3) = k(1, a, b)$, which implies $a^2 = \pm 1$. It is a contradiction to the condition $a^4 \neq 1$. $C\gamma(12)$ contains $(a\gamma_2, \gamma_1, b\gamma_3)$. Since this element is also in C, $(a\gamma_2, \gamma_1, b\gamma_3) = a\gamma_2(1, a, b)$. However it leads to $a^2 = 1$ which is a contradiction. Hence, $\langle (123) \rangle = p(C)$.

(iv) By Theorem 1.3 and condition $a^4 \neq 1, b^4 \neq 1$ and $a^4 \neq b^4$, $(12), (13), (23) \notin p(\mathcal{C})$. Suppose $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1, a, b)\gamma(123) = k(1, a, b)$. It implies that $b^2 = a^4$, which is a contradiction. Hence $(123) \notin p(\mathcal{C})$. Similarly we can check $(132) \notin p(\mathcal{C})$. Hence $p(\mathcal{C}) = (1)$.

THEOREM 4.2. Let N_1 , N_2 , N_3 and N_4 be the numbers of class (i),(ii),(iii) and (iv) of self-orthogonal codes over \mathbb{Z}_{p^2} of length 3 up to equivalence, respectively. Then,

- (i) Class (i) code $C_{0,b}^{1,0}$ exists uniquely up to equivalence for $p \equiv 1 \pmod{4}$.
- (ii) Class (ii) code $C_{1,b}^{1,0}$ exists uniquely up to equivalence for $p \equiv 1, 3 \pmod 8$.
- (iii) Class (ii) code $C_{a,b}^{1,0}$ exists uniquely up to equivalence for $p \equiv 1 \pmod{6}$.
- (iv) Class (iv) codes $C_{a,b}^{1,0}$ exists for all primes $p \geq 5$. N_1, N_2, N_3 and N_4 are determined as the following table.

$p \pmod{24}$	N_1	N_2	N_3	N_4
1	1	1	1	$\frac{p^2 + p - 26}{24}$
5	1	0	0	$\frac{p^2 + p - 6}{24}$
7	0	0	1	$\frac{p^2 + p - 8}{24}$
11	0	1	0	$\frac{p^2 + p - 12}{24}$
13	1	0	1	$\frac{p^2 + p - 14}{24}$
17	1	1	0	$\frac{p^2 + p - 18}{24}$
19	0	1	1	$\frac{p^2 + p - 20}{24}$
23	0	0	0	$\frac{p^2+p}{24}$

Proof. (i) It is well-known that equation $1 + b^2 = 0$ has solution when $p \equiv 1 \pmod{4}$.

- (ii) The equation $b^2 + 2 \equiv 0 \pmod{p^2}$ has a solution when $\left(\frac{-2}{p}\right) = 1$, i.e., $p \equiv 1, 3 \pmod{8}$.
- (iii) $a^6 = 1$ has a solution when $p \equiv 1 \pmod{6}$.

734

(iv) The number of self-orthogonal codes of length 3 and type 1^1p^0 is

$$\begin{split} M_{p^2}(1,0) &= \sigma_p(3,1) \begin{bmatrix} 3-2 \\ 0 \end{bmatrix}_p p^{1(6-3-1)/2} = \sigma_p(3,1) \begin{bmatrix} 1 \\ 0 \end{bmatrix}_p p \\ &= \frac{p^2-1}{p-1} p = (p+1)p. \end{split}$$

And by the mass formula (5), $\sum_{\mathcal{C}} \frac{2^3 \times 3!}{|\operatorname{Aut}(\mathcal{C})|} = (p+1)p$. Therefore, $N_4 = \frac{1}{24} \{ p(p+1) - 6N_1 - 12N_2 - 8N_3 \}.$

4.2. Self-orthogonal codes of type 1^0p^1 .

THEOREM 4.3. Self-orthogonal code $C_{a,b}^{0,1}$ is equivalent to one of the following classes of inequivalent codes:

- following classes of inequivalent codes:

 (i) $C_{a,b}^{0,1}$ with a = b = 0, $\operatorname{Aut}(C_{a,b}^{0,1}) = 8.\langle (23) \rangle$.

 (ii) $C_{a,b}^{0,1}$ with $b^2 = 1$, a = 0, $\operatorname{Aut}(C_{a,b}^{0,1}) = 4.\langle (13) \rangle$. Note that $C_{0,1}^{0,1} \sim C_{1,0}^{0,1}$.

 (iii) $C_{a,b}^{0,1}$ with $b^2 = -1$, a = 0, $\operatorname{Aut}(C_{a,b}^{0,1}) = 4.\langle (13) \rangle$. Note that $C_{0,b}^{0,1} \sim C_{b,0}^{0,1}$.

 (iv) $C_{a,b}^{0,1}$ with $b^4 \neq 1$, a = 0, $\operatorname{Aut}(C_{a,b}^{0,1}) = 4.\langle (1)$. Note that $C_{0,b}^{0,1} \sim C_{b,0}^{0,1}$.

 (v) $C_{a,b}^{0,1}$ with $a^2 = 1 = b^2$, $\operatorname{Aut}(C_{a,b}^{0,1}) = 2.S_3$.

 (vi) $C_{a,b}^{0,1}$ with $b^2 = 1$, $a^2 \neq 0$, $\operatorname{Aut}(C_{a,b}^{0,1}) = 2.\langle (13) \rangle$. Note that $C_{a,1}^{0,1} \sim C_{1,a}^{0,1} \sim C_{a,b}^{0,1}$ when $a^2 = b^2 \neq 1$.

 (vii) $C_{a,b}^{0,1}$ with $a^2 = 1$, $a^2 \neq 1$ and $a^2 = a^2$, $a^2 \neq 1$. Aut $a^2 \neq 1$, $a^2 \neq 1$, $a^2 \neq 1$, $a^2 \neq 1$. When $a^2 = a^2$, $a^2 \neq 1$.

 (vii) $a^2 = a^2$, $a^2 \neq 1$, a^2
- (viii) $C_{a,b}^{0,1}$ with $ab \neq 0$, $a^4 \neq 1$, $b^4 \neq 1$, $a^6 \neq 1$, $b^6 \neq 1$, $a^4 \neq b^2$, $b^4 \neq a^2$ and $a^4 \neq b^4$, $\operatorname{Aut}(C_{a,b}^{0,1}) = 2.(1)$.

Proof. By Theorem 1.3.(v), the number of pure signs is obtained easily. By Theorem 1.1, it suffices to classify $(1 \ a \ b)$ over \mathbb{Z}_p . For $\gamma \sigma \in \mathbb{T}_p^3, k \in \mathbb{Z}_p, \text{ if } \gamma \sigma \in \text{Aut}(\mathcal{C}_{a,b}^{0,1}) \text{ then } (1,a,b)\gamma \sigma = k(1,a,b) \iff (1,a^2,b^2)\sigma = k^2(1,a,b^2).$

(i) Assume a = b = 0. It is trivial that $(23) \in p(\mathcal{C})$.

Suppose that $(12) \in p(\mathcal{C})$. Then there exists $\gamma \in \mathbb{D}_p^3$ and nonzero k such that $(1,0,0)\gamma(12)=k(1,0,0)$ which implies k=0, a contradiction. Hence (12) $\notin p(\mathcal{C})$. Similarly (13) $\notin p(\mathcal{C})$. Now, suppose

- that $(123) \in p(\mathcal{C})$. Then there exists γ and nonzero k such that $(1,0,0)\gamma(123)=k(1,0,0)$. It implies k=0, which is a contradiction.
- (ii) Let b=1, a=0. (1,0,1)(1,1,1)(13)=(1,1,1). Hence $(13) \in p(\mathcal{C})$. Suppose that $(12) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,0,1)\gamma(12)=k(1,0,1)$ which implies k=0, a contradiction. Hence $(12) \notin p(\mathcal{C})$ and similarly $(23) \notin p(\mathcal{C})$.

Suppose that $(123) \in p(\mathcal{C})$. Then there exist $\gamma \in \mathbb{D}_p^3$ and nonzero k such that $(1,0,1)\gamma(123) = (0,\gamma_3,\gamma_1) = k(1,0,1)$. It implies k=0, a contradiction. Similarly $(1,0,1)\gamma(132) = k(1,0,1)$ leads to k=0, a contradiction.

- (iii) Let b = i, a = 0. Then (1,0,i)(1,1,-1)(13) = (-i,0,1) = -i(1,0,i). Thus $(13) \in p(\mathcal{C})$. Suppose $(12) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,0,i)\gamma(12) = k(1,0,i)$ which implies k = 0, a contradiction. Hence $(12) \notin p(\mathcal{C})$. Also, we can easily check as in (ii), $(23), (123), (132) \notin p(\mathcal{C})$.
- (iv) By Theorem 1.3.(ii) and by condition $b^4 \neq 1$, (12), (13), $(23) \notin p(\mathcal{C})$. Suppose that $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,0,b)\gamma(123) = k(1,0,b)$. It leads to k = 0, a contradiction. Hence $(123) \notin p(\mathcal{C})$.
- (v) By Theorem 1.3.(iii), it is obvious.
- (vi) Let b = 1. By Theorem 1.3. (ii), $(13) \in p(\mathcal{C})$. Suppose that $(12) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1, a, 1)\gamma(12) = k(1, a, 1)$. It leads to $a^4 = 1$ which is a contradiction to the condition $a^2 \neq 1$. Hence $(12) \notin p(\mathcal{C})$. Similarly, $(23) \notin p(\mathcal{C})$.

Suppose that $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1, a, 1)\gamma(123) = k(1, a, 1)$. It implies $a^4 = 1$, a contradiction.

- (vii) By Theorem 1.3.(iv), $(123) \in p(\mathcal{C})$. To show $(13) \notin p(\mathcal{C})$, suppose that there exist γ and nonzero k such that $(1, a, b)\gamma(13) = k(1, a, b)$. However it leads to $b^2 = \pm 1$ which is a contradiction. Thus $(13) \notin p(\mathcal{C})$.
- (viii) By Theorem 1.3 and by the conditions $a^4 \neq 1, b^4 \neq 1, a^4 \neq b^4$, $(12), (13), (23) \notin p(\mathcal{C})$. Suppose that $(123) \in p(\mathcal{C})$. Then there eixst γ and nonzero k such that $(1, a, b)\gamma(123) = k(1, a, b)$. It implies that $b^2 = a^4$, which is a contradiction. Hence it is obvious that $p(\mathcal{C}) = (1)$.

THEOREM 4.4. Let $N_1, N_2, N_3, N_4, N_5, N_6, N_7, N_8$ be the number of class (i) - (viii) of codes $C_{a,b}^{0,1}$ up to equivalence, respectively. $N_i's$ are determined as follows.

p(mod 12)	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8
1	1	1	1	$\frac{p-5}{4}$	1	$\frac{p-3}{2}$	1	$\frac{(p-1)(p-7)}{24}$
5	1	1	1	$\frac{p-5}{4}$	1	$\frac{p-3}{2}$	0	$\frac{(p-3)(p-5)}{24}$
7	1	1	0	$\frac{p-3}{4}$	1	$\frac{p-3}{2}$	1	$\frac{(p-1)(p-7)}{24}$
11	1	1	0	$\frac{p-3}{4}$	1	$\frac{p-3}{2}$	0	$\frac{(p-3)(p-5)}{24}$

Note that we obtained directly all self-orthogonal codes over \mathbb{Z}_9 at the next section.

Proof. Note that $C_{0,b}^{0,1} \sim C_a^{0,1} \oplus (0)$. N_1, N_2, N_3 and N_4 are same as the results of Theorem 3.3. Existence of class (v) and (vii) and N_5, N_7 are obvious. Now it suffices to find N_6 and N_8

(vi) $a \in \mathbb{Z}_p, a^2 \neq 0, 1$ imply that the number of choices of a is p-3. From the fact that $C_{a,1}^{0,1} \sim C_{a,-1}^{0,1}$, we have $N_6 = \frac{p-3}{2}$ for all primes p. (viii) The number of self-orthogonal codes of length 3 of type 1^0p^1 is

$$M_{p^2}(0,1) = \sigma_p(3,0) \begin{bmatrix} 3\\1 \end{bmatrix}_p = \frac{p^3 - 1}{p - 1} = p^2 + p + 1.$$

By the mass formula (5),

$$\sum_{C} \frac{2^3 \times 3!}{|\operatorname{Aut}(\mathcal{C})|} = p^2 + p + 1.$$

Hence,

$$N_8 = \frac{1}{24} \{ p^2 + p + 1 - 3N_1 - 6N_2 - 6N_3 - 12N_4 - 4N_5 - 12N_6 - 8N_7 \}.$$

This formula gives N_8 .

4.3. Self-orthogonal codes of type 1^1p^1 . Actually, self-orthogonal codes of type 1^1p^1 are self-dual codes. All theorems in this section are from [3].

THEOREM 4.5. The self-dual code over \mathbb{Z}_{p^2} of length 3 with type 1^1p^1 is equivalent to one of the following classes of inequivalent codes:

- (i) Suppose a=0. Then, $\operatorname{Aut}(\mathcal{C}_{0h}^{1,1})=4.\langle (13)\rangle$. This class exists if and only if when $p \equiv 1 \pmod{4}$.
- (ii) Suppose $a^6 \equiv 1$ and $a \neq \pm 1$. Then, $\operatorname{Aut}(\mathcal{C}_{a,b}^{1,1}) = 2 \cdot \langle (123) \rangle$. This
- class exists if and only if when $p \equiv 1 \pmod{3}$. (iii) Suppose a = 1. Then, $\operatorname{Aut}(\mathcal{C}_{1,b}^{1,1}) = 2 \cdot \langle (12) \rangle$. This class exists if and only if when $p \equiv 1, 3 \pmod{8}$.
- (iv) Suppose $a \neq 0, a^3 \neq \pm 1 \pmod{p}, b^3 \neq \pm 1 \pmod{p}$ and $a^2 \neq b^2 \pmod{p}$. Then, $\operatorname{Aut}(\mathcal{C}_{a,b}^{1,1}) = 2 \cdot \langle (1) \rangle$. This class exists if and only if when $p \geq 23$.

Theorem 4.6. Let N_1, N_2, N_3, N_4 be the number of class (i), (ii), (iii), (iv) codes $C_{a,b}^{1,1}$ over \mathbb{Z}_{p^2} of length 3, respectively. These numbers are determined as follows.

$p \pmod{24}$	N_1	N_2	N_3	N_4
1	1	1	1	$\frac{p-25}{24}$
5	1	0	0	$\frac{p-5}{24}$
7	0	1	0	$\frac{p-7}{24}$
11	0	0	1	$\frac{p-11}{24}$
13	1	1	0	$\frac{p-13}{24}$
17	1	0	1	$\frac{p-17}{24}$
19	0	1	1	$\frac{p-19}{24}$
23	0	0	0	$\frac{p+1}{24}$

4.4. Self-orthogonal codes of type 1^0p^2 .

THEOREM 4.7. Self-orthogonal code $C_{a,b}^{0,2}$ is equivalent to one of the following eight classes of inequivalent codes;

- (i) $C_{a,b}^{0,2}$ with a=b=0, $\operatorname{Aut}(C_{a,b}^{0,2})=8.S_2$. (ii) $C_{a,b}^{0,2}$ with $a^2=1,b=0$, $\operatorname{Aut}(C_{a,b}^{0,2})=4.\langle(13)\rangle$. (iii) $C_{a,b}^{0,2}$ with $a^2=-1,b=0$, $\operatorname{Aut}(C_{a,b}^{0,2})=4.\langle(13)\rangle$. (iv) $C_{a,b}^{0,2}$ with $a^4\neq 1, a\neq 0, b=0$, $\operatorname{Aut}(C_{a,b}^{0,2})=4.(1)$. (v) $C_{a,b}^{0,2}$ with $a^2=b^2=1$, $\operatorname{Aut}(C_{a,b}^{0,2})=2.S_3$. (vi) $C_{a,b}^{0,2}$ with $a^2=1,b\neq 0,1$, $\operatorname{Aut}(C_{a,b}^{0,2})=2.\langle(13)\rangle$. (vii) $C_{a,b}^{0,2}$ with $a^6=1,a^4=b^2\neq 1$, $\operatorname{Aut}(C_{a,b}^{0,2})=2.\langle(123)\rangle$. (viii) $C_{a,b}^{0,2}$ with $a,b\neq 0, a^4\neq 1, a^2\neq b^2\neq 1, a^6\neq 1, b^2\neq a^4, a^2\neq b^4$ and $a^4\neq b^4$, $\operatorname{Aut}(C_{a,b}^{0,2})=2.(1)$.

Note that $C_{a,b}^{0,2}(12) = C_{b,a}^{0,2}$, i.e., $C_{a,b}^{0,2} \sim C_{b,a}^{0,2}$.

Proof. By Theorem 1.1, it suffices to classify $\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix}$ over \mathbb{Z}_p . Let the generators of this code be $f_1 = (1,0,a)$ and $f_2 = (0,1,b)$. At first, we check the pure signs of this code. If $\gamma = (\gamma_1, \gamma_2, \gamma_3) \in s(\mathcal{C})$, then

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix} (\gamma_1, \gamma_2, \gamma_3) = \begin{pmatrix} \gamma_1 & 0 & \gamma_3 a \\ 0 & \gamma_2 & \gamma_3 b \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix}.$$

Thus there exist solutions of the following equations; $x(\gamma_1, 0, \gamma_3 a) + y(0, \gamma_2, \gamma_3 b) = (1, 0, a)$, and $z(\gamma_1, 0, \gamma_3 a) + w(0, \gamma_2, \gamma_3 b) = (0, 1, b)$.

This leads to

$$\begin{cases} x = \gamma_1, \ y = 0, \gamma_1 \gamma_3 a = a \\ z = 0, \ w = \gamma_2, \ \gamma_2 \gamma_3 b = b. \end{cases}$$

Accordingly, if $ab \neq 0$, then $\gamma_1 \gamma_3 = 1$ and $\gamma_2 \gamma_3 = 1$, i.e., $s(\mathcal{C}) = \{\pm(1,1,1)\}$ and $|s(\mathcal{C})| = 2$. If ab = 0, say $a \neq 0$ and b = 0, then $\gamma_2 \gamma_3 = 1$ and $\gamma_1 = \pm 1$. i.e., $s(\mathcal{C}) = \{\pm(1,1,1), \pm(-1,1,1)\}$ and $|s(\mathcal{C})| = 4$. Finally, if a = b = 0 then $\gamma_1 \gamma_3 = \pm 1$, $\gamma_2 \gamma_3 = \pm 1$. Hence $|s(\mathcal{C})| = 8$ and $s(\mathcal{C}) = \{\pm(1,1,1), \pm(1,1,1), \pm(1,1,1)\}$.

Now, we check the permutation parts. Note that $\sigma \in p(\mathcal{C})$ if and only if

(6)
$$\begin{cases} xf_3\gamma + yf_4\gamma = f_1 \\ uf_3\gamma + vf_4\gamma = f_2 \end{cases}$$

have solutions x, y, u, v and γ where $f_3 = f_1 \sigma$ and $f_4 = f_2 \sigma$. Also, note that $\mathcal{C}_{a,b}^{0,2} \sim \mathcal{C}_{-a,b}^{0,2} \sim \mathcal{C}_{a,-b}^{0,2} \sim \mathcal{C}_{-a,-b}^{0,2}$.

- (i) It is easily deduced that C(12)(1,1,1) = C from a = b = 0. Thus $(12) \in p(C)$. C(13) is generated by $f_3 = f_1(13) = (0,0,1)$ and $f_4 = f_2(13) = (0,1,0)$. However $uf_3\gamma + vf_4\gamma = (1,0,0)$ has no solution. Thus $(13) \notin p(C)$. Since (123) = (12)(13), $(123) \notin p(C)$. By the same argument, $(132), (23) \notin p(C)$.
- (ii) Say a=1. It is also easily deduced that $\mathcal{C}(13)(1,1,1)=\mathcal{C}$. Thus $(13) \in p(\mathcal{C})$. Assume $(12) \in p(\mathcal{C})$. Then from the equations (6), we can see that $(v\gamma_1, u\gamma_2, u\gamma_3) = (0, 1, 0)$ have no solution. Thus

 $(12) \notin p(\mathcal{C})$. By the same argument as in (i), (123), (132), $(23) \notin p(\mathcal{C})$.

- (iii) Similarly to the case in (ii), we can easily see that $p(\mathcal{C}) = \langle (13) \rangle$.
- (iv) Suppose (12) $\in p(\mathcal{C})$. Then the equation $uf_3\gamma + vf_4\gamma = f_2$ must have a solution. But it is obvious that $(v\gamma_1, u\gamma_2, ua\gamma_3) = (0, 1, 0)$ has no solution. Thus $(12) \notin p(\mathcal{C})$.

Now, suppose (123) $\in p(\mathcal{C})$. Again, $uf_3\gamma + vf_4\gamma = f_2$ i.e., $(v\gamma_1, ua\gamma_2, u\gamma_3) = (0, 1, 0)$ has no solution. Thus (123) $\notin p(\mathcal{C})$. It is clear that $p(\mathcal{C}) = (1)$ by the same argument.

(v) It suffices to show $(12), (123) \in p(\mathcal{C})$.

Let $\sigma = (12)$. From the equations (6),

$$\begin{cases} x(0,1,a)\gamma + y(1,0,b)\gamma = (1,0,a) \\ u(0,1,a)\gamma + v(1,0,b)\gamma = (0,1,b), \end{cases}$$

it is clear that $x=0, v=0, y=\gamma_1$ and $u=\gamma_2$. Thus these equations hav a solution if and only if $yb\gamma_3=a$ and $ua\gamma_3=b$, i.e., $a^2=b^2$. Thus $(12) \in p(\mathcal{C})$ if and only if $a^2=b^2$. Therefore $(12) \in p(\mathcal{C})$.

Without loss of generality, assume a = b = 1. Now, let $\sigma = (123)$. It is also clear that the equations,

$$\begin{cases} x(0,1,1)\gamma + y(1,1,0)\gamma = (1,0,1) \\ u(0,1,1)\gamma + v(1,1,0)\gamma = (0,1,1) \end{cases}$$

has a solution $x = -1, y = 1, u = -1, v = 0, \gamma = (1, -1, -1)$. Therefore (123) $\in p(\mathcal{C})$.

(vi) By the argument in (v), (12) $\notin p(\mathcal{C})$, since $a^2 \neq b^2$.

Let a = 1 and $\sigma = (13)$. Then it is clear that the equations

$$\begin{cases} x(1,0,1)\gamma + y(b,1,0)\gamma = (1,0,1) \\ u(1,0,1)\gamma + v(b,1,0)\gamma = (0,1,b) \end{cases}$$

has a solution x = 1, y = 0, u = b, v = -1 and $\gamma = (1, -1, 1)$. Thus $(13) \in p(\mathcal{C})$ and $(123) \notin p(\mathcal{C})$ since $(12) \notin p(\mathcal{C})$. Consequently, $p(\mathcal{C}) = \langle (13) \rangle$.

Note that if $(13) \in p(\mathcal{C})$, then $a^4 = 1$. Because the first part of equations (6), $x(a,0,1)\gamma + y(b,1,0)\gamma = (1,0,a)$ tells that y = 0 and $xa\gamma_1 = 1$, $x\gamma_3 = a$. Thus $x^2a^2 = 1$ and $x^2 = a^2$ implies that $a^4 = 1$.

(vii) For neither $a^2 \neq b^2$ nor $a^4 \neq 1$, we can deduce that (12), (13) $\notin p(\mathcal{C})$.

Without loss of generality, assume $a^3 = 1$ and $b = a^2$. Now, let $\sigma = (123)$. It is also clear that the equations,

$$\begin{cases} x(0, a, 1)\gamma + y(1, a^2, 0)\gamma = (1, 0, a) \\ u(0, a, 1)\gamma + v(1, a^2, 0)\gamma = (0, 1, a^2) \end{cases}$$

has a solution $x = -a, y = 1, u = -a^2, v = 0, \gamma = (1, -1, -1)$. Therefore (123) $\in p(\mathcal{C})$.

(viii) By the condition $a^4 \neq b^4$, (12) $\notin p(\mathcal{C})$ and by the condition $a^4 \neq 1$, (13) $\notin p(\mathcal{C})$.

Assume that $(123) \in p(\mathcal{C})$. The first part of equations (6), $x(0,a,1)\gamma + y(1,b,0)\gamma = (1,0,a)$ tells that $x\gamma_3 = a, y = \gamma_1$ and $xa\gamma_2 + yb\gamma_2 = 0$. Thus $x^2 = a^2, y^2 = 1$ and $x^2a^2 = b^2$. Consequently $b^2 = a^4$. The second part of equations (6), $u(0,a,1)\gamma + v(1,b,0)\gamma = (0,1,b)$ tells that v=0 and $ua\gamma_2 = 1$, $u\gamma_3 = b$. Thus $u^2a^2 = 1$ and $u^2 = b^2$. Therefore $a^2b^2 = 1$. $a^2b^2 = 1$ and $b^2 = a^4$ implies that $a^6 = 1$ which is contradict to the condition. Thus $(123) \notin p(\mathcal{C})$.

THEOREM 4.8. Let $N_1, N_2, N_3, N_4, N_5, N_6, N_7$, and N_8 be the number of class (i) - (viii) of codes $C_{a,b}^{0,2}$ up to equivalence, respectively. N_i 's are determined as follows.

p(12)	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8
1	1	1	1	$\frac{p-5}{4}$	1	$\frac{p-3}{2}$	1	$\frac{(p-1)(p-7)}{24}$
5	1	1	1	$\frac{p-5}{4}$	1	$\frac{p-3}{2}$	0	$\frac{(p-3)(p-5)}{24}$
7	1	1	0	$\frac{p-3}{4}$	1	$\frac{p-3}{2}$	1	$\frac{(p-1)(p-7)}{24}$
11	1	1	0	$\frac{p-3}{4}$	1	$\frac{p-3}{2}$	0	$\frac{(p-3)(p-5)}{24}$

Proof. $C_{a,0}^{0,2} \sim C_a^{0,1} \oplus (p)$. Thus N_1, N_2, N_3 and N_4 are exactly same as Theorem 3.3. N_5, N_6 and N_7 are obtained by the same argument as in the Theorem 4.4.

The number of self-orthogonal codes of length 3 of type 1^0p^2 is

$$M_{p^2}(0,2) = \sigma_p(3,0) \begin{bmatrix} 3\\2 \end{bmatrix}_p = \frac{(p^3 - 1)(p^3 - p)}{(p^2 - 1)(p^2 - p)} = p^2 + p + 1.$$

By the mass formula (5),

$$\sum_{C} \frac{2^3 \times 3!}{|\operatorname{Aut}(\mathcal{C})|} = p^2 + p + 1.$$

Hence,

$$N_8 = \frac{1}{24} \{ p^2 + p + 1 - 3N_1 - 6N_2 - 6N_3 - 12N_4 - 4N_5 - 12N_6 - 8N_7 \}.$$

5. Examples

Self-orthogonal codes of length 3 over \mathbb{Z}_{p^2} for all primes $p \leq 13$ are shown in the following table.

Type	Aut.	\mathbb{Z}_{2^2}	\mathbb{Z}_{3^2}	\mathbb{Z}_{5^2}	\mathbb{Z}_{7^2}	\mathbb{Z}_{11^2}	\mathbb{Z}_{13^2}
	$4.\langle (13) \rangle$			$\mathcal{C}_{0,7}^{1,0}$			$C_{0,70}^{1,0}$
-1.0	$2.\langle (12) \rangle$		$C_{1,4}^{1,0}$			$\mathcal{C}^{1,0}_{1,19}$	
$\mathcal{C}_{a,b}^{1,0}$	$2.\langle (123)\rangle$,		$C_{18,19}^{1,0}$		$\mathcal{C}^{1,0}_{22,23}$
	2.(1)			$C_{5,7}^{1,0}$	$\mathcal{C}^{1,0}_{2,7},\mathcal{C}^{1,0}_{4,9}$	$\begin{array}{c} \mathcal{C}^{1,0}_{3,56},\mathcal{C}^{1,0}_{4,15},\mathcal{C}^{1,0}_{7,26},\\ \mathcal{C}^{1,1}_{10,25},\mathcal{C}^{1,1}_{18,37} \end{array}$	$\mathcal{C}^{1,0}_{3,43}, \mathcal{C}^{1,0}_{9,16}, \mathcal{C}^{1,0}_{13,70},$
						$\mathcal{C}^{1,1}_{10,25},\mathcal{C}^{1,1}_{18,37}$	$C_{26,70}^{1,0}, C_{29,61}^{1,1}, C_{48,68}^{1,1},$
						-,,	$\begin{array}{c} Z_{2,23}^{1,0}, C_{1,0}^{1,0}, C_{13,70}^{1,0}, \\ C_{3,43}^{1,0}, C_{9,16}^{1,0}, C_{13,70}^{1,0}, \\ C_{26,70}^{1,0}, C_{29,61}^{1,1} C_{48,68}^{1,1}, \\ C_{52,70}^{1,1} \end{array}$
	$4.\langle (13)\rangle$			$C_{0,7}^{1,1}$			$\mathcal{C}^{1,1}_{0,70}$
$\mathcal{C}_{a,b}^{1,1}$	$2.\langle (12) \rangle$		$C_{1,4}^{1,0}$			$C_{1,19}^{1,1}$	
a,b	$2.\langle (123)\rangle$				$C_{2,32}^{1,1}$,	$C_{3,126}^{1,1}$
	2.(1)						
	$8.\langle (23) \rangle$	$C_{0,0}^{0,1}$	$C_{0,0}^{0,1}$	$C_{0,0}^{0,1}$	$C_{0,0}^{0,1}$	$C_{0,0}^{0,1}$	$C_{0,0}^{0,1}$
	$4.\langle (13)\rangle$	$C_{0,1}^{0,1}$	$C_{0,1}^{0,1}$	$C_{0,1}^{0,1}$	$C_{0,1}^{0,1}$	$C_{0,1}^{0,1}$	$C_{0,1}^{0,1}$
	$4.\langle (13)\rangle$			$C_{0,2}^{0,1}$			$C_{0.5}^{0,1}$
$\mathcal{C}_{a,b}^{0,1}$	4.(1)				$C_{0,2}^{0,1}$	$\mathcal{C}^{0,1}_{0,2},\mathcal{C}^{0,1}_{0,3}$	$\mathcal{C}_{0,2}^{0,1}, \mathcal{C}_{0,3}^{0,1}$
•	$2.S_{3}$	$C_{1,1}^{0,1}$	$C_{1,1}^{0,1}$	$C_{1,1}^{0,1}$	$C_{1,1}^{0,\overline{1}}$	$C_{1,1}^{0,1}$	$\mathcal{C}_{1,1}^{0,1}$
	$2.\langle (12) \rangle$			$C_{1,2}^{0,1}$	$\mathcal{C}_{1,2}^{0,1},\mathcal{C}_{1,3}^{0,1}$	$\mathcal{C}_{1,2}^{0,1}, \mathcal{C}_{1,3}^{0,1}$ $\mathcal{C}_{1,4}^{0,1}, \mathcal{C}_{1,5}^{0,1}$	$\mathcal{C}_{1,2}^{0,1}, \mathcal{C}_{1,3}^{0,1}, \mathcal{C}_{1,4}^{0,1}$
						$\mathcal{C}^{0,1}_{1,4},\mathcal{C}^{0,1}_{1,5}$	$\mathcal{C}_{1,5}^{0,1}, \mathcal{C}_{1,6}^{0,1}$
	$2.\langle (123)\rangle$				$C_{2,3}^{1,1}$		$C_{3.4}^{0,1}$
	2.(1)					$\mathcal{C}^{0,1}_{2,3},\mathcal{C}^{0,1}_{2,4}$	$C_{2,3}^{0,1}, C_{2,4}^{0,1}, C_{2,5}^{0,1}$
	$8.\langle (12) \rangle$	$C_{0,0}^{0,2}$	$C_{0,0}^{0,2}$	$C_{0,0}^{0,2}$	$C_{0,0}^{0,2}$	$C_{0,0}^{0,2}$	$C_{0,0}^{0,2}$
	$4.\langle (13)\rangle$	$C_{0,0}^{0,2}$ $C_{1,0}^{0,2}$	$C_{0,0}$ $C_{1,0}^{0,2}$	$C_{1,0}^{0,2}$	$\mathcal{C}_{0,0}^{0,2}$ $\mathcal{C}_{1,0}^{0,2}$	$C_{1,0}^{0,2}$	$C_{0,0}^{0,2}$ $C_{1,0}^{0,2}$
	$4.\langle (13)\rangle$			$\mathcal{C}_{0,0}^{0,2}$ $\mathcal{C}_{1,0}^{0,2}$ $\mathcal{C}_{2,0}^{0,2}$			$C_{2,0}^{0,2}$
$\mathcal{C}_{a,b}^{0,2}$	4.(1)				$\mathcal{C}^{0,2}_{2,0}$ $\mathcal{C}^{0,2}_{1,1}$	$C_{2,0}^{0,2}, C_{3,0}^{0,2}$ $C_{1,1}^{0,2}$	$\begin{array}{c} C_{1,0} \\ C_{2,0}^{0,2} \\ -C_{2,0}^{0,2}, C_{3,0}^{0,2} \\ C_{1,1}^{0,2}, C_{1,3}^{0,2}, C_{1,4}^{0,2} \\ C_{1,2}^{0,2}, C_{1,3}^{0,2}, C_{1,4}^{0,2} \\ C_{1,5}^{0,2}, C_{1,6}^{0,2} \\ C_{3,4}^{0,2}, C_{2,2}^{0,2} \end{array}$
	$2.S_3$	$C_{1,1}^{0,2}$	$C_{1,1}^{0,2}$	$C_{1,1}^{0,2}$	$C_{1,1}^{0,2}$	$\mathcal{C}^{0,2}_{1,1}$	$\mathcal{C}^{0,2}_{1,1}$
	$2.\langle (13)\rangle$			$C_{1,2}^{0,2}$	$\mathcal{C}_{1,2}^{0,2},\mathcal{C}_{1,3}^{0,2}$	$\mathcal{C}_{1,2}^{0,2}, \mathcal{C}_{1,3}^{0,2}$ $\mathcal{C}_{1,4}^{0,2}, \mathcal{C}_{1,5}^{0,2}$	$\mathcal{C}^{0,2}_{1,2},\mathcal{C}^{0,2}_{1,3},\mathcal{C}^{0,2}_{1,4}$
				•		$\mathcal{C}^{0,2}_{1,4},\mathcal{C}^{0,2}_{1,5}$	$\mathcal{C}^{0,2}_{1,5},\mathcal{C}^{0,2}_{1,6}$
	$2.\langle (123)\rangle$				$C_{2,3}^{0,2}$		$C_{3,4}^{0,2}$
	2.(1)				,-	$\mathcal{C}^{0,2}_{2,3},\mathcal{C}^{0,2}_{2,4}$	$C_{2,3}^{0,2}, C_{2,4}^{0,2} C_{2,5}^{0,2}$

References

- [1] R.A.L. Betty and A. Munemasa, Mass formula for self-orthogonal codes over \mathbb{Z}_{p^2} , Journal of combinatorics, information & system sciences **34** (2009), 51–66.
- [2] W. Cary Huffman and Vera Pless, Fundamentals of error correcting codes, Cambridge University Pless, New York, 2003.
- [3] W. Choi and Y.H. Park, Self-dual codes over \mathbb{Z}_{p^2} of length 4, preprint.
- [4] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Comin. Theory Ser. A. 62 (1993), 30–45.
- [5] S.T. Dougherty, T.A. Gulliver, Y.H. Park, J.N.C. Wong, *Optimal linear codes* oner \mathbb{Z}_m , J. Korean. Math. Soc. 44 (2007), 1136–1162.
- [6] Y. Lee and J. Kim, An efficient construction of self-dual codes, CoRR, 2012.
- [7] K. Nagata, F. Nemenzo and H. Wada, Constructive algorithm of self-dual errorcorrecting codes, 11th International Workshop on Algebraic and Combinatorial Coding Theory, 215–220, 2008.
- [8] Y.H. Park, *The classification of self-dual modular codes*, Finite Fields and Their Applications **17** (5) (2011), 442–460.
- [9] V.S. Pless, The number of isotropic subspace in a finite geometry, Atti Accad.
 Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 39 (1965), 418–421.
- [10] V.S. Pless, On the uniqueness of the Golay codes, J. Combin. Theory 5 (1968), 215–228.

Whan-hyuk Choi Department of Mathematics Kangwon National University Chuncheon 200-701, Korea E-mail: whanhyuk@gmail.com

Kwang Ho Kim
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail: prime229@gmail.com

Sook Young Park Department of Mathematics Kangwon National University Chuncheon 200-701, Korea

E-mail: erestugypsy@gmail.com