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KOLMOGOROV DISTANCE FOR MULTIVARIATE

NORMAL APPROXIMATION

Yoon Tae Kim and Hyun Suk Park∗

Abstract. This paper concerns the rate of convergence in the mul-
tidimensional normal approximation of functional of Gaussian fields.
The aim of the present work is to derive explicit upper bounds of the
Kolmogorov distance for the rate of convergence instead of Wasser-
stein distance studied by Nourdin et al. [Ann. Inst. H. Poincaré(B)
Probab.Statist. 46(1) (2010) 45-98].

1. Introduction

Let Z be a standard Gaussian random variable on a probability space
(Ω,F , P ). Suppose that {Fn} is a sequence of real-valued random vari-
ables of an infinite-dimensional Gaussian field. In the paper [6] and [7],
authors combine Stein’s method and Malliavin calculus to derive explicit
upper bounds for quantities of the type

(1) |E[h(Fn)]− E[h(Z)]|,
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where h is a suitable test function. In the paper [9], authors extend the
results of [6]and [7] to the multidimensional normal approximation of
functional of Gaussian fields in Wasserstein distance.

For a given function f : R→ R, the Stein equation associated with f
is defined by

(2) f(x)− E[f(Z)] = h′(x)− xh(x) for all x ∈ R.

A solution to the equation (2) is a function h such that h is Lebesgue-
almost everywhere differentiable and there exists a version of h′ satisfying
(2). If h ∈ Lip(1), where Lip(1) is the collection of all functions with
Lipschitz constant bounded by 1, then the equation (2) has a soluiton h
such that ‖h′‖∞ ≤ 1 and ‖h′′‖∞ ≤ 2. Recall that Wasserstein distance
between the laws of two real-valued random variables X and Y is defined
by

dW (X, Y ) = sup
h∈Lip(1)

|E[h(X)]− E[h(Y )]|.

In the paper [9], authors obtain explicit upper bounds of dW in the
case when Z is a d-dimensional Gaussian vector, F = (F (1), . . . , F (d)) of
smooth functionals of Gaussian fields, and dW is Wasserstein distance
probability law on Rd.

In this paper, we consider the case when the test function h is non-
smooth such as the indicator functions of Borel-measurable convex sets.
The test function of the Kolmogorov distance is such a class. This dis-
tance is defined by

dKol(X, Y ) = sup
{h=1(−∞,z]:z∈Rd}

|E[h(X)]− E[h(Y )]|.

For the proof of quantitative Breuer-Major theorems in [8], the upper
bound of the Kolmogorov distance is obtained by using the relation (see
Theorem 3.1 in [3] )

(3) dKol(X, Y ) ≤ 2
√
dW (X, Y ).

In this paper, by using the smoothing inequality, we directly de-
rive an explicit upper bound of the Kolmogorov distance for a sequence

{Fn = (F
(1)
n , . . . , F

(d)
n ), n ≥ 1} As an application, we find an explicit

upper bound of the Kolmogorov distance in the Breuer-Major central
limit theorem for fractional Brownian motion. (For the Wasserstein dis-
tance, see Theorem 4.1 in [9]). We stress that our upper bound is more
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efficient than the upper bound obtained by the relationship (3) as our
upper bound converges to zero more fast.

2. Preliminaries

In this section, we recall some basic facts about Malliavin calculus for
Gaussian processes. The reader is referred to [10] for a more detailed
explanation. Suppose thatH is a real separable Hilbert space with scalar
product denoted by < ·, · >H. Let B = {B(h), h ∈ H} be an isonormal
Gaussian process, that is a centered Gaussian family of random variables
such that E[B(h)B(g)] = 〈h, g〉H.

Let S be the class of smooth and cylindrical random variables F of
the form

(4) F = f(B(ϕ1), · · · , B(ϕn)),

where n ≥ 1, f ∈ C∞b (Rn) and ϕi ∈ H, i = 1, · · · , n. The Malliavin
derivative of F with respect to B is the element of L2(Ω,H) defined by

(5) DF =
n∑

i=1

∂f

∂xi
(B(ϕ1), · · · , B(ϕn))ϕi,

We denote by Dl,p the closure of its associated smooth random variable
class with respect to the norm

‖F‖pl,p = E(|F |p) +
l∑

k=1

E(‖DkF‖pH⊗k).

We denote by δ the adjoint of the operator D, also called the diver-
gence operator. The domain of δ, denoted by Dom(δ), is an element
u ∈ L2(Ω;H) such that

|E(< DF, u >H)| ≤ C(E|F |2)1/2 for all F ∈ Dl,2.

If u ∈ Dom(δ), then δ(u) is the element of L2(Ω) defined by the duality
relationship

E[Fδ(u)] = E[〈DF, u〉H] for every F ∈ D1,2.

Let F ∈ L2(Ω) be a square integrable random variable. The operator
L is defined through the projection operator Jn, n = 0, 1, 2 . . ., as L =∑∞

n=0−nJnF , and is called the infinitesimal generator of the Ornstein-
Uhlhenbeck semigroup. The relationship between the operator D, δ,
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and L is given as follows: δDF = −LF , that is, for F ∈ L2(Ω) the
statement F ∈ Dom(L) is equivalent to F ∈ Dom(δD) (i.e. F ∈ D1,2

and DF ∈ Dom(δ)), and in this case δDF = −LF . We also define the
operator L−1, which is the pseudo-inverse of L, as L−1F =

∑∞
n=1

1
n
Jn(F ).

Note that L−1 is an operator with values in D2,2 and LL−1F = F −E[F ]
for all F ∈ L2(Ω).

3. Main results

In this section, we derive an explicit upper bound of the Kolmogorov
distance for normal approximation. We begin by the following simple
lemma.

Lemma 3.1. Let

f(t) = a log

(
1√

1− e−2t

)
+ b
√

1− e−2t for t > 0,

where a and b are positive constants such that a < b. Then the minimum
with respect to t is attained for

t = −1

2
log

(
1−

(a
b

)2)
,

and

inf
t>0

f(t) = a(log(b)− log(a)) + a,

Proof. The solution t∗ of the equation f ′(t) = 0 is given by

t∗ = −1

2
log

(
1−

(a
b

)2)
.

It is clear that inft>0 f(t) = f(t∗) = a(log(b)− log(a)) + a.

We define the following smoothing of h by Tth for small t > 0:

Tth(x) = E
[
h(e−tx+

√
1− e−2tZ)

]
,

where Z ∼ N (0, I). We use the following differential equation in [5] or
(26.1.16) in the book [1],

(6) Tth(x)− Φh = ∆Ψt(x)− x · ∇Ψt(x),
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where

Ψt(x) = −
∫ ∞
t

{∫
Rd

h̃(e−sx+
√

1− e−2sy)φ(y)dy

}
ds.

Let C be the class of all Borel convex sets in Rd and h̃ = h −
∫
Rd hdΦ.

In [1], the bound for the error arising from this smoothing is given by

(7) sup
{h:h=1C ,C∈C}

∣∣∣E[h̃(Fn)]
∣∣∣ ≤ sup

{h:h=1C ,C∈C}

∣∣∣E[Tth̃(Fn)]
∣∣∣+ b
√

1− e−2tet,

where b is a positive constant being independent of n. We first estimate,
for small t > 0,

(8) E[Tth̃(Fn)] = E[∆Ψt(Fn)− Fn · ∇Ψt(Fn)],

Obviously, for i, j = 1, . . . , d,

∂2

∂xi∂xj
Ψt(x) = −

∫ ∞
t

(
e−s√

1− e−2s

)2

{∫
Rd

h̃(e−sx+
√

1− e−2sy)
∂2

∂yi∂yj
φ(y)dy

}
ds.

From the estimate
∫
Rd

∣∣∣∣∣ ∂2

∂yi∂yj
φ(y)

∣∣∣∣∣dy ≤ 1 for i, j = 1, . . . , d we have

(9) sup
x∈Rd

∣∣∣∣∣ ∂2

∂xi∂xj
Ψt(x)

∣∣∣∣∣ ≤
∫ ∞
t

e−2s

1− e−2s
ds = log

(
1√

1− e−2t

)
.

Theorem 3.2. Let Σ be a d × d be a symmetric positive-definite

matrix . Suppose that {Fn = (F
(1)
n , . . . , F

(d)
n ), n ≥ 1} is a sequence of Rd-

valued centered square integrable random variables such that F
(i)
n ∈ D1,2

for every i = 1, . . . , d and n ≥ 1. For n ≥ 1 such that ‖Σ−1/2‖21An < b,
we have that

sup
{h:h=1C ,C∈C}

∣∣∣E[h(Fn)]− E[h(Σ1/2Z)]
∣∣∣

≤ ‖Σ−1/2‖21An

(
log(b)− log(‖Σ−1/2‖21An)

)
+ ‖Σ−1/2‖21An,(10)
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where b is a positive constant, the norm ‖Σ−1/2‖21 denotes the subordi-
nate matrix norm for a matrix Σ−1/2 based on `1 vector norms, and

An =
d∑

l,v=1

√√√√E

[(
Σlv − 〈DL−1F (l)

n , DF
(v)
n 〉H

)2]
.

Proof. Since C is invariant nonsingular, linear transformation, we have

sup
{h:h=1C ,C∈C}

∣∣∣E[h(Fn)]− E[h(Σ1/2Z)]
∣∣∣

= sup
{h:h=1C ,C∈C}

∣∣∣E[h(Σ−1/2Fn)]− E[h(Z)]
∣∣∣.(11)

Using the smoothing inequality (7) and (11) yields

sup
{h:h=1C ,C∈C}

∣∣∣E[h̃(Σ−1/2Fn)]
∣∣∣

≤ sup
{h:h=1C ,C∈C}

∣∣∣E[Tth̃(Σ−1/2Fn)]
∣∣∣+ c
√

1− e−2tet.(12)

By (8) and (9), we estimate∣∣∣E[Tth̃(Σ−1/2Fn)]
∣∣∣

=

∣∣∣∣∣E
[

d∑
i,j=1

∂2

∂xi∂xj
Ψt(Σ

−1/2Fn)δi,j

]

−
d∑

i,l=1

Σ
−1/2
il

d∑
j,v=1

Σ
−1/2
jv E

[
∂2

∂xi∂xj
Ψt(Σ

−1/2Fn)〈DL−1F (l)
n , DF (v)

n 〉H

]∣∣∣∣∣
=

∣∣∣∣∣E
[

d∑
i,j=1

∂2

∂xi∂xj
Ψt(Σ

−1/2Fn)
d∑

l,v=1

Σ
−1/2
il Σ

−1/2
jv

d∑
r=1

Σ
1/2
rl Σ1/2

rv

]

−
d∑

i,j=1

∂2

∂xi∂xj
Ψt(Σ

−1/2Fn)
d∑

l,v=1

Σ
−1/2
il Σ

−1/2
jv E

[
〈DL−1F (l)

n , DF (v)
n 〉H

]∣∣∣∣∣
(13)
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=

∣∣∣∣∣E
[

d∑
l,v=1

d∑
i,j=1

∂2

∂xi∂xj
Ψt(Σ

−1/2Fn)Σ
−1/2
il Σ

−1/2
jv

×

(
Σlv − 〈DL−1F (l)

n , DF (v)
n 〉H

)]∣∣∣∣∣
≤ log

(
1√

1− e−2t

)
d∑

l,v=1

d∑
i,j=1

∣∣∣Σ−1/2il Σ
−1/2
jv

∣∣∣
×E
[∣∣∣Σlv − 〈DL−1F (l)

n , DF (v)
n 〉H

∣∣∣](14)

≤ log

(
1√

1− e−2t

)(
sup
1≤l≤d

d∑
i=1

∣∣∣Σ−1/2il

∣∣∣)2

×
d∑

l,v=1

√√√√E

[(
Σlv − 〈DL−1F (l)

n , DF
(v)
n 〉H

)2]
.(15)

Since we take n ≥ 1 such that ‖Σ−1/2‖21An < b, it follows, from (7) and
Lemma 3.1 together with (15), that

sup
{h:h=1C ,C∈C}

∣∣∣E[Tth̃(Σ−1/2Fn)]
∣∣∣

≤ ‖Σ−1/2‖21An

(
log(b)− log(‖Σ−1/2‖21An)

)
+ ‖Σ−1/2‖21An.(16)

Remark 3.3. By the Cauchy-Schwartz inequality, the right-hand side
in (14) can be estimated as

log

(
1√

1− e−2t

)
d∑

j=1

( d∑
i=1

|Σ−1/2ij |
)2

×E

[√√√√ d∑
l,v=1

(∣∣∣Σlv − 〈DL−1F (l)
n , DF

(v)
n 〉H

∣∣∣)2](17)
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By a similar estimate as for (15), we have, from (17), that

sup
{h:h=1C ,C∈C}

∣∣∣E[Tth̃(Σ−1/2Fn)]
∣∣∣

≤ aBn

(
log(b)− log(aBn)

)
+ aBn,(18)

where a =
∑d

j=1

(∑d
i=1 |Σ

−1/2
ij |

)2
and

Bn = E

[√√√√ d∑
l,v=1

(∣∣∣Σlv − 〈DL−1F (l)
n , DF

(v)
n 〉H

∣∣∣)2].
4. Applications

In this section, we use our main results in order to obtain an explicit
upper bound of the Kolmogorov distance instead of the Wasserstein dis-
tance used for Theorem 4.1 in the paper [9] corresponding to Lemma 4.1
below. We recall that a fractional Brownian motion BH = {BH

t , t ≥ 0},
with Hurst parameter H, is a centered Gaussian process with covariance

R(s, t) = E[BH
t B

H
s ] =

1

2
(t2H + s2H − |t− s|2H).

Fix an integer q ≥ 2. We assume that H < 1− 1
2q

. Let us set

Sn(t) =
1

σ
√
n

[nt]−1∑
k=0

Hq(B
H
k+1 −BH

k ), for t ≥ 0,

whereHq is the qth Hermite polynomial function and σ =
√
q!
∑

r∈Z ρ
2(r),

ρ(r) =
1

2
(|r + 1|2H + |r − 1|2H − 2|r|2H).

In the paper [2] or [4], authors prove that as n→∞,

Sn
f.d.d−→ BH ,

where the notation
f.d.d−→ denotes convergence in the sense of finite-dimensional

distributions. In the paper [9], authors obtain the multidimensional
bound for the Wasserstein distance proved for {Sn(t), t ≥ 0}.
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Lemma 4.1. For any fixed d ≥ 1 and 0 = t1 < · · · < td, there exists
a constant c, depending only on d, H and (t0, t1, . . . , td) such that for
every n ≥ 1

dW (Fn, Z) ≤ c×


n−1/2 for H ∈ (0, 1

2
]

nH−1 for H ∈ (1
2
, 2q−3
2q−2 ]

nqH−q+ 1
2 for H ∈ (2q−3

2q−2 ,
2q−1
2q

]

,

where Z ∼ Nd(0, Id) and Fn = (F
(1)
n , . . . , F

(d)
n ),

F (i)
n =

Sn(ti)− Sn(ti−1)√
ti − ti−1

.

If we use the relation (3), then the upper bound of the Kolmogorov
distance equals

(19) dKol(Fn, Z) ≤ c×


n−1/4 for H ∈ (0, 1

2
]

n
H−1

2 for H ∈ (1
2
, 2q−3
2q−2 ]

n
2qH−2q+1

4 for H ∈ (2q−3
2q−2 ,

2q−1
2q

]

.

Theorem 4.2. Let Fn be a sequence given in Lemma 4.1. Then for
sufficiently large n ≥ 1, we have

(20) dKol(Fn, Z) ≤ c×


log(n)n−1/2 for H ∈ (0, 1

2
]

log(n)nH−1 for H ∈ (1
2
, 2q−3
2q−2 ]

log(n)nqH−q+ 1
2 for H ∈ (2q−3

2q−2 ,
2q−1
2q

]

.

Proof. By ignoring terms in the upper bound (10) of Theorem 3.2
being of lower order than log(An)An, we have, taking C = (−∞, z], that

(21) dKol(Fn, Z) ≤ c| log(An)|An.

By the estimate (21) and Lemma 4.1, we get the results.

Remark 4.3. we can see that the upper bound (20) obtained by using
Theorem 3.2 is more efficient than that in (19) obtained by using Lemma
4.1 in the sense that the latter one converges to zero more slowly as n
tends to infinity.
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