Korean J. Math. 23 (2015), No. 1, pp. 29–36 http://dx.doi.org/10.11568/kjm.2015.23.1.29

BASE OF THE NON-POWERFUL SIGNED TOURNAMENT

BYEONG MOON KIM AND BYUNG CHUL SONG^{*}

ABSTRACT. A signed digraph S is the digraph D by assigning signs 1 or -1 to each arc of D. The base of S is the minimum number k such that there is a pair walks which have the same initial and terminal point with length k , but different signs. In this paper we show that for $n \geq 5$ the upper bound of the base of a primitive non-powerful signed tournament S_n , which is the signed digraph by assigning 1 or -1 to each arc of a primitive tournament T_n , is $\max\{2n+2, n+11\}$. Moreover we show that it is extremal except when $n = 5, 7$.

1. Introduction

A digraph $D = (V, A)$ is *primitive* if there is a positive integer k such that for each vertices u, v of D , there is a directed walk of length k from u to v. A signed digraph S is a digraph where each arc of S is assigned signs 1 or -1 . If W is a directed walk of a signed digraph S, then the multiple of signs of all arcs in W is said to be the *sign* of W in S, denoted by sgn (W) . If two walks W_1 and W_2 have the same initial point, the same terminal point, the same length and different signs, then we say that W_1 and W_2 are a pair of SSSD walks. A signed digraph S is

Received November 5, 2014. Revised January 23, 2015. Accepted January 23, 2015.

²⁰¹⁰ Mathematics Subject Classification: 05C20, 15B35.

Key words and phrases: base, signed digraph, sign pattern matrix, tournament. [∗]Corresponding author.

[∗]This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

c The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

powerful if S contains no pair of SSSD walks. S is non-powerful if it is not powerful. So every primitive non-powerful signed digraph contains a pair of SSSD walks. From now on we assume that S is a primitive nonpowerful signed digraph. For each pair of vertices u, v of S , we define the local base $l_S(u, v)$ from u to v by the smallest integer l such that if $k > l$, then there is a pair of SSSD walks of length k in S from u to v. We define the base $l(S)$ of S by $\max\{l_S(u, v)|u, v \in V(S)\}.$

A square matrix with its entries in the sign set $\{1, 0, -1\}$ is said to be the sign pattern matrix. In computing the powers of A, we use the usual arithmetic rules of signs such that $1 + 1 = 1$, $-1 + (-1) = -1$ and $1 \cdot 1 = -1 \cdot (-1) = 1$ and $1 \cdot (-1) = -1$. Sometimes we contact the ambiguous situations such that $1 + (-1)$ or $(-1) + 1$. As in [\[3\]](#page-7-0), in this case we use the symbol \sharp as follows:

$$
(-1) + 1 = 1 + (-1) = \sharp
$$
; $a + \sharp = \sharp + a = \sharp$ for any $a \in \{1, -1, \sharp, 0\}$

$$
0 \cdot \sharp = \sharp \cdot 0 = 0; \quad b \cdot \sharp = \sharp \cdot b = \sharp \text{ for any } b \in \{1, -1, \sharp\}.
$$

When the power of a sign pattern matrix contains \sharp entry it is convinient to expand the sign set as follows $\Gamma = \{1, 0, -1, \ddagger\}$. A square matrix with its entries in the sign set $\Gamma = \{1, 0, -1, \sharp\}$ is said to be the *generalized* sign pattern matrix. A sign pattern matrix A is said to be *powerful* if each power of A contains no \sharp entry. And A is non-powerful if it is not powerful. When we deal with the non-powerful sign pattern matrix we use the generalized one. Since we use non-powerful sign pattern matrix, throughout this paper we simply say the sign pattern matrix instead of the generalized sign pattern matrix.

Let $A = (a_{ij})$ be the adjacency matrix of the signed digraph S, that is $(i, j) \in A$ and sgn $(i, j) = \alpha$ if and only if $a_{ij} = \alpha$ where $\alpha = 1$, or -1 . Hence A is the sign pattern matrix. A least positive integer l such that there is a positive integer p satisfying $A^l = A^{l+p}$ is said to be the base of A, and denoted by $l(A)$. Li et al. [\[3\]](#page-7-0), showed that if a sign pattern matrix A is powerful, then $l(A) = l(|A|)$ where |A| is the matrix by assigning each non-zero entries of A to 1. If A is non-powerful, then the] entry appears and we have different situations. It follows directly from the definitions $l(S) = l(A)$ where A is the adjacency matrix of S. Gao, Huang and Shao [\[2\]](#page-7-1), Shao and Gao [\[6\]](#page-7-2) and Li and Liu [\[4\]](#page-7-3) studied the base and local base of the primitive non-powerful signed symmetric digraphs with loops. Song and Kim [\[7\]](#page-7-4) computed the base of the non-powerful signed complete graphs.

In this paper we show that for $n \geq 5$ the upper bound of the base $l(T_n)$ of a primitive non-powerful signed tournament T_n of order n is $\max\{2n + 2, n + 11\}$ and this bound is extremal when $n \neq 5, 7$. When $n = 5$ or 7, we prove that $l(T_n) \leq n + 10$ by providing some examples.

2. Bases of Signed Tournament

A tournament T_n of order n is a digraph which can be obtained from the complete graph K_n by assigning a direction to each of its edges. It is well known that T_n is primitive if and only if T_n is strongly connected. Moon and Pullman [\[5\]](#page-7-5) studied invariant structure of the primitive tournament. Throughout this paper we assume that T_n is a primitive nonpowerful signed tournament of order n. The following on T_n is well known.

LEMMA 1. [\[1\]](#page-6-0) If T_n is strongly connected then each vertex of T_n is contained in a simple cycle of length l for each $3 \leq l \leq n$.

The following characteristics of the non-powerful primitive signed digraph are useful to obtain the main results.

LEMMA 2. $[8]$ A signed digraph S is non-powerful primitive if and only if S contains a pair of cycles C_1 and C_2 of length p_1 and p_2 respectively satisfying one of the following holds.

(1) p_1 is odd and p_2 is even with sgn(C_2) = -1 (2) p_1 and p_2 is odd and sgn(C_1) = $-\text{sgn}(C_2)$.

Let T_n be a primitive non-powerful signed tournament of order n and u, v be two vertices of T_n which are not necessarily distinct. By Lemma 1 there is a cycle C_0 of length n. If we assume that C_0 is the cycle $v_0v_1 \cdots v_{n-1}v_0$ where $v_0 = u$, then the vertex set is $\{v_0, v_1, \ldots, v_{n-1}\}.$ For each cycle C of T_n we define $d(C) = \min\{k|v_k\}$ is a vertex of C} and |C| to be the length of C. Since a primitive tournament T_n contains every cycle of length $3 \leq l \leq n$, thus Lemma 2 can be rewritten as follows:

LEMMA 3. Let T_n be a primitive signed tournament. Then T_n is non-powerful if and only if T_n contains a cycle C satisfying one of the following holds.

(1) |C| is even with $sgn(C) = -1$

(2) |C| is odd and $sgn(C) = -sgn(C')$ for some odd cycle C' of T_n .

THEOREM 1. If $n \geq 5$, then for each pair of vertices u, v of T_n there is a pair of SSSD walks from u to v of length less than or equals to $\max\{2n-1, n+8\}.$

Proof. Since T_n is non-powerful we let C be the the first cycle in T_n which causes the situation of (1) or (2) in Lemma 3. In other words C is a cycle of T_n satisfying one of the followings.

- (A): If C is an even cycle, then $sgn(C) = -1$ and every even cycle C' in T_n such that $d(C') < d(C)$, or $d(C') = d(C)$ and $|C'| < |C|$ satisfies sgn(C') = 1. Moreover every odd cycle C' in T_n such that $d(C') < d(C)$, or $d(C') = d(C)$ and $|C'| < |C|$ have the same sign. (B): If C is an odd cycle with $d(C) \geq 1$, or $d(C) = 0$ and $|C| > 3$, then every odd cycle C' in T_n such that $d(C') < d(C)$, or $d(C') =$ $d(C)$ and $|C'| < |C|$ satisfies $sgn(C) = -sgn(C')$. Moreover every even cycle C' in T_n such that $d(C') < d(C)$, or $d(C') = d(C)$ and $|C'| < |C|$ satisfies sgn $(C') = 1$.
- (C): If $|C| = 3$ and $d(C) = 0$, then there is an odd cycle C' in T_n such that $d(C') = 0$ and $|C'| = 3$ with $sgn(C) = -sgn(C')$.

If $d(C) = k \geq 1$, then since T_n is a tournament and by (A) or (B) there is C' such that $d(C') = 0$ and $|C'| = |C|$ such that $sgn(C) =$ $-\text{sgn}(C')$. Since $d(C) = k, v_0, v_1, \ldots, v_{k-1}$ is not a vertex of C. We have $|C| = m \leq n - k$. If $v = v_j$ with $0 \leq j < k$ then the walk

$$
W_1 = (v_0v_1 \cdots v_k) + C + (v_kv_{k+1} \cdots v_{n-1}v_0 \cdots v_j)
$$

is the walk of length $|W_1| = k + m + (n - 1 - k) + 1 + j = m + n + j$ from $u = v_0$ to $v = v_j$. And the walk

$$
W_2 = C' + (v_0v_1 \cdots v_{n-1}v_0 \cdots v_j)
$$

is the walk of length $|W_2| = m + n + j$. Since $m \le n - k$ and $j < k$, the common length $m + n + j$ of W_1 and W_2 is less than or equals to $2n - 1$. We have

$$
sgn(W_1) = sgn(C) \times sgn(v_0 \cdots v_{n-1}v_0 \cdots v_j)
$$

=
$$
-sgn(C') \times sgn(v_0 \cdots v_{n-1}v_0 \cdots v_j)
$$

=
$$
-sgn(W_2).
$$

So there is a pair of SSSD walks of length less than or equals to $2n - 1$ from u to v. If $v = v_j$ with $k \leq j \leq n-1$, then the walk

$$
W_1 = (v_0v_1 \cdots v_k) + C + (v_k \cdots v_j)
$$

is the walk of length $|W_1| = k + m + j - k = m + j$ from u to v. And the walk

$$
W_2 = C' + (v_0v_1 \cdots v_j)
$$

is the walk of length $|W_2| = m + j$. The common length $m + j$ of W_1 and W_2 is less than or equals to $2n - 1$. We also have

$$
sgn(W_1) = sgn(C) \times sgn(v_0 \cdots v_j)
$$

=
$$
-sgn(C') \times sgn(v_0 \cdots v_j)
$$

=
$$
-sgn(W_2).
$$

So there is a pair of SSSD walks of length less than or equals to $2n - 1$ from u to v.

If $d(C) = 0$ and $|C| = 3$, then by (C) there is a cycle C' in T_n where $d(C') = 0$ and $|C'| = 3$ such that $sgn(C) = -sgn(C')$. The walks

$$
W_1 = C + (v_0v_1 \cdots v_j)
$$

and

$$
W_2 = C' + (v_0v_1\cdots v_j)
$$

are a pair of SSSD walks with common length $3 + j \leq 2n - 1$ from u to v.

Let $d(C) = 0$ and $|C| = m \ge 6$. If m is even, then there is a cycle $C_{\frac{m}{2}}$ in T_n where $d(C_{\frac{m}{2}})=0$ and $|C_{\frac{m}{2}}|=\frac{m}{2}$ $\frac{m}{2}$. By (A) sgn(C) = -1 and since $sgn(2C_{\frac{m}{2}})=1$ the walks

$$
W_1 = C + (v_0v_1 \cdots v_j)
$$

and

$$
W_2 = 2C_{\frac{m}{2}} + (v_0v_1\cdots v_j)
$$

are a pair of SSSD walks with common length $m+j(\leq 2n-1)$ from u to v. If m is odd, then since $m-3(\geq 4)$ is even and by (B) there is a cycle C_{m-3} in T_n where $d(C_{m-3}) = 0$, $|C_{m-3}| = m-3$ and $sgn(C_{m-3}) = 1$. Also by (B) there is a cycle C_3 in T_n where $d(C_3) = 0$, $|C_3| = 3$ and $sgn(C_3) = -sgn(C)$. Since $sgn(C_3 + C_{m-3}) = sgn(C_3)sgn(C_{m-3}) =$ $-\text{sgn}(C)$ the walks

$$
W_1 = C + (v_0 v_1 \cdots v_j)
$$

and

$$
W_2 = C_3 + C_{m-3} + (v_0 v_1 \cdots v_j)
$$

are a pair of SSSD walks with common length $m + j \leq 2n - 1$ from u to v.

If $d(C) = 0$ and $|C| = 5$, then by (B) there are cycles C_3 and C_4 in T_n where $d(C_3) = d(C_4) = 0$, $|C_3| = 3$ and $|C_4| = 4$ such that sgn(C) = $-\text{sgn}(C_3)$. In this case we have sgn(C₃ + C) = −1 and so the walks

$$
W_1 = C + C_3 + (v_0v_1 \cdots v_j)
$$

and

$$
W_2 = 2C_4 + (v_0v_1 \cdots v_j)
$$

are a pair of SSSD walks with common length $8 + j(\leq n + 7)$ from u to \overline{v} .

Let $d(C) = 0$ and $|C| = 4$. Since $n \geq 5$, there are cycles C_3 and C_5 in T_n with $d(C_3) = d(C_5) = 0$ and $|C_3| = 3$ and $|C_5| = 5$.

If sgn
$$
(C_3)
$$
 = sgn (C_5) , then sgn $(3C_3)$ = -sgn $(C_5 + C)$. So the walks

$$
W_1 = 3C_3 + (v_0v_1\cdots v_j)
$$

and

$$
W_2 = C_5 + C + (v_0v_1\cdots v_j)
$$

are a pair of SSSD with common length $9 + j \leq n + 8$ from u to v. If $sgn(C_3) = -sgn(C_5)$, then $sgn(C_3 + C_5) = -sgn(2C)$. So the walks

$$
W_1 = C_3 + C_5 + (v_0 v_1 \cdots v_j)
$$

and

$$
W_2 = 2C + (v_0v_1 \cdots v_j)
$$

are a pair of SSSD walks with common length $8 + j(\leq n + 7)$ from u to \Box υ .

Since T_n is a primitive tournament and $n \geq 5$, there is a closed walk of length l passing through u for each vertex u of T_n and $l \geq 3$. We obtain the following corollary.

COROLLARY 1. If $n \geq 5$, then the base $l(T_n)$ of the primitive nonpowerful signed tournament T_n of order n satisfies

$$
l(T_n) \le \max\{2n + 2, n + 11\}.
$$

The following examples reveal that the upper bound of the base given in Corollary 1 is extremal when $n \geq 5$ and $n \neq 5$, 7.

Examples: Let $S_n = (V, A)$ be the signed tournament such that

$$
V = \{0, 1, \dots, n - 1\}
$$

Base of the non-powerful signed tournament 35

 $A = \{(i, i + 1)|0 \le i \le n - 2\} \cup \{(i, j)|0 \le j \le i - 2 \le n - 2\}.$

- 1: For $n \geq 9$ if we assign 1 to each arc of S_n except $(n-1,0)$ to which we assign -1 , then there is no walk of length $2n + 1$ from 0 to $n-1$ with sign -1 . So the upper bound $2n+2$ is extremal.
- 2: For $n = 8$ if we assign 1 to each arc of S_8 except the 7 arcs

 $(7, 4), (6, 3), (5, 2), (4, 1), (3, 0), (7, 1), (6, 0)$

to which we assign -1 , then there is no walk of length 18 from 0 to 7 with sign −1. So the upper bound 19 is extremal.

- 3: For $n = 7$ we assign 1 to each arc of S_7 except $(6, 2), (5, 1), (4, 0)$ to which we assign -1 , then there is no walk of length 16 from 0 to 6 with sign −1. In this case there is a pair of SSSD walks of length 14 from 0 to 6, so $l(S_7) = 17 = n + 10$.
- 4: For $n = 6$ we assign 1 to each arc of S_6 except $(5, 2)$, $(4, 1)$, $(3, 0)$ to which we assign -1 , then there is no walk of length 16 from 0 to 5 with sign −1. So the upper bound 17 is extremal. Figure 1 displays the signed tournament S_6 , in which the sign of the arcs with no symbols is 1.

Figure 1. Signed tournament S_6

5: For $n = 5$ we assign 1 to each arc of S_5 except $(4, 0)$ to which we assign -1 , then there is no walk of length 14 from 0 to 4 with sign −1. In this case there is a pair of SSSD walks of length 12 from 0 to 4, so $l(S_5) = 15 = n + 10$.

References

[1] V. K. Balakrishnan, *Graph theory*, McGraw-Hill, N.Y., 1997.

36 Byeong Moon Kim and Byung Chul Song

- [2] Y. Gao, Y. Huang and Y. Shao, Bases of primitive non-powerful signed symmetric digraphs with loops, Ars. Combinatoria 90 (2009), 383–388.
- [3] B. Li, F. Hall and J. Stuart, Irreducible powerful ray pattern matrices, Linear Algebra and Its Appl., 342 (2002), 47–58.
- [4] Q. Li and B. Liu, Bounds on the kth multi-g base index of nearly reducible sign pattern matrices, Discrete Math. 308 (2008), 4846–4860.
- [5] J. Moon and N, Pullman, On the powers of tournament matrices, J. Comb. Theory 3 (1967), 1–9.
- [6] Y. Shao and Y. Gao, The local bases of non-powerful signed symmetric digraphs with loops, Ars. Combinatoria **90** (2009), 357-369.
- [7] B. Song and B. Kim, The bases of primitive non-powerful complete signed graphs, Korean J. Math. 22 (2014), 491–500.
- [8] L. You, J. Shao and H. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, Linear Algebra and Its Appl. 427 (2007), 285–300.

Byeong Moon Kim Department of Mathematics Gangneung-Wonju National University Gangneung 210-702, Korea $E-mail:$ kbm@gwnu.ac.kr

Byung Chul Song Department of Mathematics Gangneung-Wonju National University Gangneung 210-702, Korea $E-mail:$ bcsong@gwnu.ac.kr