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ON SEMI-IFP RINGS

Hyo Jin Sung and Sang Jo Yun∗

Abstract. We in this note introduce the concept of semi-IFP rings
which is a generalization of IFP rings. We study the basic structure
of semi-IFP rings, and construct suitable examples to the situations
raised naturally in the process. We also show that the semi-IFP does
not go up to polynomial rings.

1. Semi-IFP rings

Throughout this paper all rings are associative with identity unless
otherwise stated. Let R be a ring. N∗(R), N∗(R), and N(R) denote the
lower nilradical (i.e., the prime radical), the upper nilradical (i.e., the
sum of nil ideals), and the set of all nilpotent elements in R, respectively.
Note that N∗(R) ⊆ N∗(R) ⊆ N(R). The polynomial ring with an
indeterminate x over a ring R is denoted by R[x]. Z and Zn denote the
ring of integers and the ring of integers modulo n. Denote the n by n
(n ≥ 2) full (resp., upper triangular) matrix ring over R by Matn(R)
(resp., Un(R)). Use eij for the matrix with (i, j)-entry 1 and elsewhere
0. Z (resp., Zn) denotes the ring of integers (resp., modulo n).

It is well-known that the set of all nilpotent elements in a commutative
ring coincides with the prime radical. This fact is also possessed by
certain sorts of noncommutative rings, and such rings are called 2-primal
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by Birkenmeier et al. [3]. Shin [13, Proposition 1.11] proved that given
a ring R, N∗(R) = N(R) if and only if every minimal prime ideal P of
R is completely prime (i.e., R/P is a domain).

A well-known property between “commutative” and “2-primal” is the
insertion-of-factors-property (simply, IFP), introduced by Bell [2]. A
right (or left) ideal I of a ring R is said to have the IFP if ab ∈ I implies
aRb ⊆ I for a, b ∈ R, and we will call a ring IFP if the zero ideal has the
IFP. Narbonne [12] and Shin [13] used the terms semicommutative and
SI for the IFP, respectively; while, IFP rings were also studied under the
name zero insertive by Habeb [7]. IFP rings are 2-primal [13, Theorem
1.5].

A ring is called reduced if it has no nonzero nilpotent elements. It is
trivial to check that reduced rings are IFP, whence the IFP condition
is also between “reduced” and “2-primal”. It is trivial that subrings of
IFP rings are also IFP, so we use this fact freely in this note. A ring is
called Abelian if every idempotent is central. IFP rings are Abelian by
a simple computation.

Following the literature, the index (of nilpotency) of a nilpotent ele-
ment a in a ring R is the least positive integer n such that an = 0, write
i(a) for n; the index (of nilpotency) of a subset S of R is the supremum
of the indices (of nilpotency) of all nilpotent elements in S, write i(S);
and if such a supremum is finite, then S is said to be of bounded index
(of nilpotency).

We now introduce the concept of semi-IFP rings as a generalization
of IFP, and study relationships between semi-IFP rings and near related
ring theoretic properties..

Definition 1.1. A ring R is called semi-IFP if a2 = 0 for a ∈ R
implies aRa = 0.

It is obvious that a ring R is semi-IFP if and only if a2 = 0 for a ∈ R
implies (RaR)2 = 0. Clearly, the class of semi-IFP rings is closed under
subrings. We will use this fact freely.

Following [10] a ring R is said to be near-IFP if
∑n

i=0RaiR contains
a nonzero nilpotent ideal whenever a nonzero polynomial

∑n
i=0 aix

i over
a ring R is nilpotent.

U2(Z4) is near-IFP by [10, Proposition 1.10(1)], but U2(Z4) is not
semi-IFP by Example 1.6 to follow. Let R be a semi-IFP ring and R is of
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bounded index 2(of nilpotency). Then R is near-IFP by [10, Proposition
1.2]. However we do not know whether semi-IFP rings are near-IFP when
given rings are of bounded index(of nilpotency)≥3.

We see in the following that Matn(R) cannot be semi-IFP for any
ring R and n ≥ 2, and that the class of semi-IFP rings is not closed
under homomorphic images.

Example 1.2. Consider the ring Mat2(R) over any ring R. For e12 ∈
Mat2(R), we have e212 = 0 but

0 6= e12 = e12e21e12 ∈ e12Mat2(R)e12,

showing thatMat2(R) is not semi-IFP. Consequently, Matn(R) for n ≥ 2
cannot be semi-IFP.

This result also illuminates that the class of semi-IFP rings is not
closed under homomorphic images. In fact, let R be the ring of quater-
nions with integer coefficients. Then R is a domain, and so semi-IFP.
However, for any odd prime integer q, the ring R/qR ∼= Matn(Zq), by
the argument in [6, Exercise 2A]. Since Matn(Zq) is not semi-IFP by
above, and thus R/qR cannot be semi-IFP.

However, we have the following.

Proposition 1.3. Let R be a reduced ring. Then Un(R) is a semi-
IFP ring for n = 2, 3.

Proof. It is enough to show that U3(R) over a reduced ring R is semi-
IFP. Let M2 = 0 for

M =

a b c
0 d e
0 0 f

 ∈ U3(R).

Then a = d = f = 0 and be = 0. Here be = 0 implies bRe = 0 since
reduced rings are IFP. So for anyx y z

0 u v
0 0 w

 ∈ U3(R),

we have0 b c
0 0 e
0 0 0

x y z
0 u v
0 0 w

0 b c
0 0 e
0 0 0

 =

0 0 bue
0 0 0
0 0 0

 = 0,
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entailing that MU3(R)M = 0. Therefore U3(R) is semi-IFP.

Recall that for a ring R and an (R,R)-bimodule M , the trivial exten-
sion of R by M is the ring T (R,M) = R ⊕M with the usual addition
and the following multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2).

This is isomorphic to the ring of all matrices

(
r m
0 r

)
, where r ∈ R

and m ∈M and the usual matrix operations are used.
By Proposition 1.3, we have the following since T (R,R) is a subring

of U2(R).

Corollary 1.4. If R is a reduced ring, then T (R,R) is a semi-IFP
ring.

Based on Proposition 1.3, one may suspect that Un(R) over a reduced
ring R may be also a semi-IFP ring for n ≥ 4. But the following example
erases the possibility.

Example 1.5. Let R be any ring and consider U4(R). Let

M =


0 1 1 0
0 0 0 −1
0 0 0 1
0 0 0 0

 ∈ U4(R).

Then M2 = 0, but

0 6=


0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

 = M


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

M ∈MU4(R)M,

showing that U4(R) is not semi-IFP. Therefore Un(R) cannot be semi-
IFP for n ≥ 5.

Un(R) is 2-primal over a 2-primal ring R by [3]. So Example 1.5 shows
that 2-primal rings need not be semi-IFP.

IFP rings are clearly semi-IFP but the converse need not hold. For
example, the ring U2(R) is non-Abelian over any ring R, so U2(R) cannot
be IFP. But U2(A) is semi-IFP over a reduced ring A by Proposition 1.3,
and thus this also says that semi-IFP rings need not be Abelian.

The condition “A is a reduced ring” in Proposition 1.3 cannot be
weakened by the condition “A is a semi-IFP ring” by the following.
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Example 1.6. Consider the ring U2(Z4). Note that Z4 is a semi-IFP
ring. For

M =

(
2 1
0 2

)
∈ U2(Z4),

M2 = 0, but

0 6=
(

0 2
0 0

)
= M

(
1 0
0 0

)
M ∈MU2(Z4)M.

So U2(Z4) is not semi-IFP.

Let R be a ring and I be a nilpotent ideal of R with I3 = 0. Then
I is a semi-IFP ring without identity. So it is natural to ask whether
R is a semi-IFP ring if both R/I and I are semi-IFP rings. However
we have a negative answer to this situation by Example 1.6. Indeed, let

I =

(
0 Z4

0 0

)
. Then I is a semi-IFP ring with I2 = 0, and R/I is a

commutative ring. But R is not semi-IFP.
However if we take another condition “I is reduced” then we can

have an affirmative answer as follows. The following is a similar result
to [9, Theorem 6] for IFP rings.

Theorem 1.7. For a ring R suppose that R/I is a semi-IFP ring for
a proper ideal I of R. If I is a reduced ring without identity then R is
semi-IFP.

Proof. Let a2 = 0 for a ∈ R. Then aRa ⊆ I since R/I is semi-IFP.
Moreover a2 = 0 implies (aRa)2 = 0. But since I is reduced, aRa = 0.
Therefore R is semi-IFP.

We let N0(R) be the Wedderburn radical (i.e., the sum of all nilpotent
ideals) of a ring R. Note N0(R) ⊆ N∗(R).

Proposition 1.8. Let R be a semi-IFP ring with i(R) = 2.
(1) N0(R) = N∗(R) = N∗(R) = N(R).
(2) If f(x)2 = 0 for f(x) =

∑n
i=0 aix

i ∈ R[x], then (R[x]f(x)R[x])n+2 =
0.

Proof. (1) Let R be a semi-IFP ring with i(R) = 2. Take a ∈ N(R).
Then a2 = 0, and since R is semi-IFP we have (RaR)2 = 0. This implies
a ∈ N0(R).
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(2) Let f(x)2 = 0 for f(x) =
∑n

i=0 aix
i ∈ R[x]. By (1), N0(R) =

N(R) and so R/N0(R) is a reduced ring. It then follows from f(x)2 = 0
that ai ∈ N0(R) for all i. Since R is semi-IFP, we get (RaiR)2 = 0. Con-
sider any sum-factor of any coefficient of polynomials in (R[x]f(x)R[x])n+2,
c say. Then two or more aj’s occur in c for some j, so c is contained in
(RajR)2. Thus c = 0 and this yields (R[x]f(x)R[x])n+2 = 0.

It is well-known that a ring R is reduced if and only if R is 2-primal
and semiprime. Moreover, we have the following.

Proposition 1.9. For a semiprime ring R, then the following condi-
tions are equivalent:

(1) R is reduced;
(2) R is IFP;
(3) R is 2-primal;
(4) R is semi-IFP;
(5) R is near-IFP.

Proof. It suffices to show (4)⇒(1) and (5)⇒(1). Assume that the
condition (4) holds. If a2 = 0 for a ∈ R, then aRa = 0 by assumption.
Since R is semiprime, a = 0 and so R is reduced.

Let R be a near-IFP and assume that a2 = 0 for a ∈ R. Here
assume a 6= 0. Then by [10, Proposition 1.2], RaR(6= 0) contains a
nonzero nilpotent ideal of R, I say. But R is semiprime, and so I = 0,
a contradiction. so a must be zero, entailing that R is reduced.

Following [5], a ring R is called (von Neumann) regular if for each a ∈
R there exists b ∈ R such that a = aba. Regular rings are semiprimitive
(hence semiprime) by [5]. So we get the following from Proposition 1.9.

Corollary 1.10. For a regular ring R, then the following conditions
are equivalent:

(1) R is reduced;
(2) R is IFP;
(3) R is 2-primal;
(4) R is semi-IFP;
(5) R is near-IFP.

A ring R is called right Ore if for a, b ∈ R with b regular there exist
a1, b1 ∈ R with b1 regular such that ab1 = ba1. It is a well-known fact
that R is a right Ore ring if and only if there exists the classical right
quotient ring of R, and that R is a semiprime right Goldie ring if and only
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if there exists the classical right quotient ring of R which is semisimple
Artinian.

Combing this fact with Proposition 1.9, we have the following which
is an extension of [9, Corollary 13].

Proposition 1.11. Let R be a semiprime right Goldie ring and Q
be the classical right quotient ring of R. Then the following conditions
are equivalent:

(1) R is a reduced ring;
(2) R is an IFP ring;
(3) R is a semi-IFP ring;
(4) R is near-IFP;
(5) Q is a reduced ring;
(6) Q is an IFP ring;
(7) Q is a semi-IFP ring;
(8) Q is a finite direct product of division rings.

Proof. By Proposition 1.9 and the proof of [9, Corollary 13].

2. Polynomial rings over semi-IFP rings

Concerning polynomial rings over reduced rings and 2-primal rings,
we have the following useful facts:

(1) A ring R is reduced if and only if R[x] is reduced obviously.
(2) A ring R is 2-primal if and only if R[x] is 2-primal by [3].

Based on these results one may naturally conjecture that a ring R is
semi-IFP if and only if R[x] is semi-IFP. However the following example
erases the possibility.

Example 2.1. The construction and computation are similar to [9,
Example 2] for IFP rings. Let A = Z2〈a0, a1, a2, c〉 be the free algebra
with noncommuting indeterminates a0, a1, a2, c over Z2. Let B be the
set of all polynomials in A with zero constant term. Let I be the ideal
of A generated by

a0a0, a1a2 + a2a1, a0a1 + a1a0, a0a2 + a1a1 + a2a0, a2a2,

and
a0ra0, a2ra2, (a0 + a1 + a2)r(a0 + a1 + a2), r1r2r3r4
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for r, r1, r2, r3, r4 ∈ B. Then clearly B4 ⊆ I. Set R = A/I. Notice that
(a0 + a1x + a2x

2)(a0 + a1x + a2x
2) ∈ I[x], but (a0 + a1x + a2x

2)c(a0 +
a1x+a2x

2) /∈ I[x] because a0ca1+a1ca0 /∈ I; hence R[x] is not semi-IFP.
Next we claim that R is semi-IFP. Each product of indeterminates

a0, a1, a2, c is called a monomial and we say that α is a monomial of
degree n if it is a product of exactly n generators. Let Hn be the set of
all linear combinations of monomials of degree n over Z2. Observe that
Hn is finite for any n and that the ideal I of R is homogeneous (i.e., if∑s

i=1 ri ∈ I with ri ∈ Hi then every ri is in I).

Claim 1. If f 2
1 ∈ I with f1 ∈ H1 then f1rf1 ∈ I for any r ∈ A.

Proof. By the definition of I we obtain the following cases:

(f1 = a0), (f1 = a2), or (f1 = a0 + a1 + a2).

So we complete the proof, using the definition of I again.

Claim 2. If f 2 ∈ I with f ∈ B then frf ∈ I for all r ∈ B.

Proof. Observe that f = f1 + f2 + f3 + f4 and r = r1 + r2 + r3 + r4
for some f1, r1 ∈ H1, f2, r2 ∈ H2, f3, r3 ∈ H3 and some f4, r4 ∈ I. Note
that Hi ⊆ I for i ≥ 4. So frf = f1r1f1 + h for some h ∈ I. f 2 ∈ I
implies f1f1 ∈ I since I is homogeneous; hence f1r1f1 ∈ I by Claim 1.
Consequently frf ∈ I.

To see that R is semi-IFP, it suffices to show that yry ∈ I for all
r ∈ A if y2 ∈ I with y ∈ A. By help of Claim 2, we can obtain the
following computations. First write y = α+z for some α ∈ Z2 and some
z ∈ B. So α2 +αz+ zα+ z2 = y2 ∈ I; hence α = 0. Then z2 ∈ I; hence
yry = zrz ∈ I for all r ∈ A. Therefore R is a semi-IFP ring.

Proposition 2.2. Suppose that a ring R is semiprime. Then the
following conditions are equivalent:

(1) R is semi-IFP;
(2) R[x] is semi-IFP.

Proof. If R is semiprime and semi-IFP then R is reduced by Propo-
sition 1.9, entailing that R[x] is reduced.

Given a ring R, an endomorphism σ of R, and a σ-derivation δ of
R, the Ore extension R[x;σ, δ] of R is the ring obtained by giving the
polynomial ring R[x] with the new multiplication xr = σ(r)x+ δ(r) for
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all r ∈ R. If δ = 0 then we write R[x;σ] and call it a skew polynomial
ring. If σ = 1 then we write R[x; δ] and call it a differential polynomial
ring. It is also natural to ask whether the class of semi-IFP rings is
closed under these two kinds of extensions. But the following provides
negative answers.

Example 2.3. There exists a semi-IFP ring over which the skew
polynomial ring is not semi-IFP. The argument is essentially due to [4,
Example 3.1(1)]. For a division ring D let R = D ⊕D, then R is semi-
IFP obviously. Define σ : R → R by σ(s, t) = (t, s). Then σ is an
automorphism of R. Let S = R[x;σ] be the skew polynomial ring over
R by σ. We claim that S is semiprime. Let I be a nonzero ideal of
S. Then we pick a nonzero f(x) in I which is of the smallest degree in
I. Say f(x) = a + bx + · · · + cxn with a, b, . . . , c ∈ R and c 6= 0. If n
is even, then f(x)2 = a2 + · · · + cσn(c)x2n = a2 + · · · + c2x2n ∈ I2 ⊆ I
is nonzero because c is nonzero and σ is of order 2. Next if n is odd
then f(x)x = ax + bx2 + · · · + cxn+1 ∈ I; hence [f(x)x]2 ∈ I2 ⊆ I is
also nonzero by the same computation. Thus I2 is nonzero and so S is
semiprime. But N(S) 6= 0 as can be seen by ((1, 0)x)((1, 0)x) = 0; hence
S is not reduced. By Proposition 1.9, S is not semi-IFP.

Example 2.4. There exists a semi-IFP ring over which the differential
polynomial ring is not semi-IFP. The argument is essentially due to
[1, Example 11], [6, Proposition 1.14], and [8, Example 2.1]. Let R =
F [x]/(x2) and define δ : R → R by δ(x + (x2)) = 1 + (x2), where F
is a field of characteristic 2 and (x2) = F [x]x2. Then R is semi-IFP

since R is commutative and
R

F [x]x
∼= F . Next let S = R[x; δ]. Then

[x+ (x2)]2 = 0 but [x+ (x2)]S[x+ (x2)] 6= 0 so R is not semi-IFP.
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