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BOUNDEDNESS IN PERTURBED FUNCTIONAL

DIFFERENTIAL SYSTEMS VIA t∞-SIMILARITY

Sang Il Choi and Yoon Hoe Goo∗

Abstract. In this paper, we investigate bounds for solutions of
perturbed functional differential systems using the notion of t∞-
similarity.

1. Introduction and preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(1.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+×Rn and f(t, 0) = 0. Also, we consider the perturbed
functional differential systems of (1.1)

(1.2) y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds+ r(t, y(t), T y(t)), y(t0) = y0,

where g ∈ C(R+ × Rn,Rn), r ∈ C(R+ × Rn × Rn,Rn) , g(t, 0) = 0,
r(t, 0, 0) = 0, and T : C(R+,Rn)→ C(R+,Rn) is a continuous operator.

For x ∈ Rn, let |x| = (
∑n

j=1 x
2
j)

1/2. For an n×n matrix A, define the

norm |A| of A by |A| = sup|x|≤1 |Ax|.
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Let x(t, t0, x0) denote the unique solution of (1.1) with x(t0, t0, x0) =
x0, existing on [t0,∞). Then, we can consider the associated variational
systems around the zero solution of (1.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(1.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(1.4)

The fundamental matrix Φ(t, t0, x0) of (1.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [14].

Definition 1.1. The system (1.1) (the zero solution x = 0 of (1.1))
is called an h-system if there exist a constant c ≥ 1, and a positive
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)
−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)

).

Definition 1.2. The system (1.1) (the zero solution x = 0 of (1.1))
is called
(hS)h-stable if there exists δ > 0 such that (1.1) is an h-system for
|x0| ≤ δ and h is bounded.

The notion of h-stability (hS) was introduced by Pinto [13, 14] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems. Choi and Koo [2] and Choi et al. [3,4] investigated h-stability
and bounds of solutions for the perturbed differential systems. Also, Goo
[6,7,8] and Goo et al. [9] studied the boundedness of solutions for the
perturbed differential systems.

The main conclusion to be drawn from this paper is that the use of
inequalities provides a powerful tool for obtaining bounds for solutions.
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LetM denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity inM was introduced by Conti [5].

Definition 1.3. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0

|F (t)|dt <∞

such that

Ṡ(t) + S(t)B(t)− A(t)S(t) = F (t)(1.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all
n×n continuous matrices on R+, and it preserves some stability concepts
[5, 10].

In this paper, we investigate bounds for solutions of the nonlinear
differential systems using the notion of t∞-similarity.

We give some related properties that we need in the sequal.

Lemma 1.4. [14] The linear system

x′ = A(t)x, x(t0) = x0,(1.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|φ(t, t0)| ≤ c h(t)h(t0)
−1(1.7)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(1.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (1.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].



272 S. Choi and Y. Goo

Lemma 1.5. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 1.6. [3] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.

Theorem 1.7. [4] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

Lemma 1.8. (Bihari − type inequality) Let u, λ ∈ C(R+), w ∈
C((0,∞)) and w(u) be nondecreasing in u. Suppose that, for some
c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s)

, W−1(u) is the inverse of W (u) and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 1.9. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,
(1.9)

u(t) ≤c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)

∫ s

t0

(λ3(τ)u(τ)

+ λ4(τ)

∫ τ

t0

λ5(r)w(u(r))dr)dτds+

∫ t

t0

λ6(s)

∫ s

t0

λ7(τ)w(u(τ))dτds.

Then
(1.10)

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+ λ6(s)

∫ s

t0

λ7(τ)dτ)ds
]
,
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t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ)

+ λ4(τ)

∫ τ

t0

λ5(r)dr)dτ + λ6(s)

∫ s

t0

λ7(τ)dτ)ds ∈ domW−1
}
.

Proof. Define a function z(t) by the right member of (1.9). Then, we
have z(t0) = c and

z′(t) = λ1(t)w(u(t)) + λ2(t)

∫ t

t0

(λ3(s)u(s) + λ4(s)

∫ s

t0

λ5(τ)w(u(τ))dτ)ds

+λ6(t)

∫ t

t0

λ7(s)w(u(s))ds

≤ (λ1(t) + λ2(t)

∫ t

t0

(λ3(s) + λ4(s)

∫ s

t0

λ5(τ)dτ)ds

+λ6(t)

∫ t

t0

λ7(s)ds)w(z(t)),

t ≥ t0, since z(t) and w(u) are nondecreasing, u ≤ w(u), and u(t) ≤ z(t).
Therefore, by integrating on [t0, t], the function z satisfies

z(t) ≤ c+

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+λ6(s)

∫ s

t0

λ7(τ)dτ)w(z(s)))ds.

(1.11)

It follows from Lemma 1.8 that (1.11) yields the estimate (1.10).

We obtain the following two corollaries from Lemma 1.9.

Corollary 1.10. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)), and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and
0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)

∫ s

t0

(λ2(τ)w(u(τ)) + λ3(τ)

∫ τ

t0

λ4(r)w(u(r))dr)dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s)

∫ s

t0

(λ2(τ) + λ3(τ)

∫ τ

t0

λ4(r)dr)dτ)ds
]
,
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t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s)

∫ s

t0

(λ2(τ)

+ λ3(τ)

∫ τ

t0

λ4(r)dr)dτ)ds ∈ domW−1
}
.

Corollary 1.11. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)), and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and
0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)

∫ s

t0

λ2(τ)u(τ)dτ +

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s)

∫ s

t0

λ2(τ)dτ + λ3(s)

∫ s

t0

λ4(τ)dτ)ds
]
,

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s)

∫ s

t0

λ2(τ)dτ

+ λ3(s)

∫ s

t0

λ4(τ)dτ)ds ∈ domW−1
}
.

2. Main Results

In this section, we investigate boundedness for solutions of the non-
linear perturbed differential systems via t∞-similarity.

To obtain the bounded property, the following assumptions are needed:
(H1) w(u) is nondecreasing in u such that 1

v
w(u) ≤ w(u

v
) for some v > 0.

(H2) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ
for some constant δ > 0.
(H3) The solution x = 0 of (1.1) is hS with the increasing function h.

Theorem 2.1. Let a, b, c, k, u, w ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

(2.1) |g(t, y(t))| ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds
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and

(2.2) |r(t, y(t), T y(t))| ≤
∫ t

t0

c(s)w(|y(s)|)ds,

where a, b, c, k ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2)
is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

∫ s

t0

(a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr)dτds
]
,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

∫ s

t0

(a(τ) + c(τ)

+ b(τ)

∫ τ

t0

k(r)dr)dτds ∈ domW−1
}
.

Proof. Using the nonlinear variation of constants formula of Alekseev
[1], any solution y(t) = y(t, t0, y0) of (1.2) passing through (t0, y0) is
given by

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s))

(

∫ s

t0

g(τ, y(τ))dτ + r(s, y(s), T y(s)))ds.

(2.3)

By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, by Theorem 1.7, the solution z = 0
of (1.4) is hS. Using the nonlinear variation of constants formula (2.3),
Lemma 1.4, the hS condition of x = 0 of (1.1), (2.1), and (2.2), we have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)h(s)−1(

∫ s

t0

(a(τ)w(|y(τ)|)

+b(τ)

∫ τ

t0

k(r)w(|y(r)|)dr)dτ +

∫ s

t0

c(τ)w(|y(τ)|)dτ)ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)
(∫ s

t0

((a(τ) + c(τ))w(
|y(τ)|
h(τ)

)dτ

+b(τ)

∫ τ

t0

k(r)w(
|y(r)|
h(r)

)dr)dτ
)
ds.
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Set u(t) = |y(t)||h(t)|−1. Then, by Corollary 1.10, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

∫ s

t0

(a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr)dτds
]
,

where c = c1|y0|h(t0)
−1. From the above estimation, we obtain the

desired result. Thus, the proof is complete.

Remark 2.2. Letting c(s) = 0 in Theorem 2.1, we obtain the similar
result as that of Theorem 3.6 in [8].

We need the following lemma for the proof of Theorem 2.4.

Lemma 2.3. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u. Suppose that, for some c ≥ 0, we have
(2.4)

u(t) ≤c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)
(∫ s

t0

(λ3(τ)w(u(τ))

+ λ4(τ)

∫ τ

t0

λ5(s)w(u(r))dr)dτ + λ6(s)

∫ s

t0

λ7(τ)w(u(τ))dτ
)
ds, t ≥ t0.

Then
(2.5)

u(t) ≤W−1
[
W (c) +

∫ t

t0

[λ1(s) + λ2(s)
(∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+ λ6(s)

∫ s

t0

λ7(τ)dτ
)

]ds
]
, t ≥ t0,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

[λ1(s) + λ2(s)
(∫ s

t0

(λ3(τ)

+ λ4(τ)

∫ τ

t0

λ5(r)dr)dτ + λ6(s)

∫ s

t0

λ7(τ)dτ
)

]ds ∈ domW−1
}
.
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Proof. Define a function v(t) by the right member of (2.4). Then, we
have v(t0) = c and

v′(t) = λ1(t)w(u(t)) + λ2(t)
(∫ t

t0

(λ3(s)w(u(s))

+ λ4(s)

∫ s

t0

λ5(τ)w(u(τ))dτ)ds+ λ6(t)

∫ t

t0

λ7(s)w(u(s))ds
)

≤
[
λ1(t) + λ2(t)

(∫ t

t0

(λ3(s) + λ4(s)

∫ s

t0

λ5(τ)dτ)ds

+ λ6(t)

∫ t

t0

λ7(s)ds
)]
w(v(t)),

t ≥ t0, since v(t) is nondecreasing and u(t) ≤ v(t). Now, by integrating
the above inequality on [t0, t] and v(t0) = c, we have

(2.6)

v(t) ≤ c+

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+λ6(s)

∫ s

t0

λ7(τ)dτ
)
w(v(s))ds.

Thus, by Lemma 1.8, (2.6) yields the estimate (2.5).

Theorem 2.4. Let a, b, c, k, q, u, w ∈ C(R+). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.7) |g(t, y(t))| ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds

and

|r(t, y(t), T y(t))| ≤ c(t)(w(|y(t)|) + |Ty(t)|), |Ty(t)|

≤
∫ t

t0

q(s)w(|y(s)|)ds, t ≥ t0 ≥ 0,
(2.8)

where a, b, c, k, q ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2)
is bounded on [t0,∞) and

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

(c(s) +
∫ s
t0

(a(τ) + b(τ)
∫ τ
t0
k(r)dr)dτ

+c(s)
∫ s
t0
q(τ)dτ)ds

]
,
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where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c)+ c2

∫ t
t0

(c(s) +
∫ s
t0

(a(τ) + b(τ)
∫ τ
t0
k(r)dr)dτ

+c(s)
∫ s
t0
q(τ)dτ)ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying Lemma 1.4,
the hS condition of x = 0 of (1.1), (2.3), (2.7), (2.8), and the given
conditions, we have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)
(
c(s)w(

|y(s)|
h(s)

) +

∫ s

t0

(a(τ)w(
|y(τ)|
h(τ)

)

+b(τ)

∫ τ

t0

k(r)w(
|y(r)|
h(r)

)dr)dτ + c(s)

∫ s

t0

q(τ)w(
|y(τ)|
h(τ)

)dτ)
)
ds.

Set u(t) = |y(t)||h(t)|−1. Then, it follows from Lemma 2.3 that we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+c(s)

∫ s

t0

q(τ)dτ)ds
]
,

where c = c1|y0|h(t0)
−1. From the above estimation, we obtain the

desired result. Thus, the theorem is proved.

Remark 2.5. Letting c(t) = 0 in Theorem 2.4, we obtain the similar
result as that of Theorem 3.6 in [8].

We obtain the following corollary from Lemma 2.3 to prove Theorem
2.7.

Corollary 2.6. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u. Suppose that, for some c ≥ 0, we have

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)
(∫ s

t0

λ3(τ)w(u(τ))dτ

+ λ4(s)

∫ s

t0

λ5(τ)w(u(τ))dτ
)
ds, t ≥ t0.
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Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

[λ1(s) + λ2(s)
(∫ s

t0

λ3(τ)dτ + λ4(s)

∫ s

t0

λ5(τ)dτ
)

]ds
]
,

t ≥ t0, where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

[λ1(s) + λ2(s)
(∫ s

t0

λ3(τ)dτ

+λ4(s)

∫ s

t0

λ5(τ)dτ
)

]ds ∈ domW−1
}
.

Theorem 2.7. Let a, b, c, k, u, w ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies
(2.9)∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds, t ≥ t0 ≥ 0,

and

(2.10) |r(t, y(t), T y(t))| ≤
∫ t

t0

c(s)w(|y(s)|)ds,

where a, b, c, k ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2)
is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) +

∫ s

t0

c(τ)dτ + b(s)

∫ s

t0

k(τ)dτ)ds
]
,

t0 ≤ t < b1,
where W , W−1 are the same functions as in Lemma 1.8 and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) +

∫ s

t0

c(τ)dτ

+ b(s)

∫ s

t0

k(τ)dτ)ds ∈ domW−1
}
.

Proof. It is well known that the solution of (1.2) is represented by the
integral equation (2.3). By the same argument as the proof in Theorem
2.1, the solution z = 0 of (1.4) is hS. Using the nonlinear variation of
constants formula (2.3), the hS condition of x = 0 of (1.1), (2.9), and
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(2.10), we have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+

∫ t

t0

c2h(t)(

∫ s

t0

c(τ)w(
|y(τ)|
h(τ)

)dτ + b(s)

∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτ)ds.

Set u(t) = |y(t)||h(t)|−1. Then, an application of Corollary 2.6 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) +

∫ s

t0

c(τ)dτ + b(s)

∫ s

t0

k(τ)dτ)ds
]
,

where c = c1|y0|h(t0)
−1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is

bounded on [t0,∞), and so the proof is complete.

Remark 2.8. Letting c(s) = 0 in Theorem 2.7, we obtain the same
result as that of Theorem 3.2 in [6].

Theorem 2.9. Let a, b, c, u, w ∈ C(R+), w(u) be nondecreasing in u
such that u ≤ w(u) and 1

v
w(u) ≤ w(u

v
) for some v > 0. Suppose that

(H2), (H3), and g in (1.2) satisfies
(2.11)

|g(t, y(t))| ≤ a(t)w(|y(t)|), |r(t, y(t), T y(t))| ≤ b(t)

∫ t

t0

c(s)|y(s)|ds,

where a, b, c ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2) is
bounded on [t0,∞) and

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(b(s)

∫ s

t0

c(τ)dτ +

∫ s

t0

a(τ)dτ)ds
]

where W , W−1 are the same functions as in Lemma 1.8 and

b1 = sup
{
t ≥ t0 : W (c)+c2

∫ t

t0

(b(s)

∫ s

t0

c(τ)dτ+

∫ s

t0

a(τ)dτ)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1)
and (1.2), respectively. By the same argument as the proof in Theorem
2.1, the solution z = 0 of (1.4) is hS. By the hS condition of x = 0 of
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(1.1), (2.3), and (2.11), it follows that

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)(b(s)

∫ s

t0

c(τ)
|y(τ)|
h(τ)

dτ

+

∫ s

t0

a(τ)w(
|y(τ)|
h(τ)

)dτ)ds.

Set u(t) = |y(t)||h(t)|−1. Then, an application of Corollary 1.11 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(b(s)

∫ s

t0

c(τ)dτ +

∫ s

t0

a(τ)dτ)ds
]
,

where c = c1|y0|h(t0)
−1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is

bounded on [t0,∞). This completes the proof.

Remark 2.10. Letting b(t) = 0 in Theorem 2.9, we obtain the similar
result as that of Theorem 3.5 in [9].
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