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BOUNDEDNESS IN PERTURBED FUNCTIONAL
DIFFERENTIAL SYSTEMS VIA ¢, -SIMILARITY

SANG IL CHOI AND YOON HOE GoOO*

ABSTRACT. In this paper, we investigate bounds for solutions of
perturbed functional differential systems using the notion of ¢..-
similarity.

1. Introduction and preliminaries

We consider the nonlinear nonautonomous differential system

(1.1) d'(t) = f(t,2(t), x(to) = o,
where f € C(RT x R",R"), RT = [0,00) and R" is the Euclidean n-
space. We assume that the Jacobian matrix f, = 0f/0x exists and is
continuous on RT x R™ and f(¢,0) = 0. Also, we consider the perturbed
functional differential systems of (1.1)

t

(12) o =t + [ glsulo)ds +r(ty(®). Ty(o), vite) = .
to
where g € C(R* x R",R"), r € C(R" x R" x R",R") , ¢(¢,0) = 0,
r(t,0,0) =0, and T : C(R",R") — C(R*,R™) is a continuous operator.
For z € R", let |z = (37, 22)1/2. For an n x n matrix A, define the
norm |A] of A by [A| = supy,<; [Az|.
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Let x(t,tg, xo) denote the unique solution of (1.1) with x(to, to, o) =
g, existing on [ty,00). Then, we can consider the associated variational
systems around the zero solution of (1.1) and around xz(t), respectively,

(1.3) V'(t) = f.(¢,0)v(t), v(te) = vo
and
(1.4) 2(t) = fo(t, x(t, to, x0))2(t), 2(to) = 20.

The fundamental matrix ®(¢,tg, xo) of (1.4) is given by

0
D(t,t = —ux(t, ¢
( ) 0,1’0) ax0x< ) 0,330),
and ®(t, o, 0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [14].

DEFINITION 1.1. The system (1.1) (the zero solution z = 0 of (1.1))
is called an h-system if there exist a constant ¢ > 1, and a positive
continuous function h on R* such that

|2 (t)] < ¢ |wo| h(t) h(to) ™

for t >ty > 0 and |zo| small enough (here h(t)™' = ﬁ)

DEFINITION 1.2. The system (1.1) (the zero solution z = 0 of (1.1))
is called
(hS)h-stable if there exists § > 0 such that (1.1) is an h-system for
|zo| < & and h is bounded.

The notion of h-stability (hS) was introduced by Pinto [13, 14] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems. Choi and Koo [2] and Choi et al. [3,4] investigated h-stability
and bounds of solutions for the perturbed differential systems. Also, Goo
[6,7,8] and Goo et al. [9] studied the boundedness of solutions for the
perturbed differential systems.

The main conclusion to be drawn from this paper is that the use of
inequalities provides a powerful tool for obtaining bounds for solutions.
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Let M denote the set of all n x n continuous matrices A(t) defined on
R* and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C' with the property that S(¢) and S™*(¢) are
bounded. The notion of t,-similarity in M was introduced by Conti [5].

DEFINITION 1.3. A matrix A(t) € M is to-similar to a matrix B(t) €
M if there exists an n x n matrix F(t) absolutely integrable over R,
ie.,

/Oo |F(t)|dt < oo

such that

(1.5) S(t)+ S(t)B(t) — A(t)S(t) = F(t)
for some S(t) € N.

The notion of t,.-similarity is an equivalence relation in the set of all
n X n continuous matrices on R*, and it preserves some stability concepts
[5, 10].

In this paper, we investigate bounds for solutions of the nonlinear
differential systems using the notion of ¢, -similarity.

We give some related properties that we need in the sequal.

LEMMA 1.4. [14] The linear system
(1.6) ' = A(t)x, z(ty) = xo,

where A(t) is an n X n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist ¢ > 1 and a positive and continuous
(respectively bounded) function h defined on R" such that

(L.7) |6(t, t0)| < ch(t) h(to) ™
for t >ty > 0, where ¢(t,ty) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

(1.8) y = f(t,y) +9(t,y), y(te) = o,

where g € C(RT x R",R™) and ¢(¢,0) = 0. Let y(t) = y(¢, o, yo) denote
the solution of (1.8) passing through the point (o, ) in Rt x R™.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].
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LEMMA 1.5. Ifyo € R™, then for all t such that z(t,t, yo) € R,

t
y<t7 tO) ?Jo) = ZL’(t7 th y()) + / q)(tu S, y(8>) 9(87 y(S)) ds.
to
THEOREM 1.6. [3] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.

THEOREM 1.7. [4] Suppose that f,(t,0) is ts-similar to f,(t, z(t,to, x¢))
for t >ty > 0 and |xo| < & for some constant 6 > 0. If the solution
v =0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

LEMMA 1.8. (Bihari — type inequality) Let u,\ € C(R"), w €
C((0,00)) and w(u) be nondecreasing in u. Suppose that, for some
c>0,

t
u(t) < c+/ A(s)w(u(s))ds, t > tg > 0.
to
Then .
u(t) < W [W(c) +/ )\(s)ds], to <t < by,
to
where W(u) = [ -2 W~1(u) is the inverse of W (u) and

up w(s)’

t
by = sup {t >ty Wic) +/ A(s)ds € domW_l}.
to
LEMMA 1.9. Let u, )\1, )\2, )\3, )\4, )\5, )\67 A7 € O(R+), w € C((O, OO)),
and w(u) be nondecreasing in u, v < w(u). Suppose that for some ¢ > 0
and 0 <ty <t,
(1.9)

u(t) <c+ / (s)w(u(s))ds + / " Mals) / O (r)u(r)

+ Ay (7) /tT )\5(r)w(u(r))dr)d7ds+/t A6 () /ts A7 (T)w(u(T))drds.
Then
(1.10) t
ut) < WHWE+ [ (s +2a66) [ )+ () [ da(rdrar

to to to

s

+ Xo(s) /S /\7(T)d7'>d8} :

to
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to <t < by, where W, W~ are the same functions as in Lemma 1.8,
and

S

by =sup {1210 W)+ [ Oulo) + ) [ (st

to to

+ () / " s(r)dr)dr + Ag(s) / CAr(r)dr)ds € domW 1.

to to
Proof. Define a function z(¢) by the right member of (1.9). Then, we
have z(ty) = ¢ and

S

Z(t) = M ()w(u(t)) + )\2(t>/ (As(s)u(s) + )\4(5)/ A5 (T)w(u(r))dT)ds

to to

() / No(s)w(u(s))ds

to

< On(t) + 2a(®) / (As(5) + Aa(s) / Ao (F)dr)ds

() / Ma(s)ds)w(z(t)),

t > to, since z(t) and w(u) are nondecreasing, u < w(u), and u(t) < z(t).
Therefore, by integrating on [to, t], the function z satisfies

a0 < et [ u) ) [ 0al) + 00 [ As(r)dr)ds
(1.11) /to /to s /to
+/\6(s)/t A7 (T)dT)w(z(s)))ds.

It follows from Lemma 1.8 that (1.11) yields the estimate (1.10). O
We obtain the following two corollaries from Lemma 1.9.

COROLLARY 1.10. Let u, A1, A2, A3, Ay € C(RT), w € C((0,0)), and
w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0 and
0 S tO S t7

u(t) <c +/ A1(s) /s()\g(T)U}(U,(T)) + A3(7) /T Ay (r)w(u(r))dr)drds.

to to to

Then

u(t) < W (o) + / u(s) / () + As(7) / " a(r)dr)dr)ds)

to to to
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to <t < b, where W, W~ are the same functions as in Lemma 1.8,
and

by = sup {t > to: Wi(e) + /t(M(s) /8@2(7)

to to

+ )\3(7)/ Ay (r)dr)dr)ds € domW‘l}.
to
COROLLARY 1.11. Let u, A1, A2, A3, Ay € C(RT), w € C((0,0)), and

w(u) be nondecreasing in u, v < w(u). Suppose that for some ¢ > 0 and
0 S Z50 S t7

u(t) <c+ /t A1(s) /s Ao (T)u(T)dr + /t As(s) /s A (T)w(u(T))drds.

to to to to

Then
u(t) < W1 [W(c) + /t()\l(s) /8 Ao (T)dT + A3(8) /S )\4(7')d7')d3},

to to to

to <t < by, where W, W1 are the same functions as in Lemma 1.8,
and

b, = sup {t >to: W(e) + /t()\l(s) /S Ao (T)dT

to to

+ As(s) /S Ay(T)dT)ds € domW_l}.

to
2. Main Results

In this section, we investigate boundedness for solutions of the non-
linear perturbed differential systems via t.-similarity.

To obtain the bounded property, the following assumptions are needed:
(H1) w(u) is nondecreasing in u such that 2w(u) < w(%) for some v > 0.
(H2) f.(t,0) is te-similar to f,.(t, z(t,ty, xg)) for t > to > 0 and |zo| < 6
for some constant § > 0.

(H3) The solution z = 0 of (1.1) is hS with the increasing function h.

THEOREM 2.1. Let a, b, c,k,u,w € C(RT). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

(2.1) 9, ()] < a®)w(ly(®)]) + b(t)/ k(s)w(ly(s)))ds

to



Boundedness in functional differential systems via t.o-similarity 275

and

(2.2) r(t,y(t), Ty(t))| < /t c(s)w(ly(s)])ds,

to

where a,b,c,k € L1(R"). Then, any solution y(t) = y(¢,to,yo) of (1.2)
is bounded on [ty,c0) and it satisfies

ly(t)| < h(t)W ! [W(c) + co /t: /t:(a(T) +c(1) + b(T) /T k(r)dr)drds|,

to

where W, W~ are the same functions as in Lemma 1.8, and

b, = sup {t > to: W(c) + e /t: /t:(a(f) +¢(7)

+ b(T)/ k(r)dr)drds € domW_l}.
to
Proof. Using the nonlinear variation of constants formula of Alekseev
[1], any solution y(t) = y(t, to,yo) of (1.2) passing through (to,v0) is
given by

y(t,to, yo) = x(t, to, yo) + /tq’(ta s,9(s))
(2.3) o

([ stru(m)dr +r(s.5(5). Ty(s))ds
to

By Theorem 1.6, since the solution z = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, by Theorem 1.7, the solution z = 0
of (1.4) is hS. Using the nonlinear variation of constants formula (2.3),
Lemma 1.4, the hS condition of z = 0 of (1.1), (2.1), and (2.2), we have

S

eoh()h(s) ™ / (a()w(Jy())

to

t

ly()] < c1lyolh(t) h(to) ™ +/

to
S

b(r) / "k (y(r))dr)dr + / e(ryw(ly(r)])dr)ds

< alulh(®) o) + [ an)( [ (@) + dmolZDhar

+b(7) /tT k(r)w(|z5:§| )dT)dT) ds.
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Set u(t) = |y(t)||h(t)|~!. Then, by Corollary 1.10, we have

(o) < BOW [IW(e) + e /t: /t:(a<7)+c(7)+b(7) / Tk(r)dr)drds],

to

where ¢ = ¢1|yo| h(to)™'. From the above estimation, we obtain the
desired result. Thus, the proof is complete. O]

REMARK 2.2. Letting ¢(s) = 0 in Theorem 2.1, we obtain the similar
result as that of Theorem 3.6 in [8].

We need the following lemma for the proof of Theorem 2.4.

LEMMA 2.3. Let u, )\17 )\2, )\3, /\4, /\5, /\67 A7 € C(R+), w € C((O, OO))
and w(u) be nondecreasing in u. Suppose that, for some ¢ > 0, we have
(2.4)

u(t) <c+ /t A(s)w(u(s))ds + /t )\2(5)(/8()\3<T>’LU(U(T))

to to to

+ Ay(7) /T As(8)w(u(r))dr)dr + Xg(s) /S /\7(7')w(u(7'))d7'> ds, t > t.

to to

Then
(2.5)

u(t) W W) + / t[)\l(s)—l—)\g(s)( / O (7) + Aa(7) / " \s(r)dr)dr

to to to

s

4 he(s) / A7(7)dr>]ds}, t> to,

to

where W, W~ are the same functions as in Lemma 1.8, and

s

by = sup {t >to: W(e)+ /t[)\l(s) + )\2(3)(/ (A3(T)

to to

+u(r) / " s(r)dr)dr + Ag(s) / ) )\7(7)d7>]ds c domw—l}.

to to
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Proof. Define a function v(t) by the right member of (2.4). Then, we
have v(ty) = ¢ and

0 = M) + 20 [ Gaopulus)
+ () /ts A5 (T)w(u(T))dr)ds + Ng(t) / )\7(s)w(u(s))ds>

0 to

< [u -+ 20 / Ou(s) + Ma(s) / “do(r)dr)ds

to to

#360) [ Aolo)is) Jwtote)

0
t > to, since v(t) is nondecreasing and u(t) < v(t). Now, by integrating
the above inequality on [to, t] and v(tg) = ¢, we have

T

o(t) < e+ / t (Mas) + 2ol / () + () / Ns(r)dr)dr

(2.6) fo o fo
—|—)\6(s)/ )\7(T)d7'>w(v(s))ds.
to
Thus, by Lemma 1.8, (2.6) yields the estimate (2.5). O

THEOREM 2.4. Let a,b,c,k,q,u,w € C(R"). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.7) l9(t, y(0)] < a(t)w(ly(t)]) +b(t)/t k(s)w(ly(s))ds

and

1t y(0), Ty()] < e®)(w(ly(®)) + [Ty, 1 Ty(o)
(28) </ a(shully(s))ds, ¢ to 0,

where a,b, ¢, k,q € L1(R"). Then, any solution y(t) = y(t, to,yo) of (1.2)
is bounded on [ty, o) and

()] < hO)W [W@) tea [L(e(s) + [ (alr) + b(r) [T k(r)dr)dr

te(s) [ al(r)dr)ds|,
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where W, W~ are the same functions as in Lemma 1.8, and

by = sup {t >to: W(e)+ e j;i(c(s) + [o(a(r) +b(7) [, k(r)dr)dr
+e(s) [; q(r)dr)ds € domWfl}.

Proof. Let x(t) = x(t,t9,y0) and y(t) = y(t,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying Lemma 1.4,
the hS condition of x = 0 of (1.1), (2.3), (2.7), (2.8), and the given

conditions, we have

[“ean) ety + [ a5

) | Tk(r)w(%)dr)dr—kc(s) / Sq(T)w(|zE:;|)d7))ds.

to to

Y] < ealyolh(t) h(to) ™! +/

Set u(t) = |y(t)||h(t)| . Then, it follows from Lemma 2.3 that we have

t

Ol < HOW WO +er [ (o) + [ (alr) +b(r) / " k(r)dr)dr

+ets) [ a(rdryas],

where ¢ = ci|yo| h(to)™'. From the above estimation, we obtain the

desired result. Thus, the theorem is proved. O

REMARK 2.5. Letting ¢(t) = 0 in Theorem 2.4, we obtain the similar
result as that of Theorem 3.6 in [8].

We obtain the following corollary from Lemma 2.3 to prove Theorem
2.7.

COROLLARY 2.6. Let u, A1, A2, A3, A1, A5 € C(RT), w € C((0,00))
and w(u) be nondecreasing in u. Suppose that, for some ¢ > 0, we have

u(t) < c+ /t A (s)w(u(s))ds + /t )\2(5)(/8 As(T)w(u(T))dr

to to to

+Au(s) / Mo(ruwlu(r))dr )ds, ¢ > o,

to
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Then
t s s
u(t) < W1 [W(c) —|—/ A1(s) + /\2(3)</ A3(T)dT + )\4(3)/ )\5(7')d7'>]d8i|,
to to to
t > to, where W, W~ are the same functions as in Lemma 1.8, and

by = sup {t >t Wie)+ /t[)\l(s) + )\2(3)(/5 A3(T)dT

to to

+Aa(s) /8 )\5(T)d7)]ds € domW_l}.

to

THEOREM 2.7. Let a,b, c,k,u,w € C(RT). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

to

(2.9)
/t 95, y())lds < a(®)w(ly(@)]) + b(t) / k(s)w(ly(s))ds, t > to > 0,
and

(2.10) r(t,y(t), Ty(t))| < /t c(s)w(ly(s)])ds,

to

where a,b,c,k € Li(RT). Then, any solution y(t) = y(t,to,yo) of (1.2)
is bounded on [ty,c0) and it satisfies

[y(®)] < ROW W () + 3 / (a(s) + / () +b(5) /

to to to

t s

k(r)dr)ds} ,

tO f; t < b17
where W, W~ are the same functions as in Lemma 1.8 and

by = sup {t > to: W(e) + e /t(a(s) + / c(r)dr

to to

+ b(s) /8 k(T)dr)ds € domW‘l}.

to

Proof. 1t is well known that the solution of (1.2) is represented by the
integral equation (2.3). By the same argument as the proof in Theorem
2.1, the solution z = 0 of (1.4) is hS. Using the nonlinear variation of
constants formula (2.3), the hS condition of x = 0 of (1.1), (2.9), and
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(2.10), we have

(0] < culwlne) ao) + [ czh@)a(s)w(%)ds
—l—/t CQh(zf)(/tS c(7)w(|zg))|)d7 + b(s) /ts k(T)M('ZE:;|)dT)ds.

Set u(t) = |y(t)||h(t)|"'. Then, an application of Corollary 2.6 yields

t

ly(t)] < h(t)W—l[W(c)+02 / (a(s) + / o(r)dr + b(s) / Sk(T)dT)dS],

to to to

where ¢ = ¢1|yo| h(to) ™. Thus, any solution y(t) = y(t, o, yo) of (1.2) is
bounded on [ty, 00), and so the proof is complete. ]

REMARK 2.8. Letting ¢(s) = 0 in Theorem 2.7, we obtain the same
result as that of Theorem 3.2 in [6].

THEOREM 2.9. Let a,b,c,u,w € C(R"), w(u) be nondecreasing in u
such that u < w(u) and tw(u) < w(%) for some v > 0. Suppose that

(H2), (H3), and g in (1.2) satisfies
(2.11)

9, y(0)] < at)w(ly@)]), [r(t, y(t), Ty(t))] < b(t)/t c(s)ly(s)lds,
where a,b,c € Li(RT). Then, any solution y(t) = y(t,to,yo) of (1.2) is
bounded on [ty, 00) and

t s s
y(®)] < ROW W (E) + ¢ / (b(s) / o(r)dr + / a(7)dr)ds|
to to to
where W, W~ are the same functions as in Lemma 1.8 and
t s s
by = sup {t >ty W(c)—l—@/ (b(s)/ c(7’)d7’—|—/ a(t)dr)ds € domW_l}.
to to to

Proof. Let z(t) = x(t,t9,yo) and y(t) = y(t, to, yo) be solutions of (1.1)
and (1.2), respectively. By the same argument as the proof in Theorem
2.1, the solution z = 0 of (1.4) is hS. By the hS condition of x = 0 of
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(1.1), (2.3), and (2.11), it follows that

ly(®)] < cilyolh(t) h(te) ™" +/

to

+ /ts CL(T)U)(%)C[T)CZS.

0

t

coh(t) (b(s) /t o(7) '%8’47

Set u(t) = |y(t)||h(t)|~'. Then, an application of Corollary 1.11 yields

ly(1)] < h(t)W‘l[W(c)+02 / t(b(s) /t Ce(r)dr + /t Sa(T)dT)ds],

to 0 0

where ¢ = ¢1|yo| h(to) ™. Thus, any solution y(t) = y(t, to,yo) of (1.2) is
bounded on [ty, 00). This completes the proof. O

REMARK 2.10. Letting b(t) = 0 in Theorem 2.9, we obtain the similar
result as that of Theorem 3.5 in [9)].

Acknowledgement. The authors are very grateful for the referee’s
valuable comments.
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