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CONSTRUCTIVE APPROXIMATION BY NEURAL

NETWORKS WITH POSITIVE INTEGER WEIGHTS

Bum Il Hong and Nahmwoo Hahm†

Abstract. In this paper, we study a constructive approximation by
neural networks with positive integer weights. Like neural networks
with real weights, we show that neural networks with positive integer
weights can even approximate arbitrarily well for any continuous
functions on compact subsets of R. We give a numerical result to
justify our theoretical result.

1. Introduction and Preliminaries

Because of its applications in engineering such as robotics and signal
processing, neural network approximation has been investigated by many
mathematicians ( [3], [4], [6], [7], [8]). A general form of feedforward
neural network with one hidden layer is

(1.1)
n∑
i=1

ciσ(aix+ bi),

where σ : R → R is a univariate activation function and ai, bi, ci ∈ R
for i = 1, 2, · · · , n. In (1.1), ai’s are called the weights and bi’s are
called the thresholds. Although we may choose the Gaussian function
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σ(x) = e−x
2

or the generalized multiquadrics σ(x) = (1 + x2)β, β /∈
Z as an activation function, Kalman and Kwasny [5] pointed out the
importance of a sigmoidal function as an activation function in hardware
implementations of back propagation.

Definition 1.1. A sigmoidal function is a function σ : R → R such
that

(1.2) lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1.

The followings are examples of sigmoidal functions.

The squashing function : σ(x) = 1/(1 + e−x).

The Heaviside function : σ(x) =

{
1 if x ≥ 0

0 if x < 0.

Chen [1] proved that any continuous function on a compact subset of
R was approximated well by a neural network with a bounded sigmoidal
function and a fixed weight. Medvedeva [9] showed a neural network
approximation using Taylor’s theorem and infinitely differentiable acti-
vation function. In [2], Chui and Li suggested that a neural network with
a continuous sigmoidal function with integer weights could approximate
any continuous function on a compact subset of R, but their proofs are
not constructive. Unlike the previous papers, we suggest a construc-
tive approximation by a neural network with a continuous monotone
sigmoidal function and positive integer weights using convolution in this
paper.
Note that a sigmoidal function σ is not improper integrable on R, since
limx→∞ σ(x) = 1. In order to obtain an improper integrable function on
R from a sigmoidal function, we define

(1.3) φα(x) = σ(x+ α)− σ(x)

for α > 0 and a continuous monotone sigmoidal function σ. Then

(1.4) φα(x) ≥ 0

for all x ∈ R and α > 0.

Lemma 1.2. If σ is a continuous monotone sigmoidal function, φα in
(1.3) is improper integrable on R for α > 0.
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Proof. Since limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1, σ is bounded
and uniformly continuous on R. Thus there exists M > 0 such that
|σ(x)| ≤M for all x ∈ R. For p ∈ R, we have∫ ∞

p

φα(x)dx = lim
t→∞

∫ t

p

φα(x)dx

= lim
t→∞

∫ t

p

(σ(x+ α)− σ(x))dx

= lim
t→∞

(

∫ t+α

p+α

σ(x)dx−
∫ t

p

σ(x)dx)(1.5)

≤ lim
t→∞

(

∫ t+α

t

Mdx+

∫ p+α

p

Mdx)

< ∞.
Similarly, we get, for p ∈ R,

(1.6)

∫ p

−∞
φα(x)dx <∞.

Therefore we complete the proof.

2. Main results

For α > 0 and a continuous monotone sigmoidal function σ, φα in
(1.3) is uniformly continuous on R. In addition,

(2.1) lim
x→−∞

φα(x) = 0 and lim
x→∞

φα(x) = 0.

Since φα is improper integrable on R by Lemma 1.2, we set cα be the
constant such that

(2.2)

∫
R
cαφα(x)dx = 1.

For n ∈ N, we define the dilation function

(2.3) ψn,α(x) = ncαφα(nx)

for x ∈ R. Note that

(2.4)

∫
R
ψn,α(x)dx =

∫
R
ncαφα(nx)dx =

∫
R
cαφα(x)dx = 1
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by substitution.

Theorem 2.1. Let α > 0 and let σ be a continuous monotone sig-
moidal function on R. For a given δ > 0 and ψn,α in (2.3), we have

(2.5) lim
n→∞

∫
{x∈R:|x|≥δ}

ψn,α(x)dx = 0.

Proof. Since
∫
R cαφα(x)dx = 1 <∞, we get

(2.6) lim
k→∞

∫
{x∈R:|x|≥k}

cαφα(x)dx = 0.

By substitution and (2.6), we have

lim
n→∞

∫
{x∈R:|x|≥δ}

ψn,α(x)dx = lim
n→∞

∫
{x∈R:|x|≥δ}

ncαφn,α(nx)dx

= lim
n→∞

∫
{x∈R:|x|≥nδ}

cαφα(x)dx(2.7)

= 0.

Therefore we complete the proof.

Using Theorem 2.1, we obtain the following.

Theorem 2.2. Let g be a continuous function on R with compact
support. For a given ε > 0, there exists N ∈ N such that n ≥ N , we
have

(2.8) ||ψn,α ∗ g − g||∞,R < ε,

where α > 0 and ψn,α is a function satisfying (2.3) for a continuous
monotone sigmoidal function σ.

Proof. Since g is continuous on R with compact support, g is uni-
formly continuous on R. Hence, for a given ε > 0, there exists δ > 0
such that for any x, y ∈ R with |x− y| < δ, we have

(2.9) |g(x)− g(y)| < ε

2
.
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By (1.4) and (2.4), for x ∈ R, we get

|(ψn,α ∗ g)(x)− g(x)| ≤
∫
R
ψn,α(y)|g(x− y)− g(x)|dy

=

∫
R−{y∈R:|y|<δ}

ψn,α(y)|g(x− y)− g(x)|dy(2.10)

+

∫
{y∈R:|y|<δ}

ψn,α(y)|g(x− y)− g(x)|dy.

Hence by Theorem 2.1, there exists N ∈ N such that for any n ∈ N with
n ≥ N , we have

(2.11)

∫
{y∈R:|y|≥δ}

ψn,α(y)dy <
ε

4‖g‖R,∞
.

Thus, for any n ∈ N with n ≥ N , we get∫
R−{y∈R:|y|<δ}

ψn,α(y)|g(x− y)− g(x)|dy

=

∫
{y∈R:|y|≥δ}

ψn,α(y)|g(x− y)− g(x)|dy(2.12)

≤ 2‖g‖R,∞
∫
{y∈R:|y|≥δ}

ψn,α(y)dy

<
ε

2

by (2.11). On the other hand, we also get∫
{y∈R:|y|<δ}

ψn,α(y)|g(x− y)− g(x)|dy

<
ε

2

∫
{y∈R:|y|<δ}

ψn,α(y)dy(2.13)

≤ ε

2

∫
R
ψn,α(y)dy

=
ε

2

by (2.4) and (2.9). From (2.12) and (2.13), we finally have

(2.14) |(ψn,α ∗ g)(x)− g(x)| < ε

for all x ∈ R. Therefore we complete the proof.
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For a continuous monotone sigmoidal function σ, we set

(2.15) Φσ,n = {
n∑
i=1

ciσ(aix+ bi) : ai ∈ N, bi, ci ∈ R}.

Next theorem shows that any continuous function on [a, b] can be approx-
imated arbitrarily well by a neural network with a continuous monotone
sigmoidal function and positive integer weights.

Theorem 2.3. Let f be continuous on [a, b] and let σ be a continuous
monotone sigmoidal function on R. For a given ε > 0, there exists
hm,n,α ∈ Φσ,2n such that

(2.16) ‖f − hm,n,α‖∞,[a,b] < ε,

where m,n ∈ N and α > 0.

Proof. Let

(2.17) f̃(x) =


f(x) if x ∈ [a, b]

linear if x ∈ [a− 1, a] ∪ [b, b+ 1]

0 otherwise.

Then f̃ is a continuous extension of f on R. For n ∈ N and α > 0, we
define ψn,α(x) = ncα(σ(nx + α) − σ(nx)) on R, where cα is a constant

such that
∫
R ψn,α(x)dx = 1. Since f̃ is continuous on R with compact

support [a− 1, b + 1], there exists N ∈ N such that for any n ∈ N with
n ≥ N ,

(2.18) ‖f̃ − ψn,α ∗ f̃‖∞,[a−1,b+1] = ‖f̃ − ψn,α ∗ f̃‖∞,R <
ε

2

by Theorem 2.1. Hence we get

(2.19) ‖f − ψn,α ∗ f̃‖∞,[a,b] ≤ ‖f̃ − ψn,α ∗ f̃‖∞,[a−1,b+1] <
ε

2
.

For m ∈ N, we set yi = (a− 1) + b−a+2
m

i for i = 1, 2, · · · ,m. Then

b− a+ 2

m

m∑
i=1

ψn,α(x− yi)f̃(yi)(2.20)

=
b− a+ 2

m

m∑
i=1

nf̃(yi)cα(σ(nx− nyi + α)− σ(nx− nyi))
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is a Riemann sum for
∫ b+1

a−1 ψn,α(x− y)f̃(y)dy. Thus there exists m0 ∈ N
such that for any n ∈ N with n ≥ N ,
(2.21)

‖b− a+ 2

m0

m0∑
i=1

nf̃(yi)cα(σ(n·−nyi+α)−σ(n·−nyi))−ψn,α∗f̃‖∞,[a,b] <
ε

2
.

Let
(2.22)

hm0,n,α(x) :=
b− a+ 2

m0

m0∑
i=1

nf̃(yi)cα(σ(nx− nyi + α)− σ(nx− nyi))

for x ∈ R and n ∈ N with n ≥ N . Then hm0,n,α ∈ Φσ,2n and

‖f − hm0,n,α‖∞,[a,b]
≤ ‖f − ψn,α ∗ f̃‖∞,[a,b] + ‖ψn,α ∗ f̃ − hm0,n,α‖∞,[a,b](2.23)

< ε

by (2.19) and (2.21). Therefore we complete the proof.

3. Numerical results

In order to justify our theory, we suggest numerical results imple-
mented by MATHEMATICA. We choose, for x ∈ [−1, 1],

(3.1) f(x) = x2 + 2x+ 2

as a target function. We extend f on R as follows :

(3.2) f̃(x) =



0 if x ≤ −2

x+ 2 if − 2 ≤ x ≤ −1

x2 + 2x+ 2 if − 1 ≤ x ≤ 1

−5x+ 10 if 1 ≤ x ≤ 2

0 if 2 ≤ x

We choose the squashing function σ(x) = 1/(1 + e−x) as an activation
function of a neural network, since it is continuous monotone sigmoidal
function on R. We also choose α = 1 > 0. Then cα = 1 in (2.2) since
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Figure 1. neural network with n = 10,m0 = 200
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Figure 2. neural network with n = 20,m0 = 200∫
R(σ(x + 1) − σ(x))dx = 1. Thus the dilation function ψn,α in (2.3) is

given by

(3.3) ψn,1(x) = nφ1(nx) = n(σ(nx+ 1)− σ(nx)).

A neural network with the squashing activation function and positive
integer weights in (2.16) of Theorem 2.3 is

(3.4) hm0,n,1 =

m0∑
i=1

4

m0

f̃(−2 +
4i

m0

)(nφ1(n(x− (−2 +
4i

m0

)))).

We select m0 = 200. Figure 1, Figure 2, Figure 3 and Figure 4 show
the target function and neural networks with positive integer weights
n = 10, n = 20, n = 40 and n = 80, respectively. As seen in figures,
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Figure 3. neural network with n = 40,m0 = 200

-3 -2 -1 0 1 2 3

0

1

2

3

4

5

Approximation by neural network with n=80, m0=200

targent function

neural network

Figure 4. neural network with n = 80,m0 = 200

neural networks approximate f̃ very well on [−3, 3] as n increases. Since

the target function f is the restriction of f̃ on [−1, 1], it is trivial that
neural networks can approximate the target function f on [−1, 1].

The following numerical computation table shows that the maximum
errors between the target function f and and a neural network decrease
as n increases for fixed m0 = 200. Therefore these results imply that the
maximum errors between the target function and neural networks with
integer weight decrease as the values of positive integer weight increase
just like neural networks with real weights.



336 Bum Il Hong and Nahmwoo Hahm†

n Maximum Error
10 0.67373
20 0.38583
40 0.16786
80 0.07982
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