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EXISTENCE OF SOLUTIONS OF A CLASS OF

IMPULSIVE PERIODIC TYPE BVPS FOR SINGULAR

FRACTIONAL DIFFERENTIAL SYSTEMS

Yuji Liu

Abstract. A class of periodic type boundary value problems of
coupled impulsive fractional differential equations are proposed. Suf-
ficient conditions are given for the existence of solutions of these
problems. We allow the nonlinearities p(t)f(t, x, y) and q(t)g(t, x, y)
in fractional differential equations to be singular at t = 0, 1 and be
involved a sup-multiplicative-like function. So both f and g may
be super-linear and sub-linear. The analysis relies on a well known
fixed point theorem. An example is given to illustrate the efficiency
of the theorems.

1. Introduction

Fractional calculus has many applications (see Chapter 10 in [36]).
Boundary value problems for nonlinear fractional differential equations
have been addressed by several researchers during last decades. That is
why, the fractional derivatives serve an excellent tool for the description
of hereditary properties of various materials and processes. Actually,
fractional differential equations arise in many engineering and scientific
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disciplines such as, physics, chemistry, biology, electrochemistry, electro-
magnetic, control theory, economics, signal and image processing, aero-
dynamics, and porous media. There have been many results obtained
on the existence of solutions of boundary value problems for nonlinear
fractional differential equations (see [6, 7, 29,31,32,43,51,54]).

In recent years, many authors [1,14,19,20,22,23,25,26,30,37,42,43,50,
55] studied the existence or uniqueness of solutions of impulsive initial
or boundary value problems for fractional differential equations. For ex-
amples, impulsive anti-periodic boundary value problems (see [2–4,39]),
impulsive periodic boundary value problems (see [40]), impulsive initial
value problems (see [9, 13,28,46]), two-point, three-point or multi-point
impulsive boundary value problems (see [5,41,53]), impulsive boundary
value problems on infinite intervals (see [52]).

In [40], the following periodic boundary value problem of impulse type
fractional differential equation

Dαx(t)− λx(t) = f(t, x(t)), t ∈ (0, 1], t 6= t1,
x(1)− lim

t→0
t1−αx(t) = 0,

lim
t→t+1

(t− t1)1−α[x(t)− x(t1)] = I(x(t1))

where 0 < α < 1, Dα is the standard Riemann-Liouville fractional
derivative, λ ∈ R with λ 6= 0, 0 = t0 < t1 < t2 = 1, I ∈ C(R,R), f is
continuous at every point (t, u) ∈ [0, 1]×R.

In [8], authors studied the following periodic boundary value problem
of impulse type fractional differential equation

Dα
t+k
x(t)− λx(t) = f(t, x(t)), t ∈ (tk, tk+1), k = 0, 1, · · · , p,

x(1)− lim
t→0

t1−αx(t) = 0,

lim
t→t+k

(t− tk)1−α[x(t)− x(tk)] = I(x(tk)), k = 1, 2, · · · , p,

where 0 < α < 1, Dα is the standard Riemann-Liouville fractional
derivative, λ ∈ R with λ 6= 0, 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1,
I ∈ C(R,R), f is continuous at every point (t, u) ∈ (tk, tk+1] × R(k =
0, 1, 2, · · · , p).

Applications of fractional order differential systems are in many fields,
as for example, rheology, mechanics, chemistry, physics, bioengineering,
robotics and many others, see [10]. Diethehm [11] proposed the model
of the type (which is called a multi-order fractional differential system):

cDni
0+yi(t) = fi(t, y1(t), · · · , yn(t)), i = 1, 2, · · · , n
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subjected to the initial conditions

yj(0) = yj,0(j = 1, 2, · · · , n).

In [15, 33, 45], the fractional order nonlinear dynamical model of inter-
personal relationships Dαx(t) + α1x(t) = A1 + β1y(t)(1− εy2(t)),

Dαy(t) + α2y(t) = A2 + β2x(t)(1− εx2(t)),

was proposed, where 0 < α ≤ 1, αi, βi, Ai, ε are real constants. These
systems contain many models as special cases, see Chen’s fractional or-
der system [47,48] with a double scroll attractor, Genesio-Tesi fractional-
order system [18], Lu’s fractional order system [12], Volta’s fractional-
order system [34, 35], Rossler’s fractional-order system [24] and so on.
To the authors knowledge, there has been no paper discussing the ex-
istence of solutions of impulsive periodic type boundary value problems
of singular fractional differential systems.

Motivated by mentioned applications and reason, in this paper, we
discuss the following impulsive periodic type boundary value problem of
singular fractional differential system
(1)

Dα
t+i
x(t)− λx(t) = p(t)f(t, x(t), y(t)), t ∈ (ti, ti+1), i ∈ N [0,m],

Dβ

t+i
y(t)− µy(t) = q(t)g(t, x(t), y(t)), t ∈ (ti, ti+1), i ∈ N [0,m],

x(1)− a lim
t→0

t1−αx(t) =
∫ 1

0
φ(s)G(s, x(s), y(s))ds,

y(1)− b lim
t→0

t1−βy(t) =
∫ 1

0
ψ(s)H(s, x(s), y(s))ds,

lim
t→t+i

(t− ti)1−αx(t) = I(ti, x(ti), y(ti)), i ∈ N [1,m],

lim
t→t+i

(t− ti)1−βy(t) = J(ti, x(ti), y(ti)), i ∈ N [1,m],

where
(a) 0 < α, β < 1, Dα

t+i
( or Dβ

t+i
) is the Riemann-Liouville fractional

derivative of order α ( or β ),
(b) 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1 with m ≥ 1, a, b ∈ R

with ab 6= 0, λ, µ ∈ R, N [c, d] = {c, c+ 1, · · · , d} for integers c and d,
(c) φ, ψ : (0, 1)→ R satisfy φ, ψ ∈ L1(0, 1),

(d) p, q :
m⋃
i=0

(ti, ti+1) → R satisfy the growth conditions: there exist

constants ki, li(i = 1, 2) with k1 > −1, k2 > −1 and max{−α,−k1−1} ≤
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l1 ≤ 0 and max{−β,−k2−1} ≤ l2 ≤ 0 such that |p(t)| ≤ (t− ti)k1(ti+1−
t)l1 , |q(t)| ≤ (t− ti)k2(ti+1 − t)l2 , t ∈ (ti, ti+1), i = 0, 1, · · · ,m,

(e) f, g,G,H defined on (0, 1) × R × R are impulsive Caratheodory
functions(see Definition 2.3), I, J are Caratheodory functions(see Defini-
tion 2.4).

A pair of functions x, y : (0, 1]→ R is called a solution of BVP(1) if

x|(tk,tk+1] ∈ C0(tk, tk+1], y|(tk,tk+1] ∈ C0(tk, tk+1], k = 0, 1, 2, · · · ,m

and x, y satisfy all equations in (1). As in [40], for clarity and brevity, we
restrict our attention to BVPs with one impulse, the difference between
the theory of one or an arbitrary number of impulses is quite minimal.

To the best of the authors knowledge, no one has studied the existence
of solutions of BVP (1) in which the nonlinearities are singular functions.
We fill this gap by establishing existence results on solutions of BVP(1).
The assumptions (D) in Theorem 3.1 in this paper are more general that
the assumptions (H1) and (H2) in Theorem 3.18 in [8,40]. Two examples
are given to illustrate the efficiency of the main theorems.

The remainder of this paper is as follows: in Section 2, we present
preliminary results. The main theorems and their proofs are given in
Section 3. In Section 4, an example is given to illustrate the main results.

2. Preliminary results

For the convenience of the readers, we firstly present the necessary
definitions from the fractional calculus theory. These definitions and
results can be found in the literatures [21, 36].

Let the Gamma function, Beta function and the classical Mittag-
Leffler special function be defined by

Γ(α) =
∫ +∞

0
xα−1e−xdx, B(p, q) =

∫ 1

0
xp−1(1− x)q−1dx,

Eδ,δ(x) =
∞∑
k=0

xk

Γ(δk+δ)

respectively for , α > 0, p > 0, q > 0, δ > 0. We note that Eδ,δ(x) > 0 for
all x ∈ R and Eδ,δ(x) is strictly increasing in x. Then for x > 0 we have
Eδ,δ(−x) < Eδ,δ(0) = 1

Γ(δ)
< Eδ,δ(x).
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Definition 2.1. ([21]) Let c ∈ R. The Riemann-Liouville fractional
integral of order α > 0 of a function g : (c,∞)→ R is given by

Iαc+g(t) = 1
Γ(α)

∫ t
c
(t− s)α−1g(s)ds,

provided that the right-hand side exists.

Definition 2.2. ([21]) Let c ∈ R. The Riemann-Liouville fractional
derivative of order α > 0 of a continuous function g : (c,∞) → R is
given by

Dα
c+g(t) = 1

Γ(n−α)
dn

dtn

∫ t
c

g(s)
(t−s)α−n+1ds,

where α < n ≤ α + 1, i.e., n = dαe, provided that the right-hand side
exists.

For readers convenience, choose

δα,λ(t, ti) = (t− ti)α−1Eα,α(λ(t− ti)α), t ∈ (ti, ti+1], i ∈ N [0,m],

δβ,µ(t, ti) = (t− ti)β−1Eβ,β(µ(t− ti)β), t ∈ (ti, ti+1], i ∈ N [0,m].

Definition 2.3. We call F :
m⋃
i=0

(ti, ti+1) × R2 → R an impulsive

Caratheodory function if it satisfies
(i) t → F (t, δα,λ(t, ti)u, δβ,µ(t, ti)v) is measurable on (ti, ti+1)(i ∈

N [0,m]) for any (u, v) ∈ R2,
(ii) (u, v) → F (t, δα,λ(t, ti)u, δβ,µ(t, ti)v) is continuous on R2 for al-

most all t ∈ (ti, ti+1)(i = 0, 1, 2, · · · ,m),
(iii) for each r > 0 there exists Mr > 0 such that

|F (t, δα,λ(t, ti)u, δβ,µ(t, ti)v)| ≤Mr, t ∈ (ti, ti+1), |u|, |v| ≤ r, i ∈ N [0,m].

Definition 2.4. We call I : {ti : i ∈ N [1,m]} × R2 → R an
Caratheodory function if it satisfies

(i) (u, v) → I (ti, δα,λ(ti, ti−1)u, δβ,µ(ti, ti−1)v) is continuous on R2 for
almost all i = 1, 2, · · · ,m,

(ii) for each r > 0 there exists Mr > 0 such that

|I (ti, δα,λ(ti, ti−1)u, δβ,µ(ti, ti−1)v)| ≤Mr, i ∈ N [1,m].

Definition 2.5. ([19]) An odd homeomorphism Φ of the real line
R onto itself is called a sup-multiplicative-like function if there exists a
homeomorphism ω of [0,+∞) onto itself which supports Φ in the sense
that for all v1, v2 ≥ 0 it holds

(2) Φ(v1v2) ≥ ω(v1)Φ(v2).
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ω is called the supporting function of Φ.

Remark 2.1. From [19], any function of the form

Φ(u) :=
k∑
j=0

cj|u|ju, u ∈ R

is a sup-multiplicative-like function, provided that cj ≥ 0. Here a sup-
porting function is defined by ω(u) := min{uk+1, u}, u ≥ 0.

Remark 2.2. ([19]) It is clear that a sup-multiplicative-like function
Φ and any corresponding supporting function ω are increasing functions
vanishing at zero and moreover their inverses Φ−1 and ν respectively are
increasing and such that

(3) Φ−1(w1w2) ≤ ν(w1)Φ−1(w2),

for all w1, w2 ≥ 0 and ν is called the supporting function of Φ−1.

In this paper we suppose that Φ : R→ R is a sup-multiplicative-like
function with supporting function ω, its inverse function is denoted by
Φ−1 : R→ R with supporting function ν.

Suppose that λ > 0, µ > 0. We use the Banach spaces (similarly
to [8], we can give the proofs)

X =

x : (0, 1]→ R :

x|(ti,ti+1] ∈ C0(ti, ti+1], i ∈ N [0,m],
there exist the limits

lim
t→t+i

x(t)
δα,λ(t,ti)

, i ∈ N [0,m]


with the norm

||x|| = ||x||X = max

{
sup

t∈(ti,ti+1]

|x(t)|
δα,λ(t, ti)

: i ∈ N [0,m]

}

Y =

y : (0, 1]→ R :

y|(ti,ti+1] ∈ C0(ti, ti+1], i ∈ N [0,m],
there exist the limits

lim
t→t+i

y(t)
δβ,µ(t,ti)

, i ∈ N [0,m]


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with the norm

||y|| = ||y||Y = max

{
sup

t∈(ti,ti+1]

|y(t)|
δβ,µ(t, ti)

: i ∈ N [0,m]

}
.

Choose E = X ×Y with the norm ||(x, y)|| = max {||x||X , ||y||Y } . Then
E is a Banach space.

Lemma 2.1. Suppose that σ : (0, 1) → R satisfies that there exist
numbers k > −1 and max{−α,−k − 1} < l ≤ 0 such that |σ(t)| ≤
(t − ti)

k(ti+1 − t)l for all t ∈ (ti, ti+1), i = 0, 1, · · · ,m. The x is a
solutions of

(4)


Dα
t+i
x(t)− λx(t) = σ(t), t ∈ (ti, ti+1), i ∈ N [0,m],

x(1)− a lim
t→0

t1−αx(t) = a0,

lim
t→t+i

(t− ti)1−αx(t) = Ii, i ∈ N [1,m]

if and only if x ∈ X and
(5)

x(t) =


Γ(α)δα,λ(t, 0)

ImΓ(α)δα,λ(1,tm)+
∫ 1
tm

δα,λ(1,s)σ(s)ds−a0

a

+
∫ t

0
δα,λ(t, s)σ(s)ds, t ∈ (0, t1],

Γ(α)δα,λ(t, ti)Ii +
∫ t
ti
δα,λ(t, s)σ(s)ds, t ∈ (ti, ti+1], i ∈ N [1,m].

Proof. Let x be a solution of (4). One sees from l ≤ 0, for t ∈ (ti, ti+1],
that

(t− ti)1−α
∣∣∣∫ tti δα,α(t, s)σ(s)ds

∣∣∣
≤ (t− ti)1−α ∫ t

ti
(t− s)α−1Eα,α(λ(t− s)α)(s− ti)k(ti+1 − s)lds

= (t− ti)1−α ∫ t
ti

(t− s)α−1
∞∑
i=0

λi(t−s)αi
Γ(αi+α)

(s− ti)k(ti+1 − s)lds

≤ (t− ti)1−α ∫ t
ti

(t− s)α+l−1
∞∑
i=0

λi(t−s)αi
Γ(αi+α)

(s− ti)kds
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= (t− ti)1−α
∞∑
i=0

λi

Γ(αi+α)

∫ t
ti

(t− s)α+αi+l−1(s− ti)kds

= (t− ti)1−α
∞∑
i=0

λi

Γ(αi+α)
(t− ti)α+αi+l+k

∫ 1

0
(1− w)α+αi+l−1wkdw

≤ (t− ti)1−α
∞∑
i=0

λi

Γ(αi+α)
(t− ti)α+αi+l+k

∫ 1

0
(1− w)α+l−1wkdw

= (t− ti)1+l+kB(α + l, k + 1)
∞∑
i=0

λi(t−ti)αi
Γ(αi+α)

= (t− ti)1+l+kB(α + l, k + 1)Eα,α(λ(t− ti)α).

From k + l + 1 > 0, we get

lim
t→t+i

(t− ti)1−α
∣∣∣∫ tti δα,λ(t, s)σ(s)ds

∣∣∣ = 0.

By (3.26) in [7], we know that there exist numbers Ai such that
(6)

x(t) = AiΓ(α)δα,λ(t, ti) +
∫ t
ti
δα,λ(t, s)σ(s)ds, t ∈ (ti, ti+1], i ∈ N [0,m].

Note Eα,α(0) = 1
Γ(α)

. It follows from the boundary conditions and the

impulse assumption in (4) that

AmΓ(α)δα,λ(1, tm) +
∫ 1

tm
δα,λ(1, s)σ(s)ds− aA0 = a0,

Ai = Ii, i ∈ N [1,m].

Then

A0 =
ImΓ(α)δα,λ(1,tm)+

∫ 1
tm

δα,λ(1,s)σ(s)ds−a0

a
.

Substituting Ai(i = 0, 1, 2, · · · ,m) into (6), we get (5) obviously.
It is easy to see that both x|(0,t1] and x|(t1,1] are continuous and the

limits lim
t→0

t1−αx(t) and lim
t→t1

x(t). So x ∈ X.

On the other hand, if x satisfies (5), we can prove that x ∈ X and x
satisfies (4). The proof is completed.
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Lemma 2.2. Suppose that σ : (0, 1) → R satisfies that there exist
numbers k > −1 and max{−β,−k − 1} < l ≤ 0 such that |σ(t)| ≤
(t− ti)k(ti+1− t)l for all t ∈ (ti, ti+1), i ∈ N [0,m]. The y is a solutions of

(7)


Dβ

t+i
y(t)− µy(t) = σ(t), t ∈ (ti, ti+1), i ∈ N [0,m],

y(1)− b limt→0 t
1−βy(t) = b0,

lim
t→t+i

(t− ti)1−βy(t) = Ji, i ∈ N [1,m]

if and only if y ∈ Y and
(8)

y(t) =


Γ(β)δβ,µ(t, 0)

JmΓ(β)δβ,µ(1,tm)+
∫ 1
tm

δβ,µ(1,s)σ(s)ds−b0
b

+
∫ t

0
δβ,µ(t, s)σ(s)ds, t ∈ (0, t1],

Γ(β)δβ,µ(t, ti)Ji +
∫ t
ti
δβ,µ(t, s)σ(s)ds, t ∈ (ti, ti+1], i ∈ N [1,m].

Proof. The proof is similar to that of the proof of Lemma 2.1 and is
omitted.

Define the nonlinear operator T on E by

T (x, y)(t) = ((T1(x, y))(t), (T2(x, y))(t)) with

(T1(x, y))(t) =

Γ(α)2δα,λ(t,0)δα,λ(1,tm)

a
I(tm, x(tm), y(tm))

+
Γ(α)δα,λ(t,0)

a

∫ 1

tm
δα,λ(1, s)p(s)f(s, x(s), y(s))ds

−Γ(α)δα,λ(t, 0)
∫ 1
0 φ(s)G(s,x(s),y(s))ds

a

+
∫ t

0
δα,λ(t, s)p(s)f(s, x(s), y(s))ds, t ∈ (0, t1],

Γ(α)δα,λ(t, ti)I(ti, x(ti), y(ti))

+
∫ t
ti
δα,λ(t, s)p(s)f(s, x(s), y(s))ds, t ∈ (ti, ti+1], i ∈ N [1,m].
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(T2(x, y))(t) =

Γ(β)2δβ,µ(t,0)δβ,µ(1,tm)

b
J(tm, x(tm), y(tm))

Γ(β)δβ,µ(t,0)

b

∫ 1

tm
δβ,µ(1, s)q(s)g(s, x(s), y(s))ds

−Γ(β)δβ,µ(t,0)

b

∫ 1

0
ψ(s)H(s, x(s), y(s))ds

+
∫ t

0
δβ,µ(t, s)q(s)g(s, x(s), y(s))ds, t ∈ (0, t1],

Γ(β)δβ,µ(t, ti)J(ti, x(ti), y(ti))

+
∫ t
ti
δβ,µ(t, s)q(s)g(s, x(s), y(s))ds, t ∈ (ti, ti+1], i ∈ N [1,m]

for (x, y) ∈ E.

Lemma 2.3. Suppose that (a)-(e) hold and λ > 0, µ > 0. Then
T : E → E is well defined and is completely continuous.

Proof. Step (i) We prove that T : E → E is well defined. It comes
from that Tj(x, y)|(ti,ti+1](i = 0, 1, · · · ,m, j = 1, 2) are continuous and
the limits

lim
t→t+i

δα,λ(t, ti)(T1(x, y))(t)(i = 0, 1, · · · ,m),

lim
t→ti

δβ,µ(t, ti)(T2(x, y))(t)(i = 0, 1, · · · ,m) exist.

Step (ii) We prove that T is continuous.

Let (xn, yn) ∈ E with (xn, yn) → (x0, y0) as n → ∞. We can show
that T (xn, yn) → T (x0, y0) as n → ∞ by using the dominant conver-
gence theorem. We refer the readers to the papers [38,44,49].

Step (iii) Prove that T is compact, i.e., prove that T (Ω) is relatively
compact for every bounded closed subset Ω ⊂ E.

Let Ω be a bounded closed nonempty subset of E. We have ||(x, y)|| ≤
r < +∞ for all (x, y) ∈ Ω. Since f, g,G,H are impulsive Caratheodory
functions, I, J are Caratheodory functions, then there exists a constant
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MI ,MJ ,Mf ,Mg,MG,MH ≥ 0 such that
(9)

|f (t, x(t), y(t))| =
∣∣∣f (t, δα,λ(t, ti) x(t)

δα,λ(t,ti)
, δβ,µ(t, ti)

y(t)
δβ,µ(t,ti)

)∣∣∣
≤Mf , t ∈ (ti, ti+1], i ∈ N [0,m],

|g (t, x(t), y(t))| ≤Mg, t ∈ (ti, ti+1], i ∈ N [0,m],

|G (t, x(t), y(t))| ≤MG, t ∈ (ti, ti+1], i ∈ N [0,m],

|H (t, x(t), y(t))| ≤MH , t ∈ (ti, ti+1], i ∈ N [0,m],

|I (ti, x(ti), y(ti))| =
∣∣∣I (ti, δα,λ(ti, ti−1) x(ti)

δα,λ(ti,ti−1)
, δβ,µ(ti, ti−1) y(ti)

δβ,µ(ti,ti−1)

)∣∣∣
≤MI , i ∈ N [1,m],

|J (ti, x(ti), y(ti))| ≤MJ , i ∈ N [1,m].

This step is done by the following two sub-steps:

Sub-step (iii1) Prove that T (Ω) is uniformly bounded.

Using (d), (10), λ > 0, µ > 0 and the definition of T1, we have for
t ∈ (0, t1] that

|(T1(x,y))(t)|
δα,λ(t,0)

≤ 1
δα,λ(t,0)

Γ(α)2δα,λ(t,0)δα,λ(1,tm)

|a| MI

+ 1
δα,λ(t,0)

Γ(α)δα,λ(t,0)

|a|

∫ 1

tm
δα,λ(1, s)(s− tm)k1(1− s)l1Mfds

+ 1
δα,λ(t,0)

Γ(α)δα,λ(t, 0) ||φ||1MG

|a|

+ 1
δα,λ(t,0)

∫ t
0
δα,λ(t, s)s

k1(t1 − s)l1Mfds

≤ Γ(α)2δα,λ(1,tm)

|a| MI + Γ(α)
|a|

∫ 1

tm
δα,λ(1, s)(s− tm)k1(1− s)l1Mfds

+Γ(α) ||φ||1MG

|a| + 1
δα,λ(t,0)

∫ t
0
δα,λ(t, s)s

k1(t1 − s)l1Mfds
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≤ Γ(α)2δα,λ(1,tm)

|a| MI + Γ(α)||φ||1
|a| MG

+Γ(α)Eα,α(λ)

|a|

∫ 1

tm
(1− s)α−1(s− tm)k1(1− s)l1dsMf

+t1−α
∫ t

0
(t− s)α−1sk1(t− s)l1dsMf

=
Γ(α)2δα,λ(1,tm)

|a| MI + Γ(α)||φ||1
|a| MG

+
(

Γ(α)Eα,α(λ)

|a| (1− tm)1+k1+l1 + t1+k1+l1

)
B(α + l1, k1 + 1)Mf

≤ Γ(α)2(1−tm)α−1Eα,α(λ)

|a| MI + Γ(α)||φ||1
|a| MG

+
(

Γ(α)Eα,α(λ)

|a| + 1
)
B(α + l1, k1 + 1)Mf .

For t ∈ (ti, ti+1](i ∈ N [1,m]), similarly we have

|(T1(x,y))(t)|
δα,λ(t,ti)

≤ Γ(α)MI + 1
δα,λ(t,ti)

∫ t
ti
δα,λ(t, s)(s− ti)k1(ti+1 − s)l1dsMf

≤ Γ(α)MI + (t− ti)1−α ∫ t
ti

(t− s)α−1(s− ti)k1(t− s)l1dsMf

≤ Γ(α)MI + B(α + l1, k1 + 1)Mf .

It follows that

(10)

||T1(x, y)|| ≤
(

Γ(α)2(1−tm)α−1Eα,α(λ)

|a| + 1
)
MI + Γ(α)||φ||1

|a| MG

+
(

Γ(α)Eα,α(λ)

|a| + 1
)
B(α + l1, k1 + 1)Mf .

Similarly we have

(11)

||T2(x, y)|| ≤
(

Γ(β)2(1−tm)β−1Eβ,β(µ)

|b| + 1
)
MJ + Γ(β)||ψ||1

|b| MH

+
(

Γ(β)Eβ,β(µ)

|b| + 1
)
B(β + l2, k2 + 1)Mg.

Then T (Ω) is uniformly bounded.

From above discussion, T (Ω) is uniformly bounded.
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Sub-step (iii2) Prove that both
{
t→ (T1(x,y))(t)

δα,λ(t,ti)
: (x, y)

∫
Ω
}

and{
t→ (T2(x,y))(t)

δβ,µ(t,ti)
: (x, y)

∫
Ω
}

are equi-continuous on (ti, ti+1](i ∈ N [0,m]),

respectively.

Let

(T1(x,y))(t)
δα,λ(t,ti)

=

 lim
t→t+i

(T1(x,y))(t)
δα,λ(t,ti)

, t = ti,

(T1(x,y))(t)
δα,λ(t,ti)

, t ∈ (ti, ti+1]

Since t→ (T1(x,y))(t)
δα,λ(t,ti)

is continuous on [ti, ti+1],
{
t→ (T1(x,y))(t)

δα,λ(t,ti)
: (x, y)

∫
Ω
}

is equi-continuous on (ti, ti+1](i ∈ N [0,m]). We can prove similarly that{
t→ (T2(x,y))(t)

δβ,µ(t,ti)
: (x, y)

∫
Ω
}

is equi-continuous on (ti, ti+1](i ∈ N [0,m]).

So T (Ω) is relatively compact. Then T is completely continuous. The
proofs are completed.

3. Main results

Now, we prove that main theorem in this paper by using the Schauder’s
fixed point theorem [27]. We need the following assumptions:

(C) Φ is a sup-multiplicative-like function with its supporting func-
tion w, the inverse function of Φ is Φ−1 with supporting function ν.

(D) f, g,H,G are impulsive caratheodory functions, I, J are contin-
uous functions and satisfy that there exist nonnegative constants I0, J0,
bi, ai(i = 1, 2), Bi, Ai(i = 1, 2) and Bi, Ai(i = 1, 2), bounded measurable
functions φi, ψi : (0, 1)→ R(i = 1, 2) such that∣∣∣f (t, x

δα,λ(t,ti)
, y
δβ,µ(t,ti)

)
− φ1(t)

∣∣∣ ≤ b1|x|+ a1Φ−1(|y|), t ∈ (ti, ti+1],∣∣∣g (t, x
δα,λ(t,ti)

, y
δβ,µ(t,ti)

)
− φ2(t)

∣∣∣ ≤ b2Φ(|x|) + a2|y|, t ∈ (ti, ti+1],∣∣∣G(t, x
δα,λ(t,ti)

, y
δβ,µ(t,ti)

)
− ψ1(t)

∣∣∣ ≤ B1|x|+ A1Φ−1(|y|), t ∈ (ti, ti+1],∣∣∣H (t, x
δα,λ(t,ti)

, y
δβ,µ(t,ti)

)
− ψ2(t)

∣∣∣ ≤ B2Φ(|x|) + A2|y|, t ∈ (ti, ti+1]
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hold for x, y ∈ R, i ∈ N [0,m] and

∣∣∣I (ti, x
δα,λ(ti,ti−1)

, y
δβ,µ(ti−ti−1)

)
− I0

∣∣∣ ≤ B1|x|+ A1Φ−1(|y|),∣∣∣J (ti, x
δα,λ(ti,ti−1)

, y
δβ,µ(ti−ti−1)

)
− J0

∣∣∣ ≤ B2Φ(|x|) + A2|y|

hold for i ∈ N [1,m], x, y ∈ R.
Denote

Φ1(t) =

Γ(α)2δα,λ(t,0)δα,λ(1,tm)

a
I0 +

Γ(α)δα,λ(t,0)

a

∫ 1

tm
δα,λ(1, s)p(s)φ1(s)ds

−Γ(α)δα,λ(t, 0)
∫ 1
0 φ(s)ψ1(s)

a
+
∫ t

0
δα,λ(t, s)p(s)φ1(s)ds, t ∈ (0, t1],

Γ(α)δα,λ(t, ti)I0 +
∫ t
ti
δα,λ(t, s)p(s)φ1(s)ds, t ∈ (ti, ti+1], i ∈ N [1,m],

Φ2(t) =

Γ(β)2δβ,µ(t,0)δβ,µ(1,tm)

b
J0 +

Γ(β)δβ,µ(t,0)

b

∫ 1

tm
δβ,µ(1, s)q(s)φ2(s)ds

−Γ(β)δβ,µ(t,0)

b

∫ 1

0
ψ(s)ψ2(s)ds+

∫ t
0
δβ,µ(t, s)q(s)φ2(s)ds, t ∈ (0, t1],

Γ(β)δβ,µ(t, ti)J0 +
∫ t
ti
δβ,µ(t, s)q(s)φ2(s)ds, t ∈ (ti, ti+1], i ∈ N [1,m]

and

M2 =
(

Γ(α)2(1−tm)α−1Eα,α(λ)

|a| + 1
)
B1 + Γ(α)||φ||1

|a| B1

+
(

Γ(α)Eα,α(λ)

|a| + 1
)
B(α + l1, k1 + 1)b1,

M3 =
(

Γ(α)2(1−tm)α−1Eα,α(λ)

|a| + 1
)
A1

+Γ(α)||φ||1
|a| A1 +

(
Γ(α)Eα,α(λ)

|a| + 1
)
B(α + l1, k1 + 1)a1,
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N2 =
(

Γ(β)2(1−tm)β−1Eβ,β(µ)

|b| + 1
)
B2 + Γ(β)||ψ||1

|b| B2

+
(

Γ(β)Eβ,β(µ)

|b| + 1
)
B(β + l2, k2 + 1)b2,

N3 =
(

Γ(β)2(1−tm)β−1Eβ,β(µ)

|b| + 1
)
A2 + Γ(β)||ψ||1

|b| A2

+
(

Γ(β)Eβ,β(µ)

|b| + 1
)
B(β + l2, k2 + 1)a2.

Theorem 3.1. Suppose that λ > 0, µ > 0 and (a)-(e), (C), (D) hold.
Then BVP(1) has at least one solution if

(12) M2 < 1, N3 < 1, lim
r→+∞

ν(Φ(r))
r

< 1−M2

M3

[
Φ−1

(
N2

1−N3

)]−1

or

(13) M2 < 1, N3 < 1, lim
r→+∞

ω(1/Φ−1(r))r > N2

1−N3
Φ
(

M3

1−M2

)
.

Proof. To apply the Schauder’s fixed point theorem, we should define
an closed convex bounded subset Ω of E such that T (Ω) ⊆ Ω.

For r1 > 0, r2 > 0, denote Ω = {(x, y) ∈ E : ||x−Φ1|| ≤ r1, ||y−Φ2|| ≤
r2}. For (x, y) ∈ Ω, we get

(14)
||x|| ≤ ||x− Φ1||+ ||Φ1|| ≤ r1 + ||Φ1||,

||y|| ≤ ||y − Φ2||+ ||Φ2|| ≤ r2 + ||Φ2||.

Then

|f(t, x(t), y(t))− φ1(t)|

=
∣∣∣f (t, δα,λ(t, ti) x(t)

δα,λ(t,ti)
, δβ,µ(t, ti)

y(t)
δβ,µ(t,ti)

)
− φ1(t)

∣∣∣
≤ b1δα,λ(t, ti)|x(t)|+ a1Φ−1(δβ,µ(t, ti)|y(t)|)

≤ b1||x||+ a1Φ−1(||y||) ≤ b1[r1 + ||Φ1||] + a1Φ−1(r2 + ||Φ2||),
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|g(t, x(t), y(t))− φ2(t)| ≤ b2Φ(r1 + ||Φ1||) + a2[r2 + ||Φ2||],

|G(t, x(t), y(t))− ψ1(t)| ≤ B1[r1 + ||Φ1||] + A1Φ−1(r2 + ||Φ2||),

|H(t, x(t), y(t))− ψ2(t)| ≤ B2Φ(r1 + ||Φ1||) + A2[r2 + ||Φ2||]

hold for t ∈ (ti, ti+1], i ∈ N [0,m] and

|I(ti, x(ti), y(ti))− I0| ≤ B1[r1 + ||Φ1||] + A1Φ−1(r2 + ||Φ2||),

|J(ti, x(ti), y(ti))− J0| ≤ B2Φ(r1 + ||Φ1||) + A2[r2 + ||Φ2||]

hold for i ∈ N [1,m].
By the definition of T , using the methods proving (10) and (11), in

Step (iii1) of the proof of Lemma 2.3, we have that

||T1(x, y)− Φ1||

≤
(

Γ(α)2(1−tm)α−1Eα,α(λ)

|a| + 1
)

[B1[r1 + ||Φ1||] + A1Φ−1(r2 + ||Φ2||)]

+Γ(α)||φ||1
|a| [B1[r1 + ||Φ1||] + A1Φ−1(r2 + ||Φ2||)]

+
(

Γ(α)Eα,α(λ)

|a| + 1
)
B(α + l1, k1 + 1)[b1[r1 + ||Φ1||] + a1Φ−1(r2 + ||Φ2||)],

and

||T2(x, y)− Φ2||

≤
(

Γ(β)2(1−tm)β−1Eβ,β(µ)

|b| + 1
)

[B2Φ(r1 + ||Φ1||) + A2[r2 + ||Φ2||]]

+Γ(β)||ψ||1
|b| [B2Φ(r1 + ||Φ1||) + A2[r2 + ||Φ2||]]

+
(

Γ(β)Eβ,β(µ)

|b| + 1
)
B(β + l2, k2 + 1)[b2Φ(r1 + ||Φ1||) + a2[r2 + ||Φ2||]].

It follows that

(15)
||T1(x, y)− Φ1|| ≤M2(r1 + ||Φ1||) +M3Φ−1(r2 + ||Φ2||),

||T2(x, y)− Φ2|| ≤ N2Φ(r1 + ||Φ1||) +N3(r2 + ||Φ2||).
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We claim that there exists r1, r2 > 0 such that

(16)
M2(r1 + ||Φ1||) +M3Φ−1(r2 + ||Φ2||) ≤ r1,

N2Φ(r1 + ||Φ1||) +N3(r2 + ||Φ2||) ≤ r2.

We consider two cases:

Case (i) M2 < 1, N3 < 1, lim
r→+∞

ν(Φ(r))
r

< 1−M2

M3

[
Φ−1

(
N2

1−N3

)]−1

.

First we prove that that exists r1 > 0 such that

(17) r1 ≥ M2||Φ1||
1−M2

+ M3

1−M2
Φ−1

(
N2

1−N3
Φ(r1 + ||Φ1||) + ||Φ2||

1−N3

)
.

In fact, if

r < M2||Φ1||
1−M2

+ M3

1−M2
Φ−1

(
N2

1−N3
Φ(r + ||Φ1||) + ||Φ2||

1−N3

)
for every r > 0, using (3), we get

1 < M2||Φ1||
1−M2

1
r

+ M3

1−M2

1
r
Φ−1

(
N2

1−N3
Φ(r + ||Φ1||) + ||Φ2||

1−N3

)
≤ M2||Φ1||

1−M2

1
r

+ M3

1−M2

ν(Φ(r))
r

Φ−1

(
N2

1−N3
Φ(r+||Φ1||)+ ||Φ2||

1−N3

Φ(r)

)
.

Let r → +∞, we get

1 ≤ M3

1−M2
Φ−1

(
N2

1−N3

)
lim

r→+∞
ν(Φ(r))

r
,

which contradicts

lim
r→+∞

ν(Φ(r))

r
<

1−M2

M3

[
Φ−1

(
N2

1−N3

)]−1

.

Then there exists r1 > 0 such that (17) holds. Choose r2 > 0 satisfy-

ing r2 ≥ N2

1−N3
Φ(r1+||Φ1||)+N3||Φ2||

1−N3
. Then r1 > 0 and r2 > 0 satisfy (16).

Case (ii) M2 < 1, N3 < 1, lim
r→+∞

ω(1/Φ−1(r))r > N2

1−N3
Φ
(

M3

1−M2

)
.

First we prove that that exists r2 > 0 such that

(18) r2 ≥ N2

1−N3
Φ
(
||Φ1||
1−M2

+ M3

1−M2
Φ−1(r2 + ||Φ2||)

)
+ N3||Φ2||

1−N3
.

In fact, if

r < N2

1−N3
Φ
(
||Φ1||
1−M2

+ M3

1−M2
Φ−1(r + ||Φ2||)

)
+ N3||Φ2||

1−N3



222 Yuji Liu

holds for all r > 0. using (2), we get Φ(xy) ≤ 1
ω(1/x)

Φ(y). Then

1 <
N2

1−N3
Φ
(
||Φ1||
1−M2

+
M3

1−M2
Φ−1(r+||Φ2||)

)
r

+ N3||Φ2||
1−N3

1
r

= N2

1−N3
Φ

(
Φ−1(r)

||Φ1||
1−M2

+
M3

1−M2
Φ−1(r+||Φ2||)

Φ−1(r)

)
1
r

+ N3||Φ2||
1−N3

1
r

≤ N2

1−N3
Φ

( ||Φ1||
1−M2

+
M3

1−M2
Φ−1(r+||Φ2||)

Φ−1(r)

)
1

ω(1/Φ−1(r))r
+ N3||Φ2||

1−N3

1
r
.

Let r →∞. We get

1 ≤ N2

1−N3
Φ
(

M3

1−M2

)
1

lim
r→+∞

ω(1/Φ−1(r))r
.

Hence there is r2 > 0 such that (18) holds. Now choose r1 > 0 such that

r1 ≥ M2||Φ1||
1−M2

+ M3

1−M2
Φ−1(r2 + ||Φ2||).

Then r1 > 0 and r2 > 0 satisfy (16).

We choose Ω = {(x, y) ∈ E : ||x−Φ1|| ≤ r1, ||y−Φ2|| ≤ r2}. Then we
get T (Ω) ⊂ Ω. Hence the Schauder’s fixed point theorem implies that
T has a fixed point (x, y) ∈ Ω. So (x, y) is a solution of BVP(1). The
proof of Theorem 3.1 is complete.

Remark 3.1. When the limits lim
r→+∞

ν(Φ(r))
r

and lim
r→+∞

ω(1/Φ−1(r))r

exist, we note, from Theorem 3.1, that (12) and (13) hold for sufficiently
small nonnegative constants I0, J0, bi, ai(i = 1, 2), Bi, Ai(i = 1, 2) and
Bi, Ai(i = 1, 2). So it is easy to see that BVP(1) has at least one solution
if the nonnegative constants I0, J0, bi, ai(i = 1, 2), Bi, Ai(i = 1, 2) and
Bi, Ai(i = 1, 2) are very small.

Remark 3.2. In BVP(1) when λ < 0, µ < 0, or λ < 0, µ > 0, or
λ > 0, µ < 0, similar result to Theorem 3.1 can be obtained. The details
are omitted.
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Remark 3.3. Consider the following periodic boundary value prob-
lem

(19)



Dα
t+i
x(t)− λx(t) = p(t)f(t, x(t), y(t)), t ∈ (ti, ti+1], i = 0, 1,

Dβ

t+i
y(t)− µy(t) = q(t)g(t, x(t), y(t)), t ∈ (ti, ti+1], i = 0, 1,

x(1)− lim
t→0

t1−αx(t) = 0, y(1)− lim
t→0

t1−βy(t) = 0,

lim
t→t+1

(t− tt)1−αx(t)− x(t1) = lim
t→t+1

(t− t1)1−βy(t)− y(t1) = 0,

where

(i) 0 < α, β < 1, λ, µ ∈ R with λ 6= 0, µ 6= 0, Dα
t+i

( or Dβ

t+i
) is the

Riemann-Liouville fractional derivative of order α ( or β ),

(ii) 0 = t0 < t1 < t2 = 1,

(iii) p, q : (0, 1) → R satisfy the growth conditions: there exist
constants ki, li(i = 1, 2) with k1 > −1, k2 > −1 and max{−α,−k1−1} ≤
l1 ≤ 0 and max{−β,−k2 − 1} ≤ l2 ≤ 0 such that

|p(t)| ≤ (t−ti)k1(ti+1−t)l1 , |q(t)| ≤ (t−ti)k2(ti+1−t)l2 , t ∈ (ti, ti+1), i = 0, 1,

(iv) f, g defined on (0, 1]×R×R are impulsive Caratheodory func-
tions.

Theorem 3.2. Suppose that λ > 0, µ > 0 and (i)-(iv), (C) hold
and (D1) f, g are impulsive caratheodory functions, and satisfy that
there exist nonnegative constants bi, ai(i = 1, 2) and bounded measur-
able functions φi : (0, 1)→ R(i = 1, 2) such that

|f (t, δα,λ(t, ti)x, δβ,µ(t, ti)y)− φ1(t)| ≤ b1|x|+ a1Φ−1(|y|), t ∈ (ti, ti+1],

|g (t, δα,λ(t, ti)x, δβ,µ(t, ti)y)− φ2(t)| ≤ b2Φ(|x|) + a2|y|, t ∈ (ti, ti+1]

hold for x, y ∈ R, i ∈ N [0,m].

Then BVP(19) has at least one solution if

(20) M2 < 1, N3 < 1, lim
r→+∞

ν(Φ(r))
r

< 1−M2

M3

[
Φ−1

(
N2

1−N3

)]−1

or

(21) M2 < 1, N3 < 1, lim
r→+∞

ω(1/Φ−1(r))r > N2

1−N3
Φ
(

M3

1−M2

)
,
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where

Φ1(t) =



Γ(α)δα,λ(t,0)

a

∫ 1

tm
δα,λ(1, s)p(s)φ1(s)ds

+
∫ t

0
δα,λ(t, s)p(s)φ1(s)ds, t ∈ (0, t1],∫ t

ti
δα,λ(t, s)p(s)φ1(s)ds, t ∈ (ti, ti+1], i ∈ N [1,m],

Φ2(t) =



Γ(β)δβ,µ(t,0)

b

∫ 1

tm
δβ,µ(1, s)q(s)φ2(s)ds

+
∫ t

0
δβ,µ(t, s)q(s)φ2(s)ds, t ∈ (0, t1],∫ t

ti
δβ,µ(t, s)q(s)φ2(s)ds, t ∈ (ti, ti+1], i ∈ N [1,m],

and
M2 =

(
Γ(α)Eα,α(λ)

|a| + 1
)
B(α + l1, k1 + 1)b1,

M3 =
(

Γ(α)Eα,α(λ)

|a| + 1
)
B(α + l1, k1 + 1)a1,

N2 =
(

Γ(β)Eβ,β(µ)

|b| + 1
)
B(β + l2, k2 + 1)b2,

N3 =
(

Γ(β)Eβ,β(µ)

|b| + 1
)
B(β + l2, k2 + 1)a2.

Proof. In Theorem 3.1, choose G(t, x, y) ≡ H(t, x, y) ≡ 0, I(t, x, y) ≡
J(t, x, y) ≡ 0. The theorem follows Theorem 3.1. The details of proof is
omitted.

Remark 3.4. Similar results can be obtained for BVP(19) when λ <
0, µ < 0, λ < 0, µ > 0 and λ > 0, µ < 0 respectively. The details are

omitted. When the limits lim
r→+∞

ν(Φ(r))
r

and lim
r→+∞

ω(1/Φ−1(r))r exist, we

note, from Theorem 3.2, that (18) and (19) hold for sufficiently small
nonnegative constants bi, ai(i = 1, 2). So it is easy to see that BVP(19)
has at least one solution if the nonnegative constants bi, ai(i = 1, 2) are
very small.

4. Applications

Now, we present an example, which can not be covered by known
results, to illustrate Theorem 3.1.
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Example 4.1. Consider the following periodic type boundary value
problem for fractional differential equation
(22)

D
2
3

t+i
x(t)− x(t) = (t− ti)−

1
4 (ti+1 − t)−

1
4f(t, x(t), y(t)), t ∈ (ti, ti+1],

D
1
2

t+i
y(t)− y(t) = (t− ti)−

1
4 (ti+1 − t)−

1
4 g(t, x(t), y(t)), t ∈ (ti, ti+1],

x(1)− lim
t→0

t
1
3x(t) = 1

2

∫ 1

0
s−

1
2G(s, x(s), y(s))ds,

y(1)− lim
t→0

t
1
2y(t) = 1

2

∫ 1

0
s−

1
2H(s, x(s), y(s))ds,

lim
t→ 1

2

+

(
t− 1

2

) 1
3 x(t)− x(1/2) = 1, lim

t→ 1
2

+

(
t− 1

2

) 1
2 y(t)− y(1/2) = 1.

where 0 = t0 < t1 = 1
2
< t2 = 1 and

f(t, x, y) = c1 + b1δ2/3,1(t, ti)x+ a1[δ1/2,1(t, ti)]
1
3y

1
3 , t ∈ (ti, ti+1],

g(t, x, y) = c2 + b2[δ2/3,1(t, ti)]
3x3 + a2δ1/2,1(t, ti)y, t ∈ (ti, ti+1],

G(t, x, y) = C1 +B1δ2/3,1(t, ti)x+ A1[δ1/2,1(t, ti)]
1
3y

1
3 , t ∈ (ti, ti+1],

H(t, x, y) = C2 +B2[δ2/3,1(t, ti)]
3x3 + A2δ1/2,1(t, ti)y, t ∈ (ti, ti+1],

with ci, bi, ai, Ci, Bi, Ai(i = 1, 2) being nonnegative numbers. Then,
BVP(22) has at least one solution for sufficiently small bi, ai, Bi, Ai(i =
1, 2)..

Proof. Corresponding to BVP(1), α = 2
3
, β = 1

2
, λ = µ = 1, a = b =

1, t1 = 1
2
, p(t) = q(t) = (t − ti)−

1
4 (ti+1 − t)−

1
4 for t ∈ (ti, ti+1)(i = 0, 1),

φ(t) = ψ(t) = 1
2
t−

1
2 , Φ(x) = x3 with Φ−1(x) = x

1
3 , the supporting

function of Φ is ω(x) = x3 and the supporting function of Φ−1 is ν(x) =

x
1
3 , I(t, x, y) = J(t, x, y) = 1.
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It is easy to see that k1 = l1 = k2 = l2 = −1
4
, ||φ||1 = ||ψ||1 = 1 and

f
(
t, x
δ2/3,1(t,ti)

, y
δ1/2,1(t,ti)

)
= c1 + b1x+ a1Φ−1(y), t ∈ (ti, ti+1], i = 0, 1,

g
(
t, x
δ2/3,1(t,ti)

, y
δ1/2,1(t,ti)

)
= c2 + b2Φ(x) + a1y, t ∈ (ti, ti+1], i = 0, 1,

G
(
t, x
δ2/3,1(t,ti)

, y
δ1/2,1(t,ti)

)
= C1 +B1x+ A1Φ−1(y), t ∈ (ti, ti+1], i = 0, 1,

H
(
t, x
δ2/3,1(t,ti)

, y
δ1/2,1(t,ti)

)
= C2 +B2Φ(x) + A2y, t ∈ (ti, ti+1], i = 0, 1.

It is easy to see that I0 = J0 = 1 and B1 = B2 = A1 = A2 = 0.
One sees that (C) and (D) hold. By computation, we get by direct

computation that

M2 = Γ(2/3)B1 +
(
Γ(2/3)E2/3,2/3(1) + 1

)
B(5/12, 3/4)b1,

M3 = Γ(2/3)A1 +
(
Γ(2/3)E2/3,2/3(1) + 1

)
B(5/12, 3/4)a1,

N2 = Γ(1/2)B1 +
(
Γ(1/2)E1/2,1/2(1) + 1

)
B(1/4, 3/4)b2,

N3 = Γ(1/2)A2 +
(
Γ(1/2)E1/2,1/2(1) + 1

)
B(1/4, 3/4)a2.

From Theorem 3.1, we know that BVP(22) has at least one solution if

M2 < 1, N3 < 1, lim
r→+∞

ν(Φ(r))
r

= 1 < 1−M2

M3

3

√
1−N3

N2

or

M2 < 1, N3 < 1, lim
r→+∞

ω(1/Φ−1(r))r = 1 > N2

1−N3

3

√
M3

1−M2
.

So BVP(22) has at least one solution for sufficiently small bi, ai, Bi, Ai(i =
1, 2).
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