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NONLINEAR MOTIONS IN A HANGING CABLE

Hyeyoung Oh

Abstract. We investigate the nonlinear motions of discrete loaded
cable with different periodic forcing. We present the numerical evi-
dence of the nonlinear motions of the cable by solving initial value
problems and obtaining the motions after a long time. There ap-
peared to be various types of nonlinear oscillations over a wide range
of frequencies and amplitudes for the periodic forcing term.

1. Introduction

The original Tacoma Narrows Bridge, at all stages of its short life, was
indeed very active in the wind. Its failure on 7 November 1940 attracted
wide attention at the time and has elicited recurring references ever
since, notably in physics, mathematics, and engineering [16].

The usual explanation says that the forcing term came from a train
of alternating vortices being shed by the bridge as the wind blew past
it. The frequency just happened to be at a value very close to a reso-
nant frequency of the bridge. Thus, even though the magnitude of the
forcing term was small, the phenomenon of linear resonance was enough
to explain the large oscillation and eventual collapse of the bridge [10].

However, there still seems to be a need to give a clear mathematical
argument as to why suspension bridges oscillate. As made clear in [1],
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[3], suspension bridges have a history of large-scale oscillation and cat-
astrophic failure under high and even moderate winds, as well as under
other mechanical forces.

What distinguished Tacoma Narrows was the extreme flexibility of
its roadbed, being an order of magnitude higher than that of earlier
bridges mentioned [1]. This resulted in a pronounced tendency to oscil-
late vertically, under widely differing wind conditions. The bridge might
be quiet in winds of forty miles per hour, and might oscillate with large
amplitude in winds as low as three or four miles per hour. These vertical
oscillations were standing waves of different nodal types.

A pronounced torsional mode was observed just prior to the collapse
of the bridge. This type of oscillation was observed after the bridge
went into large vertical motion which apparently induced a slippage of a
crucial part of the bridge called the cable band, which attached the center
of the cable to the roadbed. Under the influence of the large amplitude
vertical motions (of about five feet in amplitude with a frequency of 38
per minute), this band slipped, and “ the change from the moderate
parallel motions of the cables to the more violent out of phase motions
was sudden” [10].

It should be noted that in the observed large-amplitude motion, some
of the cables were alternately loosening and tightening. This is the non-
linear effect. We can observe that the oscillations of cables in between
transmission towers are distinctly different from that of a string under
tension. As we shall see, there are large amplitude longitudinal mo-
tions under moderate small forcing amplitude. The resultant stresses
can reach levels high enough to impair the safety of the towers so that
such movements can cause the collapse of the transmission towers [12].
Such large amplitude motions cannot possibly be accounted by linear
resonance as advocated by a number of elementary differential equation
texts due to the precision of the wind force frequency required (a proba-
bility of 1 in 7200 is estimated on p.297,[4]). Unlike the linear resonance
explanation, the same forcing term can give rise to a large or small pe-
riodic motion, with the result determined not by the forcing term, but
by initial conditions.

We modelled a cable as a multiple particle oscillator and performed
extensive numerical experiments.

We shall describe a variety of large-amplitude response to forcing
term(f(x̃i, t) = λ sin 5πx̃i sinµt). We find that multiple stable periodic
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solutions exist under the periodic forcing. Some of these solutions pos-
sess large amplitudes and can be induced by proper initial conditions.
A variety of different nodal structure of motions are appeared in our re-
sults, which observed prior to the failure of the Tacoma Narrows Bridge.
In this study, we present the numerical evidence of the nonlinear motion
of the cable by solving initial value problems.

2. Description of the hanging cable

In modelling the cable, we shall discretize what is essentially a con-
tinuous problem and shall use numerical computation to make some
conclusions for the dynamical systems.

For this, we shall use the following. In 1744, Euler derived the correct
equations for the large vibrations of a string in a plane. He regarded
the equations as the limit of those for a finite collection of beads joined
by massless springs as the number of beads approach infinity while their
total mass remains fixed [2].

We shall solve the problem computationally for various different num-
bers of particles rather than follow Euler to the infitesimal limit. And
when we find that convergence is achieved, that is the behavior stays the
same even as we increase the number of particles, then we believe that
we have obtained a true solution of the mechanical system.

In this system, we shall consider the following:
-a cable suspended between two supports of equal elevation
-the gravitational load on the cable which keeps it in a state of tension
near equilibrium
-some additional external forcing term due to some extraneous physical
situation

We will treat a cable as a series of equally distributed point masses
connected by nonlinear springs with the same unstretched lengths. To
model the motion of the cable, the springs resist extension but com-
pression. The restoring forces are presumed to be proportional to the
extension (but not compression) of a one-sided spring joining two par-
ticles. Usually, they are subject to vertical periodic forces. Damping
force will be assumed to act in a direction opposite to the motion with
a magnitude proportional to the instantaneous velocity.



524 Hyeyoung Oh

We consider a cable which is hung between two fixed points at the
same vertical level and distance L apart. Let the line joining two sup-
ports be the x-axis with two fixed points located at x = 0 and x = L.
Let the instantaneous position of the i-th particle be (xi(t), yi(t)) at time
t with the positive directions for x and y. Then Newton’s second law,
Hooke’s law, and the geometric relations between angles and lengths give
rise to the following equations [13],

d2xi
dt2

= − k

ρl
(
√

(xi − xi−1)2 + (yi − yi−1)2 − l)+
(xi − xi−1)√

(xi − xi−1)2 + (yi − yi−1)2
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(
√
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(
√

(xi − xi−1)2 + (yi − yi−1)2 − l)+
(yi − yi−1)√

(xi − xi−1)2 + (yi − yi−1)2

+
k
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(
√

(xi+1 − xi)2 + (yi+1 − yi)2 − l)+
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− c
ρ
dyi/dt+ g +

1

ρ
f(x̃i, t).(1)

Here, x0(t) = 0, xN+1(t) = L, y0(t) = 0, yN+1(t) = 0, 1 ≤ i ≤ N ,
and N is the number of particles discretizing the cable. The forcing
term f(x̃i, t) is taken to be λ sin 5πx̃i sinµt, where x̃i = i∆x/L and
∆x = L/(N + 1).

The term ρ denotes the mass per unit length of unstretched cable
and the term l the unstretched length of the spring between two point
masses. The spring constant is denoted by k and k = EA

l
, where E

is Young’s modulus and A is the cross section area. As we double the
number of particles in modelling a cable, k is increased by two. The
damping coefficient per unit unstretched length is denoted by c and the
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accelation due to gravity by g. Moreover, the notation u+ is defined as

(2) u+ =

{
u, if u > 0
0, if u ≤ 0

Such a nonlinear term comes from the fact that when the cables are
stretched, there are restoring forces which are assumed to be propor-
tional to the amount of stretching. However, when they are compressed,
there is no restoring force exerted on them.

The main tool for this investigation is a computer, using 2nd or-
der Runge-Kutta method. As the physical parameters of the problem
are varied, a lot of new interesting solutions are discovered. Through
numerical integration of the initial value problems with various initial
conditions, we examine the solutions after sufficiently long time when
the transient effect have been eliminated.

The method which proved stable under the usual precautions, is such
as halving step sizes and time, and comparing results. To check the
accuracy of this scheme, the following is noted. The static deflection,
in the absence of time-dependent forcing, of hanging extensible cable is
available as analytic formula in the paper [5]. One can also find this
deflection by taking equal to zero, and solving the initial-value problems
until a steady state is reached.

3. Main Results

We discuss numerical solutions of (1). To study the equation nu-
merically, we will search for periodic solutions in a fairly naive way by
solving the initial value problems for various initial values and allowing
the solution to run for large time. If there is a unique periodic solu-
tion, then it is reasonable to hope that after large time, the solution will
have converged to it. We emphasize that we have little interest in the
intermediate values of the solution to the initial value problem, only the
eventual long-time behavior.

We take the interval of length 1, the total mass 5, unstretched length
of cable 1.2, c=3, and EA=19.2, in all the numerical results. This
study is to focus on the system on new periodic forcing f(x̃i, t) =
λ sin 5πx̃i sinµt, where x̃i = i∆xi and ∆x = 1/(N + 1). We concen-
trate on long-term motions of the 63-particle case.
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In the loaded hanging cable with periodic forcing, all initial condi-
tions give a small amplitude solution over a wide range of frequencies.
Only when deflections become large, the non linear effect of non resis-
tance to compression become significant. Large initial condition does
not guarantee that the motion with large initial condition converge to
small-amplitude motion. We observe a variety of nonlinear motions over
a wide range of µ and λ.

In all listed figures, the plots show the last six equally profiles of mo-
tions in the final period.

1) The 2-nodal and non-symmetric motion
The first form of nonlinear motion is 2-nodal and non-symmetric motion.
At µ = 7.8 and λ = 5, the 2-nodal and symmetric solution which is of
the same approximate period as the forcing term is appeared. And the
2-nodal and non-symmetric motion which is of the same approximate
period as the forcing term is appeared at the same forcing parameters.
Hence, multiple periodic motions exist for hanging cable. Figure 1 and
figure 2 show long-term behavior with µ = 7.8 and λ = 5.

As λ becomes from 5 to 5.8, amplitude of motion is almost same but
motion becomes more non-symmetric for the same µ. As λ becomes
from 6 to 8, the motions become more fuzzily.

2) The non-symmetric and asymmetric motion
As λ changes from 7 to 7.8 when µ = 6.8, we observe a typical small-
amplitude motion exists. However, even after large time, existence of a
small linear motion did not guarantee that the long-term solution of the
initial value problem would converge to that motion. This appears at
µ = 6.8 and λ = 8 in the event of large initial displacement.

While small linear motion is two-noded and symmetric, the motion
under the large initial displacement is 2-nodal and non-symmetric mo-
tion and it moves fuzzily.

From λ = 8, there exist multiple motions which are 2-nodal. i.e.,
For small-amplitude initial values, the system converged to a small-
amplitude solution. For large-amplitude initial values, the system con-
verged to a large-amplitude non-symmetric solution. Figure 3 and figure
4 show long-term behavior with µ = 6.8 and λ = 8.

We have seen the linear oscillation, whose amplitude is directly pro-
portional to the amplitude of the forcing term. It is shown at λ from
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Figure 1. The 2-nodal and symmetric motion for µ = 7.8
and λ = 5.

Figure 2. The 2-nodal and non-symmetric motion for
µ = 7.8 and λ = 5.

7 to 7.8. However, there also exist large-amplitude motions that are
not directly proportional to the amplitude of the forcing term. If we
take λ equal to 8, then we find for different initial values, two-nodal but
non-symmetric motions as shown in figure 3.

From λ = 8.2 for the same µ = 6.8, asymmetric 1-nodal motion which
moves fuzzily is appeared. Figure 5 shows an asymmetric motion with
µ = 6.8 and λ = 8.2. The great thing about some of the oscillations is
the form they take with an asymmetry in the motions, no longer being a
oscillation about the mid point but showing a preference for one end. In
the motion, as λ changes from 8 to 8.2, motion having bigger amplitude
is appeared. Unusual combination of conditions may result in having
bigger amplitude. This is shown in figure 5.

Over many different experiments, we found above type of motion
occurring, with either end emerging as the preferred end. It seems as
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Figure 3. The large amplitude motion for µ = 6.8 and
λ = 8.

Figure 4. The small amplitude motion for µ = 6.8 and
λ = 8.

Figure 5. The asymmetric motion for µ = 6.8 and λ = 8.2.

if a form of symmetry breaking occurs, with the symmetric periodic
solution presumably becoming unstable. These types of motions exist
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Figure 6. The asymmetric motion for µ = 6.8 and λ = 9.

Figure 7. The 4-nodal and symmetric motion for µ = 8.2
and λ = 5.8.

over a wide range of frequency, as shown with µ = 6.8. They coexist
over a wide range of amplitude at µ = 6.8, existing from λ = 8.2 to
λ = 9, essentially independently of λ.

At µ = 6.8, λ = 8.4, 8.6, and 9, the greatest oscillation occurs at ap-
proximately nine tenth and oscillation occurs quietly at one third along
the cable. The large amplitude motion which is close to symmetric in-
stead of asymmetric is appeared at λ = 8.6. This is similar to figure 6.
Figure 6 shows one-node motion at µ = 6.8, λ = 9.

For the same frequency µ = 6.8, the motion with small initial condi-
tion is 2-nodal motion(similar to figure 4). But for the same frequency
µ = 6.8, the motion with large initial condition has two types of motions.
One is asymmetric and 1-nodal motion, the other is non-symmetric and
2-nodal motion. At λ = 9.4, there does not exist large amplitude motion
which is one nodal but exists large-amplitude motion which is 2-nodal
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Figure 8. The 4-nodal and non-symmetric motion for
µ = 8.2 and λ = 5.8.

Figure 9. The fuzzy and non-symmetric motion for µ =
8.2 and λ = 6.

motion. At λ = 9.6, there does not converge to small amplitude motion.
For small and large amplitude initial values, the motion converge to a
large-amplitude motion.

For the same frequency of the forcing term, as λ becomes large, the
magnitude of the small-amplitude motion increases.

3) The 4-nodal and non-symmetric motion
The 4-nodal and non-symmetric motions are appeared at µ = 8.2, from
λ = 5 to λ = 7. These motions have the same period as the forcing term.
Figures of motions at µ = 8.2 show large-amplitude motions which are
different from the others. For µ = 8.2, there exist multiple periodic
solutions which are symmetric or non-symmetric over a wide range of
λs. The symmetric motions appear only at λ = 5.8, λ = 6.2, and λ = 6.4,
for the same µ. At λ = 5.8, λ = 6.2, and λ = 6.4, the motions with
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Figure 10. The small amplitude solution for µ = 7.2 and
λ = 3.6.

Figure 11. The large amplitude solution for µ = 7.2 and
λ = 3.6.

large initial conditions converge to 4-nodal and non-symmetric motions,
while the motions with small initial conditions converge to 4-nodal and
symmetric motions.

In the motions, as λ changes from 5.8 to 6, more asymmetric motion
is appeared. This is shown in figure 8.

Figure 7 shows long-term behavior with small initial condition at µ =
8.2 and λ = 5.8. For above λs, the difference between the motion with
large initial condition and one with small initial condition is symmetry.
They seem to be almost independent of the amplitude of the forcing
term.

In the motions, as λ changes from 5.8 to 6, motion which moves more
fuzzily and longitudinally is appeared. This is shown in figure 9.
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Figure 12. The no-nodal motion for µ = 7.2 and λ = 4.

Figure 13. The no-nodal motion for µ = 5.4 and λ = 9.

Figure 14. The 2-nodal motion for µ = 5.4 and λ = 9.

4) The 2-nodal symmetric motion
At µ = 7.2 and λ = 3.6 for the large initial values, the system converges
to a 2-nodal symmetric motion which has the same period with the
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(a) (b)

(c) (d)

Figure 15. The large amplitude motion for (a)µ = 8.2,
(b)µ = 7.8, (c)µ = 7.2, (d) µ = 6.8, and λ = 8.

forcing term. For the same forcing parameters and the small initial
values, the system converges to a 2-nodal symmetric motion which is
periodic with the forcing term. These are shown at figure 10 and figure
11. Although two figures are 2-nodal, they are different. Hence, multiple
periodic solutions exist at µ = 7.2 and λ = 3.6.

As λ changes from 3.8 to 4, the shape at λ = 4 is similar to one at
λ = 3.8 but amplitude at λ = 4 is a little bit large. At λ = 4, no-nodal
motion exists besides two symmetric solutions which are 2-nodal. Figure
12 shows no-nodal motion at µ = 7.2 and λ = 4. The magnitude of the
motion increases and non-symmetricity begins to appear from µ = 7.2
and λ = 4.4. At µ = 7.2, the system converges to a symmetric motion
which is periodic over wide range of λ. The fuzziness in 2-nodal motions
barely appears over wide range of λ. There exists no-nodal motion which
is periodic from λ = 4. In the motions, as λ changes from 3.6 to 4, motion
having bigger amplitude is appeared. This is shown in figure 12.
5) The multiple motions: 2-nodal motion or no-nodal motion

At µ = 5.4, the system converges to the small linear motion over the
wide range of λ. The motion appears to be in a regular oscillation of the
frequency with the forcing term which is a standard wave.
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However, at µ = 5.4 and λ = 9 for large initial values, the system
converges to a large-amplitude motion which is symmetric and no-node.
This is presented in figure 13. At µ = 5.4 and λ = 9 for small initial
values, the system converges to a small-amplitude motion which is sym-
metric and 2-nodal. This is presented in figure 14. Hence, the system
has the multiple motions at µ = 5.4 and λ = 9. The motions appeared
to be of the same period as the forcing term.

We observe that large-amplitude oscillations occur away from the lin-
ear resonance. When in large oscillation motions, decreasing the fre-
quency of the forcing term from µ = 6.8 to µ = 8.2 with λ = 8 may
actually increase the amplitude of the oscillation. This is shown at figure
15. This fact was already expected from prior numerical experience with
simpler asymmetric systems [7].

4. Conclusion

We consider a nonlinear model in that if we pull on a rope, it re-
sists, and if we push, it does not. We show that this causes large am-
plitude oscillations that would notably predicted by the linear theory.
Although large-amplitude oscillations have smaller amplitude than mo-
tions in other study [13], the motions have different nodal structure from
small-amplitude oscillations. In fact, different nodal structure was ob-
served prior to the failure of the Tacoma Narrows Bridge.

If λ is very small, then the eventual results for large and small initial
data are the same: convergence to the linear solution. For larger values
of λ, there is a possibility of convergence to a large- or small- amplitude
motion. We investigate the experiment by looking at various types of
oscillations which occurred when the value of the frequency is taken to
be and we repeat that numerical motions that the motion converged to.

As a result of exhaustive computational experiments, we arrived at
the following conclusion:
-Numerical results indicate that the magnitude of the oscillations in-
creases as the frequency of the forcing term is decreased.
-Large-amplitude and small-amplitude periodic oscillations may coexist
for the same forcing term and unusual combination of conditions may
result in changing from one to the other.
-Asymmetric oscillations occur over a wide range of frequency in the
presence of symmetric forcing data, which is by the nonlinear effects.
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-Asymmetric oscillations may occur in which the amplitude is quite small
at the mid-point but becomes large at points some distance from the
mid-point.
-Large symmetric oscillations show a variety of different nodal structure
of the motion according to forcing parameters.

Above conclusion shows the nonlinear behaviors of the discrete loaded
cable, and it may be correspondence to a mathematical explanation for
catastrophic failures of Tacoma Narrow Bridge. We expect that in the
future some of these results will have application in the study of electric
circuits, where most of the present work treats capacitors as linear.
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