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REPRESENTATION OF A POSITIVE INTEGER BY A

SUM OF LARGE FOUR SQUARES

Byeong Moon Kim

Abstract. In this paper, we determine all positive integers which
cannot be represented by a sum of four squares at least 9, and prove
that for each N , there are finitely many positive integers which can-
not be represented by a sum of four squares at least N2 except 2·4m,
6 · 4m and 14 · 4m for m ≥ 0. As a consequence, we prove that for
each k ≥ 5 there are finitely many positive integers which cannot be
represented by a sum of k squares at least N2.

1. Introduction

The representation of a positive integer by a sum of squares with
various conditions is an interesting area of number theory whose origin
goes back to Pythagorean triples. The four square theorem that every
positive integer is a represented by a sum of four integer squares is a
famous result on this subject. A variant of this theorem is considered
by Descartes in 17th century. He conjectured that every positive inte-
ger is represented by a sum of the four non-vanishing integer squares
except some integers he stated. His conjecture was proved by Dubouis
in 1911. Dubouis also found out all integers represented by a sum of
non-vanishing k ≥ 5 squares of integers in the same paper.
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The author of this paper computed the totally real algebraic integers
over K = Q(

√
d) for d = 2, 3, 5 which is represented by a sum of non-

vanishing algebraic integers over K [3,4]. Also the author with J. Y. Kim
estimated the norm of a totally positive algebraic integer which is locally
represented by a sum of k ≥ 5 non-vanishing squares over Q(

√
d) [6].

Recently the author proposed a problem representing a positive inte-
ger n by a sum of k squares at least N2 [5]. This is equivalent to the
equation

n = x2
1 + x2

2 + · · ·+ x2
k, with xi ≥ N for all i = 1, 2, · · · , k.

The representation of a positive integer n by a sum of non-vanishing k
squares is a special case N = 1 of this problem. The author found all
positive integer n represented by a sum of k ≥ 4 squares at least 4.

In this paper, it is determined that positive integers which cannot be
represented by a sum of four squares at least 9. Naturally the list of
such integers contains positive integers which cannot be represented by
a sum of non-vanishing four squares given by Dubouis. All 36 numbers
are added the smallest one is 21 and the largest 248. Also we prove that
there are finitely many positive integers which cannot be represented by
a sum of four squares at least N2 except 2 · 4m, 6 · 4m and 14 · 4m for
m ≥ 0 for each N . As a corollary, we obtained the finiteness of positive
integers which cannot be represented by a sum of k ≥ 5 squares at least
N2.

2. Preliminaries

We state two important previous results.

Theorem 1 (Dubouis). If a positive integer n is not represented by a
sum of non-vanishing k squares for k ≥ 4, then n is one of the following.

(1) 1, 3, 5, 8, 9, 11, 17, 29, 41 and 2·4m, 6·4m, 14·4m for m ≥ 0 when k =
4,

(2) 1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 18, 33 when k = 5,
(3) 1, 2, . . . , k−1, k+1, k+2, k+4, k+5, k+7, k+10, k+13 when k ≥ 6.

Theorem 2 ([5]). A positive integer n is represented by a sum of
four squares at least 4 unless it satisfies one of the following conditions.

(1) 1 ≤ n ≤ 15,
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(2) 17, 18, 19, 20, 22, 23, 24, 25, 27, 29, 30, 32, 34, 35, 39, 41, 44, 46, 51, 55, 56,
62, 67, 89,

(3) n = a · 4s when a = 2, 6, 14 and s ≥ 1.

The following theorem is an interesting result in the opposite direction
to that of this paper. Considering the title of this paper, this is a work
on the representation of a positive integer by a sum of small four squares.

Theorem 3 (Selmer). Let m ≥ 7 and m 6= 8, 12, 16, 17. Also let

Nm =


22, if 2s ≤ m < 2s + 2s−2

28, if 2s + 2s−2 ≤ m < 2s + 2s−1

47, if 2s + 2s−1 ≤ m < 2s + 2s−1 + 2s−2

48, if 2s + 2s−1 + 2s−2 ≤ m < 2s+1

where s = blog2mc. Then for all n such that 1 ≤ n < Nm22s−3, the
equation

n = x2 + y2 + z2 + w2, with m ≥ x ≥ y ≥ z ≥ w ≥ 0

has an integer solution, and the equation

Nm22s−3 = x2 + y2 + z2 + w2, with m ≥ x ≥ y ≥ z ≥ w ≥ 0

does not have a solution.

The following well-known theorems will be used to prove the main
theorem.

Theorem 4 (Two Square Theorem). A positive integer n is repre-
sented by a sum of two squares if and only if there is no prime p ≡ 3
(mod 4) and positive integer k such that p2k−1 divides n and p2k donot.

Theorem 5 (Three Square Theorem). A positive integer n is rep-
resented by a sum of three squares if and only if n is not of the form
(8` + 7)4m for `,m ≥ 0.

Lemma 1. For each i ∈ Z different from −1, there are infinitely many
prime numbers p such that i is a square modulo p.

Proof. Let
(
a
b

)
be the Jacobi symbol for odd a and b. If i is odd

and i > 0, then since
(

i
p

)
=
(
p
i

)
for a prime p ≡ 1 (mod 4), i is a

square modulo p for all primes p such that p ≡ 1 (mod 4) and p ≡ 1
(mod i). Then since p ≡ 1 (mod 4), −i is also a square modulo p. Also
±2i is a square modulo p for all prime p such that p ≡ 1 (mod 8) and
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p ≡ 1 (mod i). The existence of such primes follows from the Dirichlet
Theorem.

The following lemma is a consequence of Hensel’s Lemma.

Lemma 2. If i ∈ Z is a square modulo an odd prime p and (p, i) =
(p, k) = 1, then i is a square modulo pk.

From Euler’s Two Square Theorem, p = a2 + b2 for some nonzero
integers a and b. Thus p2 = c2+d2 where c = a2−b2 6= 0 and d = 2ab 6= 0.

The following lemma follows from Two Square Theorem and Three
Square Theorem.

Lemma 3. (1). If k2m is represented by a sum of two squares, then
m is represented by a sum of two squares.
(2). If k2m is represented by a sum of three squares, then m is repre-
sented by a sum of three squares.

3. Main Theorem

Theorem 6. If a positive integer n is not represented by a sum of
four squares at least 9, then n is one of the following.

1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28,

29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 53, 54,

55, 58, 60, 61, 62, 65, 67, 69, 71, 72, 74, 78, 80, 81, 85, 87, 88, 89, 94, 101,

109, 120, 136, 176, 184, 248

and
2 · 4m, 6 · 4m, 14 · 4m for m ≥ 0.

Proof. If n ≡ 2, 3 (mod 4) and n > 412 + 12, then since n− 412 > 12
and n − 412 ≡ 1 (mod 4), n is represented by a sum of three squares.
Thus n− 412 = x2 + y2 + z2 for some x ≥ y ≥ z ≥ 0. If y = z = 0, then

n = x2 + 412 = x2 + 322 + 242 + 92.

If y = 1 and z = 0, then

n = x2 + 12 + 412 = x2 + 292 + 212 + 202.

If y = z = 1, then

n = x2 + 12 + 12 + 412 = x2 + 392 + 92 + 92.
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If y = 2 and z = 0, then

n = x2 + 22 + 412 = x2 + 392 + 102 + 82.

If y = 2 and z = 1, then

n = x2 + 22 + 12 + 412 = x2 + 382 + 112 + 112.

If y = z = 2, then

n = x2 + 22 + 22 + 412 = x2 + 402 + 62 + 52.

If y ≥ 3 and z = 0, then

n = x2 + y2 + 412 = x2 + y2 + 402 + 92.

If y ≥ 3 and z = 1, then

n = x2 + y2 + 12 + 412 = x2 + y292 + 292.

If y ≥ 3 and z = 2, then

n = x2 + y2 + 22 + 412 = x2 + y2 + 342 + 232.

If z ≥ 3, then

n = x2 + y2 + z2 + 412.

If n ≡ 1 (mod 4) and n > 412 + 12, then since n − 252 ≡ n − 292 ≡ 0
(mod 4), n−252 ≡ n−292 +8 (mod 16) and n−292 > 412 +12−292 =
852, either n−252 or n−292 is represented by a sum of three squares. If
n−252 is represented by a sum of three squares, then n−252 = x2+y2+z2

for some even x ≥ y ≥ z ≥ 0. If y = z = 0, then

n = x2 + 252 = x2 + 202 + 122 + 92.

If y = 2 and z = 0, then

n = x2 + 22 + 252 = x2 + 182 + 162 + 72.

If y = z = 2, then

n = x2 + 22 + 22 + 252 = x2 + 222 + 102 + 72.

If y ≥ 3 and z = 0, then

n = x2 + y2 + 252 = x2 + y2 + 202 + 152.

If y ≥ 3 and z = 2, then

n = x2 + y2 + 22 + 252 = x2 + y2 + 232 + 102.

If z ≥ 3, then

n = x2 + y2 + z2 + 252.
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If n − 292 is represented by a sum of three squares, then n − 292 =
x2 + y2 + z2 for some even x ≥ y ≥ z ≥ 0. If y = z = 0, then

n = x2 + 292 = x2 + 212 + 162 + 122.

If y = 2 and z = 0, then

n = x2 + 22 + 292 = x2 + 202 + 182 + 112.

If y = z = 2, then

n = x2 + 22 + 22 + 292 = x2 + 202 + 202 + 72.

If y ≥ 3 and z = 0, then

n = x2 + y2 + 292 = x2 + y2 + 212 + 202.

If y ≥ 3 and z = 2, then

n = x2 + y2 + 22 + 292 = x2 + y2 + 262 + 132.

If z ≥ 3, then

n = x2 + y2 + z2 + 292.

Thus any positive integer which cannot be represented by a sum of four
squares at least 9 is less than or equal to 412 + 12 = 1693. If n is
a multiple of 4 and n is not represented by a sum of four squares at
least 9, then n

4
is not represented by a sum of four squares at least 4,

which is given in Theorem 5. By computation, we can find, among these
candidates, all positive integers which is not represented by a sum of
four squares at least 9 given in the statement of this theorem.

Theorem 7. For each N ≥ 1, there are finitely many positive integers
n represented by a sum of four squares at least N2 except n = 2 · 4m, 6 ·
4m, 14 · 4m for some nonnegative integer m.

We first prove the following special case.

Proposition 1. For each N ≥ 1, there are finitely many positive
integers n such that n is not a multiple of 4 and n is represented by a
sum of four squares at least N2.

Proof. By Lemmas 1 and 2, there are distinct odd primes p1, p2, · · · ,
pN−1, q1, q2, · · · , q2(N−1)2 such that pi ≡ qj ≡ 1 (mod 4), pi, qj ≥ N and
j is a square modulo q4j for all i = 1, 2, · · · , N−1 and j = 1, 2, · · · , 2(N−
1)2. Let M be the maximum of p2i and q4j for all i, j.
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If n ≡ 2, 3 (mod 4), then choose an odd integer ` such that ` ≥MN2,
`2 ≡ −i2 (mod p2i ) and `2 ≡ −j (mod q4j ). If n > `2 + 3(N − 1)2, then

since n − `2 ≡ 1, 2 (mod 4) and n − `2 ≥ 3(N − 1)2 > 0, n − `2 is
represented by a sum of three squares. Thus n − `2 = x2 + y2 + z2 for
some x, y, z ∈ Z such that x ≥ y ≥ z ≥ 0. If z ≥ N , then we have
n = x2 + y2 + z2 + `2. Thus n is a sum of four squares at least N2.

If y ≥ N > z, then since z ≤ N − 1, `2 + z2 ≡ 0 (mod p2z). Thus
`2 + z2 = p2zm for some integer m > 0. Since m is a positive integer
represented by the sum of two squares of rational numbers, m is a sum
of two integer squares. Thus m = u2 + v2 for some integers u, v such
that u > 0 and v ≥ 0. If v > 0, then we have

n = x2 + y2 + z2 + `2 = x2 + y2 + p2zm = x2 + y2 + (pzu)2 + (pzv)2.

Since pz ≥ N , n is a sum of four squares at least N2. If v = 0, then
since p2zm ≥ `2 ≥ MN2 ≥ (pzN)2, we have m = u2 ≥ N2. Since pz ≡ 1
(mod 4), p2z = c2 + d2 for some integers c, d > 0. Thus

n = x2 + y2 + z2 + `2 = x2 + y2 + p2zm = x2 + y2 + (c2 + d2)u2

= x2 + y2 + (cu)2 + (du)2.

Hence n is a sum of four squares at least N2.
If y < N , then since n = x2 + y2 + z2 ≥ 3(N − 1)2, we have x ≥ N .

Let h = y2 + z2. Since h ≤ 2(N − 1)2, `2 + h ≡ 0 (mod q4h). Thus
`2 + h = q4hb for some integer b > 0. By Lemma 3, b is a positive integer
represented by a sum of three squares. Thus b = s21 + s22 + s23 for some
integers s1, s2, s3 such that s1 ≥ s2 ≥ s3 ≥ 0. If s3 > 0, then we have

n = x2 + y2 + z2 + `2 = x2 + h + `2 = x2 + q4hb = x2 + q4h(s21 + s22 + s23)

= x2 + (q2hs1)
2 + (q2hs2)

2 + (q2hs3)
2.

Thus n is a sum of four squares at least N2.
If s3 = 0 and s2 > 0, then since q2h = c2 +d2 for some positive integers

c, d, we have

n = x2 + y2 + z2 + `2 = x2 + q4h(s21 + s22) = x2 + (q2hs1)
2 + q2hs

2
2(c

2 + d2)

= x2 + (q2hs1)
2 + (qhs2c)

2 + (qhs2d)2.

Thus n is a sum of four squares at least N2. If s2 = s3 = 0, then
b = s21 > 0. From q2h = c2 + d2, we have

n = x2 + y2 + z2 + `2 = x2 + q4hs
2
1 = x2 + q2hs

2
1(c

2 + d2)

= x2 + (qhs1c)
2 + s21d

2(c2 + d2) = x2 + (q2hs1)
2 + (s1cd)2 + (s1d

2)2.
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Since q4hb = q4hs
2
1 ≥ `2 ≥ MN2 ≥ q4hN

2, we have s1 ≥ N . Thus n is a
sum of four squares at least N2.

If n ≡ 1 (mod 4), then choose an even integer ˜̀ such that ˜̀≥MN2,
˜̀2 ≡ −i2 (mod p2i ) and ˜̀2 ≡ −j (mod q4j ). If n > ˜̀2 + 3(N − 1)2,

then since n − ˜̀2 ≡ 1 (mod 4) and n − ˜̀2 ≥ 3(N − 1)2 > 0. By
the same method used in above, we can show that n is a sum of four
squares at least N2. As a consequence, if n is not a multiple of 4 and
n > max{`2, ˜̀2} + 3(N − 1)2, then n is a sum of four squares at least
N2.

Proof. (Theorem 7) Let r ∈ Z+ such that 2r ≥ N . By Proposition 1,
there is M > 0 such that if n > M and n is not a multiple of 4, then n
is represented by a sum of four squares at least N2. If n > 4r+3M and
n = 4tn′ with n′ 6= 2, 6, 14, then we have t ≥ r+3 or n′ > M . If t ≥ r+3,
then since 4t−r ≥ 43 = 64 and n′ 6= 2, 6, 14, 4t−rn′ is represented by a
sum of four nonvanishing squares. Thus 4t−rn′ = x2 + y2 + z2 + u2 for
some x, y, z, u > 0. Thus

n = 4r(4t−rn′) = 4r(x2 + y2 + z2) = (2tx)2 + (2ty)2 + (2tz)2 + (2tu)2.

since 2t ≥ N , n is a sum of four squares at least N2.
If n′ > M , then by Proposition 1, n′ is a sum of four squares at least

N2. Hence n is a sum of four squares at least N2.

Corollary. For each N ≥ 1 and k ≥ 5, there are finitely many
positive integers n not represented by a sum of k squares at least N2.

Proof. Theorem 7 implies that there is M > 0 such that for all n > M
different from a · 4m for m ≥ 0 is represented by a sum of four squares
at least N2. Especially if n > M and n is odd, then n is represented by
a sum of four squares at least N2.

If n > M + (k − 5)N2 + (N + 1)2, then both n − (k − 4)N2 and
n− (k− 5)N2− (N + 1)2 are larger than M and one of them is odd. By
Theorem 7, at least one of them is represented by a sum of four squares
at least N2. As a consequence, n is represented by a sum of k squares
at least N2.
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