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APPLICATIONS OF TAYLOR SERIES FOR

CARLEMAN’S INEQUALITY THROUGH HARDY

INEQUALITY

Mohammed Muniru Iddrisu and Christopher Adjei Okpoti

Abstract. In this paper, we prove the discrete Hardy inequality
through the continuous case for decreasing functions using elemen-
tary properties of calculus. Also, we prove the Carleman’s inequality
through limiting the discrete Hardy inequality with applications of
Taylor series.

1. Introduction

G. H. Hardy in [4] established the following discrete inequality:

(1)
∞∑
n=1

(
1

n

n∑
k=1

ak

)p

≤
(

p

p− 1

)p ∞∑
n=1

apn,

where p > 1, ak ≥ 0 and the constant
(

p
p−1

)p
is the best possible (see

also [3], p. 239). The continuous analogue of (1) is given as

(2)

∫ ∞
0

(
1

x

∫ x

0

f(t)dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

fp(x)dx,

where p > 1, x > 0, f is a nonnegative measurable function on (0,∞)

and the constant
(

p
p−1

)p
is the best possible. The inequality (2) is
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sometimes written as

(3)

∫ ∞
0

F p(x)dx ≤
(

p

p− 1

)p ∫ ∞
0

fp(x)dx,

where 0 < F (x) = 1
x

∫ x
0
f(t)dt < ∞ and f > 0. These interesting re-

sults (1) to (3) are very popular in the research environment and are
usually called the classical Hardy inequalities (see also [1], [2], [3], [7],
[9], [10], [11], [12] and the references therein.)

Let us also consider the inequality

(4) a1 +
√
a1a2 + · · ·+ n

√
a1a2 · · · an < e(a1 + a2 + · · · ),

where a1, a2 · · · , an are positive numbers and
∑∞

j=1 aj is convergent. This

inequality (4) is due to a Swedish mathematician called Torsten Carle-
man who discovered it in 1922 (see [3], p.249). In order to agree further
with T. Carleman, other Mathematicians also proved the inequality (4)
by different methods: Thus by differentiation and the variations of the
Arithmetic (An)–Geometric (Gn) mean inequality (i.e. Gn ≤ An) meth-
ods (See [5], [6] [13], [14], [15] and the references therein).

The aim of this paper is first to provide a simple proof of the dis-
crete Hardy inequality through the continuous case and then recover the
Carleman’s inequality (4) through limiting the discrete Hardy inequality
with applications of Taylor series. This approach here for the prove of
the Carleman’s inequality is mainly to demonstrate the use of Taylor
series in the evaluation of large expressions.

2. Results and Discussions

We begin as follows:

Theorem 2.1. Let p > 1 and ak be a non-increasing sequence of
positive real numbers, then

∞∑
k=1

Apk ≤
(

p

p− 1

)p ∞∑
k=1

apk,

where Ak = 1
k

∑k
j=1 aj and the constant

(
p
p−1

)p
is the best possible.
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Proof. Consider the non-increasing sequence ak. Let f(x) = ak on
[k − 1, k]. From the integral inequality (3) we have

(5)
∞∑
k=1

∫ k

k−1
F p(x)dx ≤

∞∑
k=1

(
p

p− 1

)p ∫ k

k−1
fp(x)dx

where

F (x) =
1

x

∫ x

0

f(t)dt.

Since the function F (x) is non-increasing, it follows that

F (k) ≤ F (x) ≤ F (k − 1).

Thus ∫ k

k−1
F p(k)dx ≤

∫ k

k−1
F p(x)dx ≤

∫ k

k−1
F p(k − 1)dx.

This simplifies to

F p(k) ≤
∫ k

k−1
F p(x)dx ≤ F p(k − 1)

Thus

(6)
∞∑
k=1

F p(k) ≤
∞∑
k=1

∫ k

k−1
F p(x)dx ≤

∞∑
k=1

F p(k − 1).

Considering the first inequality of (6) and then applying (5), we obtain

∞∑
k=1

F p(k) ≤
∞∑
k=1

∫ k

k−1
F p(x)dx

≤
∞∑
k=1

(
p

p− 1

)p ∫ k

k−1
fp(x)dx

≤
(

p

p− 1

)p ∞∑
k=1

apk.

Putting F (k) = Ak, we get

∞∑
k=1

Apk ≤
(

p

p− 1

)p ∞∑
k=1

apk.
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Theorem 2.1. Let ak be a sequence of distinct positive real numbers
not necessarily non-increasing, then

(7)
∞∑
k=1

Apk ≤
(

p

p− 1

)p ∞∑
k=1

apk

holds for p > 1.

Proof. The inequality (7) is valid for non-increasing sequence {ak}
as in Theorem 2.1, where Ak = 1

k

∑k
n=1 an. Assume that

∑∞
k=1 a

p
k <

∞ which implies ak → 0. Now let us consider re-arrangement of the
sequence {ak} by setting sup{ak} = max{ak} and considering the sub-
sequence akj such that {akj}∞j=1 = {a∗j}∞j=1. Denote by ({ak} \ {a∗j}), the
difference between the two sequences. Thus

a∗1 = max({ak}) = ak1

a∗2 = max({ak} \ {a∗1}) = ak2

a∗3 = max({ak} \ {a∗1, a∗2}) = ak3
...

a∗n = max({ak} \ {a∗1, a∗2, . . . , a∗(n−1)} = akn

...

Thus

a∗1 = ak1 ≥ ak2 ≥ ak3 ≥ · · · ≥ akn = a∗n ≥ . . .

This shows that the sequence {a∗j}∞j=1 is non-increasing. Hence

n∑
k=1

ak ≤
n∑
j=1

a∗j ≤
∞∑
j=1

a∗j =
∞∑
k=1

ak

and
∞∑
j=1

(a∗j)
p =

∞∑
k=1

apk

while
1

n

n∑
k=1

ak ≤
1

n

n∑
j=1

a∗j

for n > 0. Thus (7) is valid for sequence ak not necessarily non-
increasing.
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Let us now establish some results for the limiting Hardy inequality.
First, we present for the case of two positive numbers followed by a
generalization.

Theorem 2.2. Let {ak} be a sequence of distinct positive real num-
bers, then

lim
p→+∞

(
1

2

2∑
k=1

(ak)
1
p

)p

=
√
a1a2.

Proof. Let

Sp =

(
1

2

2∑
k=1

(ak)
1
p

)p

=

(
(a1)

1
p + (a2)

1
p

2

)p

.

Applying logarithm to base e to both sides and using x = elnx, we obtain

lnSp = p ln

(
(a1)

1
p + (a2)

1
p

2

)

= p ln

(
e

1
p
ln a1 + e

1
p
ln a2

2

)
.

Now consider the Taylor expansion

ex = 1 + x+ x2
(

1

2
+
x

3!
+
x2

4!
+ . . .

)
= 1 + x+ x2f(x)(8)

where f(x) =
(

1
2

+ x
3!

+ x2

4!
+ . . .

)
→ 1

2
when x → 0. Applying the

Taylor series (8) to lnSp, we obtain

lnSp = p ln
1

2

[
1 + 1 +

1

p
(ln a1 + ln a2) +

1

p2

2∑
k=1

(ln ak)
2f(

1

p
ln ak)

]

= p ln

[
1 +

1

2p
ln(a1a2) +

εp
p

]
= p ln

[
1 +

1

p
ln
√
a1a2 +

εp
p

]
= p ln(1 + up)
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where up = 1
p

ln
√
a1a2 + εp

p
and εp = 1

2p

∑2
k=1(ln ak)

2f(1
p

ln ak) for which

εp → 0 as p→∞ since 1
p
→ 0 as p→∞.

Also consider the Taylor expansion

ln(1 + u) = u− u2

2
+
u3

3
− u4

4
+ . . .

= u

(
1− u

2
+
u2

3
− u3

4
+ . . .

)
= ug(u)(9)

where g(u) =
(

1− u
2

+ u2

3
− u3

4
+ . . .

)
→ 1 as u→ 0. Applying (9), we

find that

lnSp = p ln(1 + up)

= pupg(up)

= (ln
√

(a1a2) + εp).g(up).

As p→∞, εp → 0 and up → 0 implies g(up)→ 1. Hence

lim
p→+∞

Sp =
√
a1a2.

Now we consider the general case:

Theorem 2.3. Let {ak} be a sequence of distinct positive real num-
bers, then

lim
p→+∞

(
1

n

n∑
k=1

(ak)
1
p

)p

= (a1a2 . . . an)
1
n .

Equivalently,

lim
p→+∞

(
1

n

n∑
k=1

(ak)
1
p

)p

= exp

(
1

n

n∑
k=1

log ak

)
.

Proof. Let

Vp =

(
1

n

n∑
k=1

(ak)
1
p

)p

=

(
(a1)

1
p + (a2)

1
p + · · ·+ (an)

1
p

n

)p

.
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Applying t = exp ln t, we get

lnVp = p ln

(
exp(1

p
ln a1) + exp(1

p
ln a2) + · · ·+ exp(1

p
ln an)

n

)

Applying ex = 1 + x+ x2f(x) where f(x)→ 1
2

when x→ 0, we obtain

lnVp = p ln
1

n

[
n+

1

p
ln(a1a2 . . . an) +

1

p2

n∑
k=1

(ln ak)
2f(

1

p
ln ak)

]

= p ln

[
1 +

1

np
ln(a1a2 . . . an) +

hp
p

]
= p ln(1 +mp)

where mp = 1
np

ln(a1a2 . . . an)+ hp
p

and hp = 1
np

∑n
k=1(ln ak)

2f(1
p

ln ak)→
0 as p→∞. Applying the Taylor expansion

ln(1 +m) = m

(
1− m

2
+
m2

3
− m3

4
+ . . .

)
= mg(m)

where g(m) =
(

1− m
2

+ m2

3
− m3

4
+ . . .

)
→ 1 as m→ 0. Thus

lnVp = pmpg(mp)

= p

[
1

np
ln(a1a2 . . . an) +

hp
p

]
g(mp)

=
[
ln(a1a2 . . . an)

1
n + hp

]
g(mp)

As p→∞, hp → 0, mp → 0 and g(mp)→ 1. Hence

lim
p→+∞

Vp = (a1a2 . . . an)
1
n

as required.
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Remark 1. By Theorem 2.3, we have

lim
p→+∞

(
1

n

n∑
k=1

(ak)
1
p

)p

= (a1a2 . . . an)
1
n

= exp
1

n
log(

n∏
k=1

ak)

= exp
1

n
(log a1 + log a2 + · · ·+ log an)

= exp

(
1

n

n∑
k=1

log ak

)
.

Theorem 2.4. Let {ak} be a sequence of distinct positive real num-
bers, then

(10)
∞∑
n=1

exp

(
1

n

n∑
k=1

log ak

)
≤ e

∞∑
n=1

an.

Proof. Replace an with (an)
1
p in inequality (1). Then

∞∑
n=1

(
1

n

n∑
k=1

(ak)
1
p

)p

≤
(

p

p− 1

)p ∞∑
n=1

an

Take limits on both sides. Thus

(11)
∞∑
n=1

exp

(
1

n

n∑
k=1

log ak

)
≤ e

∞∑
n=1

an

since

lim
p→∞

(
p

p− 1

)p
= e

and by application of Remark 1.

Equivalently

(12)
∞∑
n=1

(a1a2 . . . an)
1
n ≤ e

∞∑
n=1

an

which is the well known Carleman’s inequality.
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3. Conclusion

We proved the discrete Hardy inequality through the integral Hardy
inequality for decreasing functions. We also established the well known
Carleman’s inequality through limiting Discrete Hardy inequality with
applications of Taylor series.
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