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FIXED POINT THEOREMS IN ORDERED DUALISTIC

PARTIAL METRIC SPACES

Muhammad Arshad, Muhammad Nazam, and Ismat Beg

Abstract. In this article, we introduce the concept of ordered du-
alistic partial metric spaces and establish an order relation on quasi
dualistic partial metric spaces. Later on, using this order relation,
we prove fixed point theorems for single and multivalued mappings.
We support our results with some illustrative examples.

1. introduction and preliminaries

In recent times, Fixed Point Theory has become one of the most useful
branches of Nonlinear Analysis, mainly due to its possible applications
in several areas. For instance, different classes of matrix, differential and
integral equations can be solved using the appropriate techniques in this
field.
In 1994, Matthews [6] added a new concept in the literature of metric
spaces which is known as Partial metric space and obtained a fixed point
theorem in Partial metric spaces. After some years, O’Neill [9] coined
the idea of dualistic partial metric by extending the range R+

0 to R. Then
in 2004, Oltra and Valero [8] come up with Banach fixed point theorem
for complete dualistic partial metric spaces.
Matthews, in [6] discussed the relationship between partial metric and
quasi metric and justify this relation by giving various examples. Then
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moving on the same pattern, Oltra and Valero in [8] developed the re-
lationship between dualistic partial metric and quasi metric. Recently,
Oltra and Valero [8], Altun and Simsek [2] developed some fixed point
theorems in complete dualistic partial metric space. In this article, we
introduce an order on quasi dualistic partial metric and prove that it
is a partial order induced by ϕ. In section 2 and 3 we use this partial
order to prove a fixed point theorem for single valued non decreasing
mappings. Moreover, we prove some fixed point results for multivalued
mappings satisfying order induced by ϕ.
We recall some mathematical basics and results to make this paper self
sufficient.
Throughout this paper, we denote (0,∞) by R+, [0,∞) by R+

0 , (−∞,+∞)
by R and set of natural numbers by N. Let T : X → X be a self map,
a point x ∈ X is called a fixed point of T if x = T (x).
Define a sequence {xn} in X by a simple iterative method such that

xn = T (xn−1), where n ∈ N.

This particular sequence is known as Picard iterative sequence.

Definition 1.1. [9] Let X be a non-empty set. The function D :
X ×X → R is said to be dualistic partial metric if it satisfies following
properties for all x, y, z ∈ X.

1. x = y ⇔ D(x, x) = D(y, y) = D(x, y)
2. D(x, x) ≤ D(x, y)
3. D(x, y) = D(y, x)
4. D(x, z) ≤ D(x, y) +D(y, z)−D(y, y)

The pair (X,D) is called dualistic partial metric space.

Note that if R is replaced by R+
0 , then D is known as partial metric on

X.If (X,D) is a dualistic partial metric space, then dD : X ×X → R+
0

defined by

dD(x, y) = D(x, y)−D(x, x). (1)

is called quasi metric on X such that τ(D) = τ(dD) for all x, y ∈ X.
Moreover, if dD is quasi metric onX , then dsD(x, y) = max{dD(x, y), dD(y,
x)} defines a metric on X.

Remark 1.2. It is obvious that every partial metric is dualistic partial
metric but converse is not true. To support this comment, define D∨ :
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R× R→ R by

D∨(x, y) = x ∨ y = sup{x, y} for all x, y ∈ R.
It is easy to check that D∨ is a dualistic partial metric. Note that D∨
is not a partial metric, because D∨(−1,−2) = −1 /∈ R+

0 . However, the
restriction of D∨ to R+

0 , D∨|R+
0

, is a partial metric.

Following [9], each dualistic partial metric D on X generates a T0
topology τ(D) on X. The elements of the topology τ(D) are open balls
of the form {BD(x, ε) : x ∈ X, ε > 0} where BD(x, ε) = {y ∈ M :
D(x, y) < ε+D(x, x)}

Definition 1.3. [9] Let (X,D) be a dualistic partial metric space,
then

(1) A sequence {xn}n∈N in (X,D) converges to a point x ∈ X if and
only if D(x, x) = limn→∞D(x, xn).

(2) A sequence {xn}n∈N in (X,D) is called a Cauchy sequence if
limn,m→∞D(xn, xm) exists and is finite.

(3) A dualistic partial metric space (X,D) is said to be complete if
every Cauchy sequence {xn}n∈N in X converges, with respect to
τ(D), to a point x ∈ X such that D(x, x) = limn,m→∞D(xn, xm).

Following lemma will be helpful in the sequel.

Lemma 1.4. [9, 11]

(1) A dualistic partial metric (X,D) is complete if and only if the
metric space (X, dsD) is complete.

(2) A sequence {xn}n∈N in X converges to a point x ∈ X, with respect
to τ(dsD) if and only if limn→∞D(x, xn) = D(x, x) = limn→∞D(xn, xm).

(3) If limn→∞ xn = υ such that D(υ, υ) = 0 then limn→∞D(xn, y) =
D(υ, y) for every y ∈ X.

Definition 1.5. Let (X,D) be a dualistic partial metric space. A se-
quence {xn} in X is said to be 0-Cauchy sequence if limn→∞D(xn, xm) =
0 and (X,D) is said to be 0-complete if every 0-Cauchy sequence con-
verges in X.

Definition 1.6. [4] Let A, B be two nonempty subsets of an ordered
set X, the relation between A and B is defined as follows:
If for every b ∈ B, there exists a ∈ A such that a � b, then A ≺2 B.

Example 1.7. if A = [0, 2], B =
[
1
4
, 1
]
, then A ≺2 B.
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Remark 1.8. [4] The relation ≺2 is reflexive and transitive, but are
not antisymmetric. For instance, let X = R, A = [0, 3], B = [0, 1]∪[2, 3],
then A ≺2 B and B ≺2 A, but A 6= B. Hence, ≺2 is not partial order
on 2X .

Definition 1.9. Let M be a nonempty set. Then (X,�, D) is said
to be an ordered dualistic partial metric space if:

(i) (X,�) is a partially ordered set.
(ii) (X,D) is a dualistic partial metric space.

A sequence in a set X is called monotone sequence if either it is
increasing or decreasing sequence.

Definition 1.10. [4] A multi-valued mapping T : X → 2X is called
order closed if for monotone sequences {un}, {vn} in X, un → u0, vn → v0
and vn ∈ T (un) imply v0 ∈ T (u0).

Dualistic version of this definition is given by

Definition 1.11. [2] Let (X,�, D) be an ordered dualistic partial
metric space. A multivalued mapping T : X → 2X is called D-order
closed if for monotone sequences, {un}, {vn} ⊆ X, limn→∞D(un, u0) =
D(u0, u0), limn→∞D(vn, v0) = D(v0, v0) and vn ∈ T (un) imply v0 ∈
T (u0).

2. Fixed point for single-valued mappings

In this section, we shall prove a fixed point theorem for single-valued
mappings in an ordered dualistic partial metric space. We begin with
the following lemma.

Lemma 2.1. Let (X,D) be a dualistic partial metric space and ϕ :
X → R be a mapping. Define the relation � on X as follows;

p � q ⇔ D(p, q)−D(p, p) ≤ ϕ(p)− ϕ(q). (2)

Then � is an order on X, called order induced byϕ.

Proof. As 0 ≤ 0 this implies

D(p, p)−D(p, p) ≤ ϕ(p)− ϕ(p) ⇒ p � p
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so � is reflexive.
Now if p � q and q � p, we will prove that p = q for this

Since p � q ⇔ D(p, q)−D(p, p) ≤ ϕ(p)− ϕ(q). (3)

and

q � p⇔ D(q, p)−D(q, q) ≤ ϕ(q)− ϕ(p). (4)

Adding (3) and (4), we get

D(p, q)−D(p, p) +D(q, p)−D(q, q) ≤ 0

Using definition of dD, we have

dD(p, q) + dD(q, p) ≤ 0. (5)

Since dD(p, q) and dD(q, p) are non-negative, (5) leads to

dD(p, q) = dD(q, p) = 0. (6)

Since dD is a quasi metric, so (6) entails p = q. Thus � is an anti-
symmetric relation.
Lastly, if p � q and q � r, we show that p � r. From condition (2), we
have

p � q ⇔ D(p, q)−D(p, p) ≤ ϕ(p)− ϕ(q). (7)

and

q � r ⇔ D(q, r)−D(q, q) ≤ ϕ(q)− ϕ(r). (8)

Adding (7) and (8), we obtain

D(p, q)−D(p, p) +D(q, r)−D(q, q) ≤ ϕ(p)− ϕ(r)

Implies

dD(p, q) + dD(q, r) ≤ ϕ(p)− ϕ(r).

By triangular inequality

dD(p, r) ≤ dD(p, q) + dD(q, r).

Thus

dD(p, r) ≤ dD(p, q) + dD(q, r) ≤ ϕ(p)− ϕ(r). (9)

Inequality (9) entails,

D(p, r)−D(p, p) ≤ ϕ(p)− ϕ(r) ⇒ p � r.

So, � is transitive. Hence � is a partial order on X.
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It can be observed from the Lemma 2.1 that ϕ is a decreasing function
for the special case when � is equal to usual order ≤.
Next we discuss the existence of the order � defined in Lemma 2.1
through an example.

Example 2.2. Let X = R and define D∨ by D∨(u, v) = u ∨ v for
all u, v ∈ X. Consider the function ϕ defined by ϕ(u) = u2 − u for all
u ∈ X. Now

u � v ⇔ D(u, v)−D(u, u) ≤ ϕ(u)− ϕ(v)

u � v ⇔ u ∨ v − u ∨ u ≤ u2 − u+ v − v2

u � y ⇔ u ∨ v − u ≤ u2 − u+ v − v2

u � v ⇔ u ∨ v ≤ u2 − v2 + v.

We get two relations from this,
either

u � v ⇔ ϕ(v) ≤ ϕ(u).

or

u � v ⇔ v2 ≤ u2.

Our first result.

Theorem 2.3. Let (X,D) be a 0-complete dualistic partial metric
space, ϕ : X → R be a bounded above function and � be an order
induced by ϕ, and h : X → X is a τ(D)-continuous non decreasing
function with h(u0) � u0 for some u0 ∈ X. Then h has a fixed point in
(X,D).

Proof. Suppose that h(u0) � u0 for some u0 ∈ X and define a Picard
sequence in X by un = h(un−1) for all n ∈ N. Since u1 = h(u0) � u0, so
u1 � u0.
And h is non-decreasing, therefore, u1 � u0 implies h(u1) � h(u0) that
is u2 � u1.
this in turn implies that h(u2) � h(u1), thus u3 � u2. Continuing in a
similar manner, we get

u0 � u1 � u2 � u3 � ... � un � ....

Now by definition of ϕ, we deduce that

ϕ(u0) ≤ ϕ(u1) ≤ ϕ(u2) ≤ ϕ(u3) ≤ ... ≤ ϕ(un) ≤ ...
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Since ϕ is bounded above, thus, {ϕ(un)}∞n=1 is monotone bounded se-
quence and hence convergent sequence. Consequently, {ϕ(un)}∞n=1 is a
Cauchy sequence, for ε > 0 there exists n0 ∈ N such that

|ϕ(un)− ϕ(um)| < ε, for n > m > n0.

On the other hand, since un � um from condition (2), we get

un � um ⇔ D(un, um)−D(un, un) ≤ ϕ(un)− ϕ(um).

Which implies

D(un, um)−D(un, un) ≤ |ϕ(un)− ϕ(um)| < ε.

(1), implies
dD(un, um) < ε.

Since dsD(x, y) = max{dD(x, y), dD(y, x)}, we get

dsD(un, um) < ε.

This implies that {un} is a Cauchy sequence in (X, dsD). Since (X,D) is
a complete dualistic partial metric space so by Lemma 1.4, the metric
space (M,dsD) is also complete. So there exists v ∈ X such that

lim
n→∞

dsD(un, v) = 0.

Again by using Lemma 1.4, we obtain

D(v, v) = lim
n→∞

D(un, v) = lim
n,m→∞

D(un, um).

As
lim

n,m→∞
dD(un, um) = 0.

Which leads us to

lim
n,m→∞

D(un, um) = lim
n→∞

D(un, un).

Now, since (X,D) is a 0-complete dualistic partial metric space, so
limn→∞D(un, um) = 0, this implies that

lim
n→∞

D(un, v) = 0.

This shows that {un} is a 0-Cauchy sequence in (X,D) which converges
to v. Since h is a τ(D)-continuous, therefore, v = h(v), which completes
the proof.

If we assume that ϕ(X) is compact in R instead of boundedness of
ϕ(X) in Theorem 2.3, we can have the following theorem.



176 Muhammad Arshad, Muhammad Nazam, and Ismat Beg

Theorem 2.4. Let (X,D) be a 0-complete dualistic partial metric
space , ϕ : X → R be a function such that ϕ(X) is compact and � be an
order induced by ϕ, and h : X → X is a τ(D)-continuous non-decreasing
function with h(u0) � u0 for some u0 ∈ X. Then h has a fixed point in
(X,D).

Example 2.5. Let X = R−{0} and consider ϕ(w) = 1− 1

w2
for all

w ∈ X, then ϕ(w) = 1− 1

w2
< 1, so it is bounded above. Define D∨ by

D∨(w, v) = w ∨ v for all w, v ∈ X and let � be an order as defined in
Lemma 2.1. Clearly, (X,�, D∨) is a complete ordered dualistic partial
metric space. Now,

w � v ⇔ D(w, v)−D(w,w) ≤ ϕ(w)− ϕ(v).

This implies either

w � v ⇔ 0 ≤ 1

v2
− 1

w2

or

w � v ⇔ v − w ≤ 1

v2
− 1

w2
.

Let the mapping ~ : X → X is defined by

~(w) =

{
w2 − 1 if w ∈ (−∞,−1);
w if w ∈ [−1,∞).

Then ~ is non-decreasing, for if ~(w) = w, then the result is obvious
and if ~(w) = w2 − 1, then

~(w) � ~(v)⇔ ~(w) ∨ ~(v) ≤ ~(w) +
1

(~(v))2
− 1

(~(w))2
.

This implies either ~(w) � ~(v)⇔ v2 ≤ w2 +
1

(v2 − 1)2
− 1

(w2 − 1)2
for

when ~(w) ∨ ~(v) = ~(v) or ~(w) � ~(v) ⇔ 0 ≤ 1

(v2 − 1)2
− 1

(w2 − 1)2

for when ~(w) ∨ ~(v) = ~w In both cases we have

~(w) � ~(v)⇔ w � v.

Further take u0 = 1
2
, ~(u0) = 3 which implies ~(u0) � u0. So hypotheses

of theorem 2.3 are satisfied. Thus ~ has a fixed point.
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3. Fixed points for multivalued mappings

In this section, we present a fixed point theorem for multivalued map-
pings in an ordered dualistic partial metric space. Let X be a dualistic
partial metric space and 2X represents family of all non-empty subsets
of X.

Theorem 3.1. Let (X,D) be a complete dualistic partial metric
space and ϕ : X → R be a bounded above function. Let � be an
order induced by ϕ, T : X → 2X be a D-order closed mapping with
T (x0) ≺2 {x0} for some x0 ∈ X, and

x � y implies T (x) ≺2 T (y), (10)

for all x, y ∈ X. Then T has a fixed point in X.

Proof. Since T (x) is non-empty set and T (x0) ≺2 {x0} for some x0 ∈
X. We can choose x1 ∈ T (x0) such that x1 � x0, by condition (10),
we get T (x1) ≺2 T (x0). For every x1 ∈ T (x0) there is x2 ∈ T (x1)
such that x2 � x1 which implies T (x2) ≺2 T (x1). Again for every
x2 ∈ T (x1), there exists x3 ∈ T (x2) such that x3 � x2 and this implies
that T (x3) ≺2 T (x2). Continuing in a similar manner, we get a monotone
sequence

x0 � x1 � x2 � x3 � ... � xn � ....

Now by definition of ϕ, we deduce that

ϕ(x0) ≤ ϕ(x1) ≤ ϕ(x2) ≤ ϕ(x3) ≤ ... ≤ ϕ(xn) ≤ ....

Since ϕ is bounded above, So {ϕ(xn)}∞n=1 is monotone bounded above
sequence and hence convergent sequence. Thus {ϕ(xn)}∞n=1 is a Cauchy
sequence, so for ε > 0 there exists n0 such that for n > m > n0,
|ϕ(xn)− ϕ(xm)| < ε. On the other hand, since xn � xm, from condition
(2), we obtain

xn � xm ⇔ D(xn, xm)−D(xn, xn) ≤ ϕ(xn)− ϕ(xm).

Which implies that

D(xn, xm)−D(xn, xn) ≤ |ϕ(xn)− ϕ(xm)| < ε.

(1) entails
dD(xn, xm) < ε.

Since dsD(x, y) = max{dD(x, y), dD(y, x)}, therefore,

dsD(xn, xm) < ε.
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This implies that {xn} is a Cauchy sequence in complete metric space
(X, dsD). Since (X,D) is a complete dualistic partial metric space, so by
Lemma 1.4, the metric space (M,dsD) is also complete. Thus there exists
v ∈ X such that

lim
n→∞

dsD(xn, v) = 0.

Again using Lemma 1.4, we get

D(v, v) = lim
n→∞

D(xn, v) = lim
n,m→∞

D(xn, xm).

Since T is a D-order closed map and xn+1 ∈ T (xn). Thus, v ∈ T (v) and
hence v is a fixed point of T .

Example 3.2. Let X = R2 and define multivalued mapping T by

T (x, y) =

{
{(0, 0), (2, 3)} if xy ≥ 0;

{( xy

x3 + y3
,

xy

x3 + y3
), (1 +

xy

x3 + y3
, 1 +

xy

x3 + y3
)} if xy < 0.

Then T is an ordered closed mapping and for all (x, y), (u, v) ∈ R2.

(x, y) � (u, v)⇔ T (x, y) ≺2 T (u, v).

Further T (x0) ≺2 {x0}. Hence T satisfies all the conditions of Theorem
3.1 and it has a fixed point.
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