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A STUDY ON THE RECURRENCE RELATIONS OF

5-DIMENSIONAL ES-MANIFOLD

In Ho Hwang

Abstract. The manifold ∗g−ESXn is a generalized n-dimensional
Riemannian manifold on which the differential geometric structure is
imposed by the unified field tensor ∗gλν through the ES-connection
which is both Einstein and semi-symmetric. The purpose of the
present paper is to study the algebraic geometric structures of 5-
dimensional ∗g −ESX5. Particularly, in 5-dimensional ∗g −ESX5,
we derive a new set of powerful recurrence relations in the first class.

1. Introduction

In Appendix II to his last book Einstein([3], 1950) proposed a new
unified field theory that would include both gravitation and electromag-
netism. Although the intent of this theory is physical, its exposition
is mainly geometrical. It may be characterized as a set of geometri-
cal postulates for the space time X4. Characterizing Einstein’s unified
field theory as a set of geometrical postulates for X4, Hlavatý([4], 1957)
gave its mathematical foundation for the first time. Since then Hlavatý
and number of mathematicians contributed for the development of this
theory and obtained many geometrical cnosequences of these postulates.

The main purpose of the present paper is to study the algebraic geo-
metric properties of 5-dimensional ∗g − ESX5 in the first class. In
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particular, we derive a powerful recurrence relations in 5-dimensional
∗g − ESX5.

2. Preliminaries

This section is a brief collection of basic concepts, results, and nota-
tions needed in subsequent considerations. They are due to Chung ([1],
1963) ), and Mishra([5], 1959) mostly due to Datta([2], 1964).

(a) n-dimensional ∗g-unified field theory

Corresponding to the Einstein’s n− g-UFT, our n− ∗g-UFT is based
on the following three principles.

Principle A. Let Xn be an n-dimensional generalized Riemann-
ian manifold referred to a real coordinate system xν , which obeys the
coordinate transformations xν → xν

′
for which

det(
∂x′

∂x
) 6= 0(2.1)

In n− g − UFT the manifold Xn is endowed with a real nonsymmetric
tensor gλµ, which may be decomposed into its symmetric part hλµ and
skew-symmetric part kλµ:

gλµ = hλµ + kλµ(2.2)

where

g = det(gλµ) 6= 0, h = det(hλµ) 6= 0, k = det(kλµ)(2.3)

In n− ∗g − UFT the algebraic structure on Xn is imposed by the basic
real tensor ∗gλν defined by

gλµ
∗gλν = gµλ

∗gνλ = δνµ(2.4)

It may be also decomposed into its symmetric part ∗hλν and skew-
symmetric part ∗kλν :

∗gλν = ∗hλν + ∗kλν(2.5)

Since det(∗hλν) 6= 0, we may define a unique tensor ∗hλµ by

∗hλµ
∗hλν = δνµ(2.6)
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In n− ∗g-UFT we use both ∗hλν and ∗hλµ as tensors for raising and/or
lowering indices of all tensors in Xn in the usual manner. We then have

∗kλµ = ∗kρσ∗hλρ
∗hµσ,

∗gλµ = ∗gρσ∗hλρ
∗hµσ(2.7)

so that

∗gλµ = ∗hλµ + ∗kλµ(2.8)

Principle B The differential geometric structure on Xn is imposed
by the tensor ∗gλν by means of a connection Γλ

ν
µ defined by a system

of equations

Dω
∗gλν = −2Sωα

ν ∗gλα(2.9)

Here Dω denotes the symbol of the covariant derivative with respect to
Γλ

ν
µ and Sλµ

ν is the torsion tensor of Γλ
ν
µ. Under certain conditions

the system (2.9) admits a unique solutions Γλ
ν
µ.

Principle C In order to obtain ∗gλν involved in the solution for
Γλ

ν
µ certain conditions are imposed. These conditions may be condensed

to

Sλ = Sλα
α = 0, R[µλ] = ∂[µYλ], R(µλ) = 0(2.10)

where Yλ is an arbitrary vector, and Rωµλ
ν are the curvature tensors of

Xn defined by

Rωµλ
ν = 2(∂[µΓ|λ|

ν
ω] + Γα

ν
[µΓ|λ|

α
ω]), Rµλ = Rαµλ

α(2.11)

(b) Some notations and results

The following quantities are frequently used in our further considera-
tions:

∗g = det(∗gλµ), ∗h = det(∗hλµ), ∗k = det(∗kλµ)(2.12)

∗g =
∗g
∗h
, ∗k =

∗k
∗h
.(2.13)

Kp = ∗k[α1

α1 ∗kα2

α2 · · · ∗kαp]
αp

, (p = 0, 1, 2, · · · ).(2.14)

(0)∗kλ
ν = δνλ,

(p)∗kλ
ν = ∗kλ

α (p−1)∗kα
ν (p = 1, 2, · · · ).(2.15)
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In Xn it was proved in [1] that

K0 = 1, Kn = ∗k if n is even, and Kn = 0 if n is odd.(2.16)

∗g = 1 +K2 + · · ·+Kn−σ.(2.17)

n−σ∑
s=0

Ks
(n−s)∗kλ

ν = 0 (p = 0, 1, 2, · · · ).(2.18)

We also use the following useful abbreviations for an arbitrary tensor
T ······ for p = 1, 2, 3, · · · :

(p)T ν······ =(p−1) ∗kνα T
α···
··· .(2.19)

(c) n-dimensional ES manifold n− ∗g-UFT

In this subsection, we display an useful representation of the ES con-
nection in n− ∗g-UFT.

Definition 2.1. A connection Γλ
ν
µ is said to be semi-symmetric if

its torsion tensor Sλµ
ν is of the form

Sλµ
ν = 2δν[λXµ].(2.20)

for an arbitrary non-null vector Xµ.

A connection which is both semi-symmetric and Einstein is called
an ES connection. An n-dimensional generalized Riemannian manifold
Xn, on which the differential geometric structure is imposed by ∗gλν by
means of an ES connection, is called an n-dimensional ∗g−ES manifold.
We denote this manifold by ∗g − ESXn in our further considerations.

Theorem 2.2. Under the condition (2.20), the system of equations
(2.9) is equivalent to

Γλ
ν
µ = ∗

{
ν
λµ

}
+ Uν

λµ + 2δν[λXµ].(2.21)

where

Uν
λµ = −∗hλµ(2)Xν(2.22)

Proof. Substituting (2.20) for Sλµ
ν into (2.9), we have the represen-

tation (2.21).
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3. Recurrence relations in ∗g − ESX5

In this section we derive several powerful recurrence relations, estab-
lishing a non-holonomic frame in ∗g − ESX5.

Definition 3.1. The tensors ∗gλµ is said to be

(1) of the first class, if Kn−σ 6= 0

(2) of the second class with jth category (j >= 1), if

K2j 6= 0, K2j+2 = K2j+4 = · · · = Kn−σ = 0(3.1)

(3) of the third class, if K2 = K4 = · · · = Kn−σ = 0

In 5 − ∗g-UFT, we have three classes; namely the first class when
K4 6= 0, the second class when K4 = 0, K2 6= 0, and the third class when
K4 = K2 = 0. In 5− ∗g-UFT, the relation (2.17) gives

∗g = 1 +K2 +K4(3.2)

In this chapter we investigate only the first class of 5−∗g-UFT. Hence
all considerations in this chapter are restricted to n = 5.

A. Basic vectors in the first class

Remark 3.2. For the simplicity of our discussion, we assume in this
and in what follows that

K4 < 0(3.3)

The eigenvalues M and the corresponding eigenvectors Aν in ∗g −
ESXn, defined by

MAν = ∗kµ
νAµ, (M : a scalar).(3.4)

are called basic scalars and basic vectors, respectively.

Theorem 3.3. The basic scalars in ∗g − ESX5 may be given by

M
1

= −M
2

=
√
−L−K 6= 0

M
3

= −M
4

=
√
L−K 6= 0, M

5
= 0(3.5)

where

K =
K2

2
, L =

√
(
K2

2
)2 −K4(3.6)
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Proof. In 5− ∗g-UFT, the characteristic equation is reduced to

M(M4 +K2M
2 +K4) = 0(3.7)

from which our assertion follows in virtue of (3.3) and (3.6).

Theorem 3.4. There are five linearly independent basic vectorsA
1

ν , · · ·A
5

ν

and they have the following properties:

(a) They are defined up to an arbitrary factor of proportionality.

(b) A
1

ν , · · ·A
4

ν are null vectors, while A
5

ν is non-null.

(c) A
1

ν , A
2

ν are perpendicular to A
3

ν , A
4

ν and A
5

ν is also perpendicular

to A
1

ν , · · ·A
4

ν .

(d) They satisfy the conditions

∗hλµA
1

νA
2

ν 6= 0, ∗hλµA
3

νA
4

ν 6= 0(3.8)

Proof. Since the basic scalars M
i

are all distinct, (3.4) admits five lin-

early independent basic vectors A
i

ν which are defined up to an arbitrary

factor of proportionality. The first half of statement (b) is a consequence
of (3.4), (3.5), and

M
x

∗hλµA
x

λA
x

µ = ∗kλµA
x

λA
x

µ = 0, (x = 1, · · · , 4)(3.9)

Since M
5

+ M
x
6= 0, (x = 1, · · · , 4), statement (c) follows from (3.5) as

in the following way:

M
x

∗hλµA
x

λA
y

µ = ∗kλµA
x

λA
y

µ = −M
y

∗hµλA
x

λA
y

µ, (y = 3, 4)(3.10)

In order to prove statement (d), consider a conic C with equation
∗hλµA

λAµ = 0 on a projective plane P2. In virtue of statement (b), A
1

ν

and A
2

ν are two different points on C while ∗hλµA
1

λ = A
1 µ

is the tangent

line to C at A
1

ν . Since det(∗hλµ) 6= 0, C is non-degenerate. Consequently

∗hλµA
1

λ = A
1 µ

and A
2

µ are not incident; that is, ∗hλµA
1

λA
2

µ 6= 0.
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B. Nonholonomic frame of reference in the first class

In the first class, we have a set of 5 linearly independent basic vec-

tors A
i

ν , (i = 1, · · · , 5) and a unique reciprocal set
i

Aλ, (i = 1, · · · , 5)

satisfying

j

AλA
i

λ = δji ,
i

AλA
i

ν = δνλ(3.11)

With these two set of vectors, we may construct a nonholonomic frame
of reference as follows;

Definition 3.5. If T ν···λ··· are holonomic components of a tensor, then
its nonholonomic components are defined by

T i···j··· = T ν···λ···
i

Aν · · ·A
j

λ · · ·(3.12)

An easy inspection shows that

T ν···λ··· = T i···j···A
i

ν · · ·
j

Aλ · · ·(3.13)

Theorem 3.6. The nonholonomic components ∗hij and ∗hij are given
by the matrix equation

(∗hij) = (∗hij) =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

(3.14)

Proof. (3.14) is a direct result of (3.5) and theorem (3.4)

Theorem 3.7. We have

A
i

ν =
j

Aλ
∗hij

∗hλν ,
j

Aλ = A
i

ν∗hij∗hλν(3.15)

so that

A
1

ν =
2

A
ν

, A
2

ν =
1

A
ν

, A
3

ν =
4

A
ν

A
4

ν =
3

A
ν

, A
5

ν =
5

A
ν
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1

Aλ = A
2 λ
,

2

Aλ = A
1 λ
,

3

Aλ = A
4 λ
,

4

Aλ = A
3 λ
,

5

Aλ = A
5 λ

(3.16)

Proof. In virtue of (2.6), (3.11) and (3.12), the first relation of (3.15)
follows as in the following way;

j

Aλ
∗hij

∗hλν =
j

Aλ(
∗hαβA

i

αA
j

β)∗hλν = A
i

α(∗hαβ
∗hλν)δβλ = A

i

ν .(3.17)

(3.16) follows from (3.15) and (3.14).

Theorem 3.8. The nonholonomic components of (p)∗kλ
ν , (p)∗kλµ and

(p)∗kλν are given by
(p)∗kx

i = M
x

pδix(3.18)

(p)∗kxi = M
x

p∗hxi(3.19)

(p)∗kxi = M
x

p∗hxi(3.20)

Proof. Let A
x

ν be the basic vector corresponding to the basic scalar

M
x

. Then from (3.4), we have

(p)∗kλ
νA
x

λ = M
x

pA
x

ν (p = 0, 1, 2, · · · )(3.21)

(3.18) follows immediately by multiplying
i

Aν to both sides of (3.21).
The remaining relations may be obtained from (3.18) by lowering and/or
raising indices.

In the following theorem, we express the components of tensors ∗hλµ,
(p)∗kλ

ν , (p)∗kλµ,
(p)∗kλν in terms of basic vectors:

Theorem 3.9. The representation of ∗hλµ,
(p)∗kλ

ν , (p)∗kλµ,
(p)∗kλν

in terms of basic vectors are given by

∗hλµ = 2
1

A(λ

2

Aµ) +
3

A(λ

4

Aµ) +
5

Aλ
5

Aµ(3.22)

(3.23) (p)∗kλ
ν = M

1

p(
1

AλA
1

ν + (−1)p
2

AλA
2

ν) +M
3

p(
3

AλA
3

ν + (−1)p
4

AλA
4

ν)
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(p)∗kλµ =


2M

1

p
1

A(λ

2

Aµ) + 2M
3

p
3

A(λ

4

Aµ), if p is even

2M
1

p
1

A[λ

2

Aµ] + 2M
3

p
3

A[λ

4

Aµ], if p is odd
(3.24)

(p)∗kλν =

2M
1

pA
1

(λA
2

ν) + 2M
3

pA
3

(λA
4

ν), if p is even

2M
1

pA
1

[λA
2

ν] + 2M
3

pA
3

[λA
4

ν], if p is odd
(3.25)

Proof. The representations (3.22)− (3.25) follow from (3.13) in virtue
of (3.5), (3.14) and (3.16).

C. Recurrence relations in the first class

In this subsection we derive several recurrence relations.

Theorem 3.10. In the first class, the tensor Tωµν , skew-symmetric
in the first two indices, satisfies

(pq)r

T ωµν =
∑
x,y,z

TxyzM
x

(pM
y

q)M
z

r
x

Aω
y

Aµ
z

Aν(3.26)

r(pq)

T ν[ωµ] =
∑
x,y,z

Tx[yz]M
x

(pM
y

q)M
z

r
x

Aν
y

Aω
z

Aµ(3.27)

Proof. In virtue of (3.13) and (3.18), our assertion (3.26) may be
derived as

(pq)r

T ωµν =
∑
x,y,z

(pq)r

T xyz

x

Aω
y

Aµ
z

Aν

=
∑
x,y,z

1

2
((p)∗kx

i(q)∗ky
j + (q)∗kx

i(p)∗ky
j)(r)∗kz

k
x

Aω
y

Aµ
z

Aν

=
1

2

∑
x,y,z

Txyz(M
x

pM
y

q +M
x

qM
y

p)M
z

r
x

Aω
y

Aµ
z

Aν(3.28)

The second relation may be proved similarly.
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Theorem 3.11. The main recurrence relation in the first class is

(p+5)∗kλ
ν = −K2

(p+3)∗kλ
ν −K4

(p+1)∗kλ
ν , (p = 0, 1, 2, · · · )(3.29)

Proof. Let M
x

be a basic scalar. In 5− ∗g −ESX5, the characteristic

equation is

4∑
f=0

KfM
x

5−f = 0(3.30)

Multiplying δix to both sides of (3.30) and making use of (3.18), we have

4∑
f=0

Kf
(5−f)∗kx

i = 0(3.31)

whose holonomic form is
4∑

f=0

Kf
(5−f)∗kλ

α = 0(3.32)

The relation (3.29) immediately follows by multiplying (p)∗kα
ν to both

sides of (3.32).

The following theorem is simple consequences of (5.2) and (5.5).

Theorem 3.12. The basic scalars M
x

satisfy

(3.33) M
1

+M
2

= M
3

+M
4

= 0

(3.34) M
1
M
5

= M
2
M
5

= M
3
M
5

= M
4
M
5

= 0

(3.35) M
1

2M
3

2 = M
1

2M
4

2 = M
2

2M
3

2 = M
2

2M
4

2 = K4

(3.36) M
1

2 +M
3

2 = M
1

2 +M
4

2 = M
2

2 +M
3

2 = M
2

2 +M
4

2 = −K2

Proof. These relations follow easily from (3.5).

In virtue of the above theorem, we have
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Theorem 3.13. In the first class, the following identities hold for all
values of x and y when x 6= y

M
x

(4M
y

1) = −M
x

(3M
y

2) −K2M
x

(2M
y

1)(3.37)

M
x

(4M
y

3) = K4M
x

(2M
y

1)(3.38)

M
x

4M
y

4 = K4
2M
x

2M
y

2 +K2M
x

3M
y

3 + 2K4M
x

(3M
y

1)(3.39)

2M
x

(4M
y

2) = −M
x

3M
y

3 −K2M
x

2M
y

2 +K4M
x
M
y

(3.40)

Theorem 3.14. (Recurrence relations in the first class) If Tωµν
is a tensor skew-symmetric in the first two indices, then the following
recurrence relations hold in the first class of 5− ∗g − ESX5 :

(41)r

T = −
(32)r

T −K2

(21)r

T(3.41)

(43)r

T = K4

(21)r

T(3.42)

44r

T = K4

22r

T +K2

33r

T + 2K4

(31)r

T(3.43)

2
(42)r

T = −
33r

T −K2

22r

T +K4

11r

T(3.44)

Proof. The above relations are consequences of (3.26), (3.27) and (3.37)−
(3.40). For example, the relation (3.44) is proved as in the following way:

2
(42)r

T = 2
(42)r

T ωµν = 2
∑
x,y,z

TxyzM
x

(4M
y

2)M
z

r
x

Aω
y

Aµ
z

Aν

=
∑
x,y,z

Txyz(−M
x

3M
y

3 −K2M
x

2M
y

2 +K4M
x
M
y

)M
z

r
x

Aω
y

Aµ
z

Aν

= −
33r

T ωµν −K2

22r

T +K4

11r

T(3.45)
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