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k− DENTING POINTS AND k− SMOOTHNESS OF

BANACH SPACES

Suyalatu Wulede∗, Shaoqiang Shang, and Wurina Bao

Abstract. In this paper, the concepts of k−smoothness, k−very
smoothness and k−strongly smoothness of Banach spaces are dealt
with together briefly by introducing three types k−denting point
regarding different topology of conjugate spaces of Banach spaces.
In addition, the characterization of first type w∗−k denting point is
described by using the slice of closed unit ball of conjugate spaces.

1. Introduction

Throughout this paper, (X, ‖ · ‖) will denote a real Banach space and
X∗ will denote its conjugate space. Set

U(X) = {x : x ∈ X, ‖ x ‖≤ 1}, U(x0, δ) = {x : x ∈ X, ‖ x− x0 ‖≤ δ},
S(X) = {x : x ∈ X, ‖ x ‖= 1}, Sx = {f : f ∈ S(X∗), f(x) = 1 =‖ x ‖}.

For f ∈ X∗ and δ > 0, set F (f, δ) will denote the slice {x ∈ U(X) :

f(x) > 1 − δ}. The symbol xn
w∗
−→ x (resp. xn

w−→ x, xn −→ x ) will
denote the sequence {xn} of X which w∗ (resp. w, strong ) convergence
to x in X. σ(X,w) will denote the weak topology of X and the open
(resp. compact, closed ) set regarding weak topology σ(X,w) is said
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to be w open (resp. w compact, w closed) set. The symbol σ(X∗, w∗)
will denote the weak∗ topology of X∗ and the open (resp. compact,
closed ) set regarding weak∗ topology σ(X∗, w∗) is said to be w∗ open
(resp. w∗ compact, w∗ closed) set. The neighborhood regarding weak
(weak∗)topology is said to be w (w∗) neighborhood. The accumulation
point regarding weak∗ topology is said to be w∗ accumulation point. The
symbol coM will denote the convex hull of set M and the symbol H

w
(

resp. H
w∗

) will denote the w (resp.w∗ ) closure of set H, where H ⊂ X∗.

Definition 1.1. A point x∗ ∈ S(X∗) is said to be first (resp. second)
type weak∗ − k (in short w∗ − k ) denting point of U(X∗) if there is a
x ∈ S(X) with x∗(x) = 1, dimSx ≤ k such that for every norm (resp. w∗)
open set VSx which includes set Sx, we have Sx

⋂
cow∗(U(X∗)\VSx) = ∅.

Definition 1.2. A point x∗ ∈ S(X∗) is said to be weak−k (in short
w − k ) denting point of U(X∗) if there is a x ∈ S(X) with x∗(x) = 1,
dimSx ≤ k
such that for every w open set VSx which includes set Sx, we have
Sx

⋂
cow(U(X∗) \ VSx) = ∅.

Definition 1.3. [4] Let X be a Banach space. A point x ∈ S(X) is
said to be k−smooth point of X if the inequality dimSx ≤ k holds for
x ∈ S(X), where dimSx denote the linear dimension of Sx. X is said to
be k−smooth space if every point of S(X) is k−smooth point of X.

Definition 1.4. [4, 9] Let X be a Banach space. X is said to be k-
strongly (resp.k-very) smooth space if and only if X is k−smooth space
and for any sequence {fn} ⊂ S(X∗), x ∈ S(X) and fn(x) → 1 imply
that {fn} is relatively compact (resp. relatively w compact).

Let us recall the concepts of denting point and property (G).
Let M be a subset of X. A point x ∈M is said to be denting point of

M if x 6∈ co(M \N(0, ε)) holds for any ε > 0. M is said to be dentable
set if for any ε > 0 there is a xε ∈ M such that xε 6∈ co(M \ N(xε, ε),
where N(xε, ε) = {x ∈ X : ‖x − xε‖ < ε}. The concept of dentabe
set was first introduced by Rieffel in 1966 and the following important
result has been given in [5]. That is, X has the Radon-Nikodym property
whenever every bounded subset of X is dentable. This important result,
later improved by Maynard [3] in 1973, is very simply. That is, X has
the Radon-Nikodym property if and only if X is dentable.
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The property (G) is given by Fan and Glicksberg [1] in 1955. Banach
space X has the property (G) if and only if for all x ∈ S(X) and ε > 0,
we have x 6∈ co(H(x, ε)), where H(x, ε) = {y : y ∈ X, ‖ y − x ‖≥ ε}. In
1993, the concept of strongly convex Banach spaces were introduced by
Wu and Li, and the another important result connected to property (G)
has been given in [7]. That is, X is strongly convex space if and only X
has the property (G), where X is reflexive Banach space. Noticing that
the connection with dentable set and property (G), the above important
result can be motivated by the following restatement of property (G).
That is, X is strongly convex space if and only if every point of S(X) is
denting point of U(X), where X is reflexive Banach space. Up to now,
this result is only a result has being known about describing the straight
relations between dentability and convexity.

The concept of w∗ denting point of U(X∗) was given in [1]. A point
x∗ ∈ S(X∗) is said to be denting point of U(X∗) if x∗ 6∈ cow∗

(U(X∗) \
N(x∗, ε)) holds for each ε > 0, where N(x∗, ε) = {y∗ : y∗ ∈ X∗, ‖
y∗ − x∗ ‖< ε}). About the strongly smooth space which is the dual
concept of strongly convex space, Shang, Cui and Fu [6] are greatly
inspired to obtain the following important result : X is strongly smooth
spaces if and only if the point of S(X∗) which attains its norm is the
w∗ denting point of U(X∗). Up to now, this important result is only a
result has being known about describing the straight relations between
dentability and smoothness also.

In this paper, the concepts of k−smoothness, k−very smoothness
and k−strongly smoothness of Banach spaces are dealt with together by
introducing three types k−denting point regarding different topology of
conjugate spaces of Banach spaces. In fact, by using the skill of Banach
spaces theory, we show that X is k−smooth (resp. k−strongly smooth
) spaces if and only if each point of S(X∗) which attains its norm is the
second ( resp. first ) type w∗ − k denting point of U(X∗); X is k−very
smooth spaces if and only if each point of S(X∗) which attains its norm
is the w− k denting point of U(X∗). Specially, as a simple consequence
of these results, we obtain the main result of ref [6]. In fact, the first
type weak∗ − 1 denting point coincide with weak∗ denting point. Also,
the characterization of first type w∗ − k denting point is described by
using the slice of closed unit ball of conjugate spaces.
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2. Main results

Theorem 2.1. X is k−very smooth spaces if and only if each point
of S(X∗) which attains its norm is the w − k denting point of U(X∗).

Proof. Proof of necessity. Firstly, we will prove that if for all x∗ ∈
S(X∗), there exists x ∈ S(X) such that x∗(x) = 1, dimSx ≤ k, and
{x∗n}∞n=1 ⊂ S(X∗) satisfying x∗n(x)→ 1(n→∞), then

{x∗n}∞n=1

w
∩ Sx 6= ∅.

In fact, by the k−very smoothness of X, we know that dimSx ≤ k
and there exists a subsequence {x∗nk

}∞k=1 of {x∗n}∞n=1 such that x∗nk

w−→
y∗(k →∞). It follows that x∗nk

(x)→ y∗(x) = 1, hence ‖y∗‖ ≥ 1.

On the other hand, noticing that U(X∗) is w∗ closed set, we know
that ‖y∗‖ ≤ 1. Moreover, we have y∗ ∈ Sx. This shows that

{x∗n}∞n=1

w
∩ Sx 6= ∅.

Secondly, we will prove that for all x∗ ∈ S(X∗), there exists x ∈ S(X)
such that x∗(x) = 1, and for each w open set VSx which includes Sx there
exists a scalar m > 0 such that

x∗(x) ≥ z∗(x) +m, if z∗ ∈ U(X∗) \ VSx .
If it is not true, then there exists z∗n ∈ U(X∗)\VSx such that z∗n(x)→

x∗(x) = 1(n→∞), so we have

{z∗n}∞n=1

w
∩ Sx 6= ∅, {z∗n}∞n=1 ∩ VSx = ∅,

which is a contradiction.
Moreover, we have
x∗(x)−m ≥ sup{z∗(x) : z∗ ∈ U(X∗) \ VSx}

= sup{z∗(x) : z∗ ∈ co(U(X∗)\VSx)}
= sup{z∗(x) : z∗ ∈ cow(U(X∗) \ VSx)}.

This shows that x∗ 6∈ cow(U(X∗)\VSx), hence Sx∩cow(U(X∗)\VSx) = ∅.
By Definition 2.1 we know that each point of S(X∗) which attains its
norm is the w − k denting point of U(X∗).

Proof of sufficiency.
Firstly, we will prove that X is k−smooth spaces.
For all x ∈ S(X), by Hahn-Banach theorem, there exists x∗ ∈ S(X∗)

such that x∗(x) = 1, hence x∗ is a point of S(X∗) which attains its
norm. By the assumption of Theorem 2.1, we know that x∗ is w − k
denting point of U(X∗). It follows that dimSx ≤ k, this shows that X
is k−smooth spaces.
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Secondly, we will prove that if

x ∈ S(X), {x∗n}∞n=1 ⊂ S(X∗), x∗n(x)→ 1(n→∞),
then {x∗n}∞n=1 is relatively w compact set and there exist

x∗ ∈ Sx, net {x∗α}α∈∆ ⊂ {x∗n}∞n=1

such that x∗α
w∗
−→ x∗ ( here, we may assume that x∗n 6= x∗m for all m 6= n

).

Because U(X∗) is w∗ compact set, so there exists x∗ ∈ U(X∗) such
that x∗ become w∗ accumulation point of {x∗n}∞n=1.
Let

∆ = {Rx∗ : Rx∗ is w∗ neighborhood of point x∗}
and define a order by inclusive relation, i.e., Rx∗ ⊂ Qx∗ if and only if
Rx∗ � Qx∗ . Then

{Rx∗ ∩ {x∗n}∞n=1 : Rx∗ is w∗ neighborhood of point x∗}
is a semi-ordered set. By Zermelo principle, there is a mapping f such
that

f(Rx∗ ∩ {x∗n}∞n=1) ∈ Rx∗ ∩ {x∗n}∞n=1.

Put x∗α = f(Rx∗ ∩ {x∗n}∞n=1), then {x∗α}α∈∆ ⊂ {x∗n}∞n=1 is a net. From

x∗n(x)→ 1(n→∞) and the structure of this net, we know that x∗α
w∗
−→

x∗ and x∗ ∈ Sx.
It remains to prove that {x∗n}∞n=1 is relatively w compact set.

Case 1◦ : If {x∗n}∞n=1 ∩ Sx = ∅, then {x∗n}∞n=1 must be a relatively w
compact set. If it is not true, then any point of Sx is not w accumulation
point of {x∗n}∞n=1, i.e., for all x∗ ∈ Sx there exists a w neighborhood Vx∗
of point 0 such that x∗+Vx∗ does not contain any point of {x∗n}∞n=1. We
construct a w open set

VSx = ∪x∗∈Sx{y∗ : y∗ ∈ x∗ + Vx∗}.
Obviously, VSx includes Sx and {x∗n}∞n=1∩VSx = ∅. Because U(X∗) is w∗

compact set, so cow
∗
(U(X∗)\VSx) is w∗ compact set also. Noticing that

Sx is w∗ closed set, by separating theorem, we know that there exists
y ∈ X such that

y(Sx) > sup y(cow
∗
(U(X∗)\VSx).

Moreover, we choose a scalar r > 0 such that

y(Sx)− y(cow
∗
(U(X∗) \ VSx) > r.

Obviously,

{x∗n}∞n=1 ⊂ cow
∗
(U(X∗) \ VSx).
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On the other hand, by we have proved above, we know that there

exists net {x∗α}α∈∆ ⊂ {x∗n}∞n=1, such that x∗α
w∗
−→ x∗ and x∗ ∈ Sx. This

contradicts that
y(Sx)− y(cow

∗
(U(X∗) \ VSx) > r.

Hence, we obtain the desired result that {x∗n}n=1 is a relatively w com-
pact set.

Case 2◦ : If {x∗n}∞n=1∩Sx 6= ∅, then by case 1◦ we know that {x∗n}∞n=1\Sx
is a relatively w compact set. Because Sx is a bounded closed set of
finite dimensional spaces, so {x∗n}∞n=1 ∩ Sx is a relatively w compact set.
Noticing that
{x∗n}∞n=1 = ({x∗n}∞n=1 ∩ Sx) ∪ ({x∗n}∞n=1\Sx),

we have
{x∗n}∞n=1

w
= {x∗n}∞n=1 ∩ Sx

w
∪ ({x∗n}∞n=1\Sx)

w
.

Thus {x∗n}∞n=1 is a relatively w compact set.

Theorem 2.2. X is k−strongly smooth spaces if and only if each
point of S(X∗) which attains its norm is the first type w∗ − k denting
point of U(X∗).

Proof. Proof of necessity. Firstly, we will prove that if for all x∗ ∈
S(X∗), there exists x ∈ S(X) such that x∗(x) = 1, dimSx ≤ k, and each
norm open set VSx which includes Sx there exists a scalar r > 0 such
that the inequality dist(z∗, Sx) ≥ r holds for z∗ 6∈ VSx .

In fact, by the k−strongly smoothness of X, we know that dimSx ≤
k. Because VSx is a norm open set which includes Sx, so there exists
δ′ > 0 such that U(x∗, δ′) ⊂ VSx holds for x∗ ∈ Sx and such δ′ exists
a minimum value δ. Obviously,

⋃
x∗∈Sx

U(x∗, δ) ⊂ VSx . Let r = δ
2
, then

we have dist(z∗, Sx) ≥ r. Otherwise, there exists x∗ ∈ Sx such that
‖z∗ − x∗‖ < r < δ, hence z∗ ∈

⋃
x∗∈Sx

U(x∗, δ) ⊂ VSx . This contradicts

that z∗ 6∈ VSx .
Secondly, we will prove that for all x∗ ∈ S(X∗), there exists x ∈ S(X)

such that x∗(x) = 1, and for each norm open set VSx which includes Sx
there exists a scalar m > 0 such that

x∗(x) ≥ z∗(x) +m, if z∗ ∈ U(X∗) \ VSx .
If it is not true, then there exists z∗n ∈ U(X∗)\VSx such that z∗n(x)→

x∗(x) = 1(n→∞). By the k−strongly smoothness of X, we can deduce
that dist(z∗n, Sx) → 0(n → ∞). Otherwise, we may find a ε0 > 0 such
that for every n0 > 0, there exists nk > n0, k = 1, 2, · · · , satisfying
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dist(z∗nk
, Sx) > ε0. On the other hand, z∗n(x)→ 1 implies that z∗nk

(x)→
1. Hence, by the k−strongly smoothness of X we know that {z∗nk

}
is a relatively compact set. It follows that there exists subsequence
{z∗nkl

} ⊂ {z∗nk
} such that z∗nkl

→ z∗0 . Hence z∗nkl
(x) → z∗0(x) = 1 and

z∗0 ∈ Sx. Which leads to that dist(z∗nkl
, Sx) → 0. This contradicts that

dist(z∗nk
, Sx) > ε0 .

Moreover, we have
x∗(x)−m ≥ sup{z∗(x) : z∗ ∈ U(X∗) \ VSx}

= sup{z∗(x) : z∗ ∈ co(U(X∗)\VSx)}
= sup{z∗(x) : z∗ ∈ cow∗

(U(X∗) \ VSx)}.
This shows that x∗ 6∈ cow∗

(U(X∗)\VSx), it follows that Sx∩cow
∗
(U(X∗)\VSx)

= ∅. Hence, we obtain the desired result that each point of S(X∗) which
attains its norm is the first type w∗ − k denting point of U(X∗).

Proof of sufficiency. Suppose that x ∈ S(X), {x∗n}∞n=1 ⊂ S(X∗), x∗n(x)→
1(n → ∞). Greatly similarly to the proof of Theorem 2.1, by using the
given conditions in Theorem 2.2, we can prove that there exists a net

x∗ ∈ Sx{x∗n}∞n=1 ⊂ {x∗α}α∈∆ such that x∗α
w∗
−→ x∗ and X is k−smooth

spaces. Now we prove that {x∗n}∞n=1 is a relatively compact set.
Case 1◦ : If {x∗n}∞n=1 ∩ Sx = ∅, then {x∗n}∞n=1 must be a relatively

compact set. If it is not true, then any point of Sx is not accumulation
point of {x∗n}∞n=1. Hence, for all x∗ ∈ Sx there is a ε > 0 such that the
set {y∗ : ‖y∗ − x∗‖ < ε} does not contain any point of {x∗n}∞n=1. We
construct a norm open set

VSx = ∪x∗∈Sx{y∗ : ‖y∗ − x∗‖ < ε}.
Obviously, VSx includes Sx and ∪x∗∈Sx{y∗ : ‖y∗ − x∗‖ < ε} ∩ {x∗n}∞n=1 =
∅. Greatly similarly to the proof of Theorem 2.1, we can deduce that
{x∗n}∞n=1 is a relatively compact set.

Case 2◦ : If {x∗n}∞n=1∩Sx 6= ∅, then by case 1◦ we know that {x∗n}∞n=1\Sx
is a relatively compact set. Because Sx is a bounded closed set of finite
dimensional spaces, so {x∗n}∞n=1∩Sx is a relatively compact set. Noticing
that
{x∗n}∞n=1 = ({x∗n}∞n=1 ∩ Sx) ∪ ({x∗n}∞n=1\Sx),

we have
{x∗n}∞n=1 = {x∗n}∞n=1 ∩ Sx ∪ ({x∗n}∞n=1\Sx),

Thus {x∗n}∞n=1 is a relatively compact set.

When k = 1, the first type w∗ − 1 denting point coincide with w∗

denting point. It is well known that 1−strongly smooth space coincide
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with usual strongly smooth spaces [8]. Hence we obtained the following
corollary.

Corollary 2.1. [6] X is strongly smooth spaces if and only if each
point of S(X∗) which attains its norm is the w∗ denting point of U(X∗).

In what follows, using the slice of closed unit ball of conjugate spaces
X∗, we will describe the characterization of first type w∗ − k denting
point.

Theorem 2.3. x∗ ∈ S(X∗) is first w∗ − k denting point of U(X∗) if
and only if there exists x ∈ S(X) such that x∗ ∈ Sx, dimSx ≤ k and for
∀ε > 0, there exists slice

F (x, δ) = {z∗ : z∗ ∈ U(X∗), z∗(x) > 1− δ}
satisfying the inclusive relation

F (x, δ) ⊂ {y∗ : y∗ ∈ U(X∗), d(y∗, Sx) < ε}.

Proof. Proof of necessity. Suppose that x∗ ∈ S(X∗) is first w∗ − k
denting point of U(X∗), then there exists x ∈ S(X) such that x∗ ∈ Sx,
dimSx ≤ k. Let

HSx = {y∗ : y∗ ∈ U(X∗), d(y∗, Sx) < ε},
thenHSx is norm open set which includes Sx, hence Sx∩cow

∗
(U(X∗)\HSx) =

∅. Moreover, we can deduce that
supx(cow

∗
(U(X∗) \HSx) < 1.

Otherwise, there exists sequence y∗n ∈ cow
∗
(U(X∗)) \ HSx) such that

y∗n(x) → 1 (n → ∞). Let x∗n = y∗n
‖y∗n‖

, then x∗n(x) → 1 (n → ∞). From

the proof of Theorem 2.2, we know that x is k−smooth point of X and
{x∗n}∞n=1 is relatively compact set. Therefore, sequence {x∗n}∞n=1 has the
convergent subsequence, without loss of generality, let the convergent
subsequence be {x∗n}∞n=1 itself and suppose that x∗n → x∗0 (n → ∞).
Clearly,

x∗n(x)→ 1 = x∗0(x) (n→∞), x∗0 ∈ Sx.
On the other hand,
‖y∗n − x∗0‖ ≤ ‖

y∗n
‖y∗n‖
− y∗n‖+ ‖ y∗n

‖y∗n‖
− x∗0‖ → 0(n→∞),

it follows that x∗0 belong to the norm closure of set cow
∗
(U(X∗) \HSx).

Noticing that this set is closed set regarding norm topology, we know
that x∗0 ∈ cow

∗
(U(X∗) \HSx), hence x∗0 6∈ HSx . It is impossible.

Let 1− δ = supx(cow
∗
(U(X∗) \HSx)). It is easy to see that if

z∗ ∈ F (x, δ) = {z∗ : z∗ ∈ U(X∗), z∗(x) > 1− δ},
then z∗ 6∈ cow∗

(U(X∗\HSx)). Hence z∗ ∈ HSx , this shows that F (x, δ) ⊂
HSx .
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Proof of sufficiency. Suppose that there exists x ∈ S(X) such that
x∗ ∈ Sx, dimSx ≤ k and for ∀ε > 0, there exists slice

F (x, δ) = {z∗ : z∗ ∈ U(X∗), z∗(x) > 1− δ}
satisfying the inclusive relation

F (x, δ) ⊂ {y∗ : y∗ ∈ U(X∗), d(y∗, Sx) < ε}.
For the convenient, we denote {y∗ : y∗ ∈ U(X∗), d(y∗, Sx) < ε} by HSx ,
then

1 − δ ≥ sup{z∗(x) : z∗ ∈ co(U(X∗)\HSx)} = sup{z∗(x) : z∗ ∈
cow

∗
(U(X∗)\HSx)}.

Moreover, we can deduce that Sx∩cow
∗
(U(X∗)\HSx) = ∅ from the struc-

ture of Sx. Hence x∗ ∈ S(X∗) is first w∗− k denting point of U(X∗).

Theorem 2.4. X is k− smooth spaces if and only if each point of
S(X∗) which attains its norm is the second type w∗− k denting point of
U(X∗).

Proof. The sufficiency is immediate from the definition of k− smooth
spaces. It remains to prove the necessity.

Firstly, we will prove that for all x∗ ∈ S(X∗), there exists x ∈ S(X)
such that x∗(x) = 1, and {x∗n}∞n=1 ⊂ S(X∗) satisfying x∗n(x) → 1(n →
∞), then {xn}∞n=1

w∗

∩ Sx 6= ∅.
If it is not true, then there exists w∗ neighborhood VSx which includes

Sx such that {x∗n}∞n=1

w∗

∩ Sx = ∅. From the proof of sufficient of The-
orem 2.2, we know that there exists net {x∗α}α∈∆ ⊂ {x∗n}∞n=1 satisfying

x∗α
w∗
−→ x∗, x∗ ∈ Sx. Hence {x∗n}∞n=1

w∗

∩ Sx 6= ∅. This contradicts that

{x∗n}∞n=1

w∗

∩ Sx = ∅.
Secondly, we will prove that if for all x∗ ∈ S(X∗), there exists x ∈

S(X) such that x∗(x) = 1, and each w∗ open set VSx which includes
Sx there exists a scalar m > 0 such that x∗(x) ≥ z∗(x) + m holds for
z∗ ∈ U(X∗)\VSx .

If it is not true, then there exists z∗n ∈ U(X∗)\VSx such that z∗n(x)→
x∗(x) = 1(n → ∞). Hence we have {z∗n}∞n=1

w∗

∩ Sx 6= ∅. On the other
hand, for z∗n ∈ U(X∗)/VSx , we have {z∗n}∞n=1 ∩ VSx = ∅. This contradicts

that {z∗n}∞n=1

w∗

∩ Sx 6= ∅.
Moreover, we have
x∗(x) − m ≥ sup{z∗(x) : z∗ ∈ U(X∗)\VSx} = sup{z∗(x) : z∗ ∈

co(U(X∗)\VSx)} = sup{z∗(x) : z∗ ∈ cow∗
(U(X∗)\VSx)}.
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This shows that x∗ 6∈ cow∗
(U(X∗)\VSx), it follows that Sx∩cow

∗
(U(X∗)\VSx)

= ∅. By the definition of k− smooth spaces, we know that dimSx ≤ k.
Hence, we obtain the desired result that each point of S(X∗) which
attains its norm is the second type w∗ − k denting point of U(X∗).
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