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HILBERT /-CLASS FIELD TOWERS OF
IMAGINARY /-CYCLIC FUNCTION FIELDS

Hwanvyup JUNG

ABSTRACT. In this paper we study the infiniteness of the Hilbert
l-class field tower of imaginary ¢-cyclic function fields when ¢ > 5.

1. Introduction

Let k = F,(T),A = F,[T] and oo = (1/T). For a finite extension I
of k, write Op for the integral closure of A in F' and Hp for the Hilbert
class field of F with respect to Op ([4]). Let ¢ be a prime number. Let

Fl(z) be the Hilbert /-class field of Fée) = F, ie., Fl(e) is the maximal
l-extension of F' inside Hp, and inductively, Fﬁgl be the Hilbert (-class
field of FT(LE) for n > 1. We obtain a sequence of fields

FP=FcFYc.-.cFPc...,

which is called the Hilbert ¢-class field tower of F. We say that the
Hilbert (-class field tower of F is infinite if F\' # Fﬁzl for each n > 0.
For any multiplicative abelian group A, let r,(A) = dimg,(A/A*) be the
l-rank of A. Let Clp and Oj be the ideal class group and the group of
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units of Op, respectively. In [6], Schoof proved that the Hilbert ¢-class
field tower of F' is infinite if

r(Clp) > 24 24/1¢(O%) + 1.

Assume that ¢ is odd, and let £ be a prime divisor of ¢ — 1. By an imag-
inary (-cyclic function field, we always mean a finite (geometric) cyclic
extension F' of degree £ over k in which oo is ramified. In [2, 3], we studied
the infiniteness of the Hilbert 2-class field tower of imaginary quadratic
function fields and of the Hilbert 3-class field tower of imaginary cubic
function fields. The aim of this paper is to study the infiniteness of
the Hilbert /-class field tower of imaginary ¢-cyclic function fields when
¢ > 5. We give a several criterions for imaginary ¢-cyclic function fields
to have infinite Hilbert ¢-class field tower with some examples.

2. Preliminaries

2.1. Rédei matrix and the invariant \,. Assume that ¢ is odd, and
let ¢ be an odd prime divisor of ¢ — 1. Write P for the set of all monic
irreducible polynomials in A. Fix a generator v of F;. Any (-cyclic
function field F' can be written as F' = k(v/D), where D = aP/* --- P/
with a € {1,7} and P, € P, 1 <1, < {—1for 1 < i < t. Then
F = k(v/D) is imaginary if and only if £ { deg D. Let ¢ be a generator
of G = Gal(F/k). Then we have

-1
(2.1) re(Clp) = Z)\i(F>7

i=1
where \;(F) = disz(Clgﬂ)l_l/(}lgﬁ)z). By genus theory, \(F) =
t—1. Let n = 7%. For 1 <@ # j <, let ¢;; € F; be defined by
nei = (%)g. Let d; € F, be defined by deg P, = d; mod ¢ for 1 < i < t.
Let R = (€ij)1<ij<t be the t x t matrix over Fy, where the diagonal
entries e;; are defined by the relation 22:1 rje; = 0or dH‘ZZ:l rie;; =0
according as a = 1 or a = . Then we have

PROPOSITION 2.1. For an imaginary (-cyclic function field F' over k,
we have

11— AT
(2.2) No(F) = t —1—rank R} 1'fa 1,
t — rank R}, if a =1.
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Proof. Let Rp be the (t+ 1) x t matrix over F, obtained from R} by
adding (d; - - - dy) in the last row. By [1, Corollary 3.8], we have A\y(F') =
t — rank Rr. Using the relation 2321 rjei; = 0 or d; + ZZZI riei; =0
according as a = 1 or a = 7, it can be shown that rank Ry = 1+rank R,
if a = 1 and rank Rp = rank R’ if a = 7. Hence we get the result. [

2.2. Some lemmas. Let £ and K be finite (geometric) separable ex-
tensions of k such that E//K is a cyclic extension of degree ¢, where ¢ is
a prime number not dividing q. Write S, (F') for the set of all primes of
F lying above co. Let vyg/x be the number of prime ideals of O that
ramify in F and pg/x be the number of places poo in Se(K') that ramify
or inert in E. It is known ([2, Proposition 2.1]) that the Hilbert ¢-class
field tower of E is infinite if

(2.3) vB/K 2 [Soo(K)| = pyre + 3+ 2\/€!Soo(K)\ + (1 =Opp/x +1.

For D € A, write m(D) for the set of all monic irreducible divisors of
D.

LEMMA 2.2. Assume that ¢ > 5 is a prime divisor of ¢ — 1. Let r = 2
if ¢ =5o0r7andr =1if¢>11. Let F = k(~/D) be an imaginary
(-cyclic function field over k. If there is a nonconstant monic polynomial
D' such that (|deg D', x(D') C w(D) and (%); = -+ = (5)¢ = 1 for
some Py, ..., P. € 7(D)\ n(D’), then F has infinite Hilbert (-class field
tower.

Proof. Put K = k(v/D’). Then K is an (-cyclic extension of k in
which oo, Py, ..., P, split completely. Let £ = KF. Applying (2.3) on
E/K with vg/xk > 0 and |S(K)| = pr/xk = ¢, we see that E has
infinite Hilbert (-class field tower. Since F C Fl(z), F' also has infinite
Hilbert ¢-class field tower. O

LEMMA 2.3. Assume that ¢ > 5 is a prime divisor of ¢ — 1. Let
F = k(\é/ﬁ) be an imaginary (-cyclic function field over k. If there are
two distinct nonconstant monic polynomials Dy, Dy such that (| deg D;,
m(D;) C (D) fori = 1,2 and (5), = (£), = 1 for some P € (D) \
(m(Dq) Um(Dy)), then F has infinite Hilbert (-class field tower.

Proof. Put K = k(v/D1,v/D,). Then K is a bicyclic £*-extension of
k in which oo, P split completely. Let £ = KF. By applying (2.3) on
E/K with vg/x > €% and |Soo(K)| = pp/x = (?, we see that E has
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infinite Hilbert /-class field tower. Since £ C Fl(z), F' also has infinite
Hilbert ¢-class field tower. O

3. Hilbert /-class field tower of imaginary /-cyclic function
field

Let £ > 5 be a prime divisor of ¢—1. Let F' = k(v/D) be an imaginary
(-cyclic extension of k, where D = aP{*--- P* with a € {1,7}, P, € P
and 1 <r; </l —1for 1 <i<tand/tdegD. Since O = F}, ie,
r¢(O5) = 1, by Schoof’s theorem, the Hilbert 3-class field tower of F' is
infinite if 7(Clr) > 5. Since A\ (F') =t — 1, F has infinite Hilbert ¢-class
field tower if ¢ > 6. Let ¥r be 0 or 1 according as a = 1 or a = 7. Then,
by (2.2), we have A\;(F') 4+ X\o(F) = 2t — 2 + Up — rank R}. Hence, for
the case t =4 or t = 5, we have the following theorem.

THEOREM 3.1. Let £ be an odd prime divisor of g—1. Let F' = k(v/D)
be an imaginary (-cyclic function field with D = aP]* --- P/*. Assume
that t = 4 or 5. If rank R}, < 2t — 7+ p, then F has infinite Hilbert
(-class field tower.

EXAMPLE 3.2. Consider k = F1y(T) and ¢ = 5. Then v = 2 is a
generator of F}; and n =4. Let P, =T, P, =T+ 1,P; =T +n and
P4 = T—I—T]il. We have €19 = €34 = 07613 = €94 — 2,614 = €93 — 3.
Let F = k(v/D) with D = yP,P,P;P,. Then F is an imaginary 5-cyclic
function field over k and the matrix R, is

0 0 2
0 0 3
2 30
320

whose rank is 2. Then F' has infinite Hilbert 5-class field tower by
Theorem 3.1.

3
2
0
0

In the following we will give more simple criterions for the infiniteness
of Hilbert /-class field tower of F' by using Lemma 2.2 and Lemma 2.3.

THEOREM 3.3. Assume that { = 5 or 7. Let F = k(v/D) be an
imaginary (-cyclic extension of k with D = aP{*--- P[*. Then F has
infinite Hilbert (-class field tower if one of following conditions holds:

(1) t >4 and l|deg P; for 1 < i < 3,
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(2) t >3 and {|deg P;, ($£), = 1 for i = 1,2.

Proof. For (1), choose x,y, z,w € Fy such that (z,y) # (0,0), xe4 +
yesy = 0 and (z,w) # (0,0),ze14 + wezy = 0. Let Dy = PFP) and
Dy = PFPY’. We have {| deg D1, ¢| deg D5 and (%)g = (%)g = 1. Hence,
by Lemma 2.3, the Hilbert f-class field tower of F' is infinite. (2) is an

immediate consequence of Lemma 2.3. O]

Let N(n,q) be the number of monic irreducible polynomials of degree
n in A = F,[T]. Then it satisfies the following one ([5, Corollary of
Proposition 2.1]):

(3.1) N(nq) = - 3 nld)g?.

dn

For a € Ty, let N(n,a,q) be the number of monic irreducible polyno-
mials of degree n with constant term « in A = F,[T]. Let D, = {r :
rl(¢g" —1),r 1 (¢™ — 1) for m < n}. For each r € D,, let r = m,d,,
where d, = ged(r, q;%ll). In [7], Yucas proved that N(n,«q,q) satisfies
the following formula:

(3:2) N(n0.0) = =5 3 0lr).

rE€Dp,
my=f

where f is the order of a in F}.

ExAMPLE 3.4. Consider k = Fy1(T) and ¢ = 5. By using (3.1), we
can see that there are 32208 monic irreducible polynomials of degree
5 in A = Fy;[T]. Choose three distinct monic irreducible polynomials
Py, Py, Py of degree 5. Then F' = k(~/T P, P,P;) is an imaginary 5-cyclic
function field over k whose Hilbert 5-class field tower of F' is infinite by
Theorem 3.3, (1).

EXAMPLE 3.5. Consider k = Fog(T') and ¢ = 7. For any o € Fj,, we
have (%)7; = o*. Using (3.2), it can be easily shown that N(7,1,29) =
N(7,—1,29) = 88009572. Let P, and P, be monic irreducible polyno-
mials of degree 7 in A = Fy;[T] with P;(0) = 1 and P,(0) = —1. Then
()7 = (#)7r =1 and (£2); = ()7 = 1. Hence F = k(y/TPP) is an
imaginary T-cyclic function field over k whose Hilbert 7-class field tower
of F is infinite by Theorem 3.3, (2).
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THEOREM 3.6. Assume that £ > 11. Let F = k(v/D) be an imaginary
(-cyclic extension of k with D = aPy* - -+ P*. Then F' has infinite Hilbert
(-class field tower if one of following conditions holds:

(1) t > 3 and {|deg P; fori = 1,2,
(2) t > 2 and ¢|deg P, (%)g = 1.

Proof. For (1), choose x,y € Fy such that (z,y) # (0,0), ze13+yeas =
0. Let D = PFP). Then D is a monic nonconstant polynomial with
{|deg D and (P%)g = prestves — 1. Hence, by Lemma 2.2, the Hilbert
(-class field tower of F' is infinite. (2) is an immediate consequence of
Lemma 2.2. O

ExXAMPLE 3.7. Consider k = Fo3(T") and ¢ = 11. By using (3.1), we
can see that there are 86619068901264 monic irreducible polynomials of
degree 11 in A = Fo3[T]. Choose two distinct monic irreducible poly-
nomials Py, Py of degree 11. Then F = k( \/TP,P,) is an imaginary
11-cyclic function field over k whose Hilbert 11-class field tower of F' is
infinite by Theorem 3.6, (1).

ExAMPLE 3.8. Consider k = Fy3(T") and ¢ = 13. Using (3.2), it can
be easily shown that N(13,1,53) = 38515860836695985496. Let P be a
monic irreducible polynomial of degree 13 in A = Fs3[T] with P(0) = 1.

Then (£)15 = ()13 = 1. Hence F = k( ¥/TP) is an imaginary 13-cyclic

function field over k whose Hilbert 13-class field tower of F' is infinite by
Theorem 3.6, (2).
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