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NONLINEAR ALGORITHMS FOR A COMMON
SOLUTION OF A SYSTEM OF VARIATIONAL
INEQUALITIES, A SPLIT EQUILIBRIUM PROBLEM
AND FIXED POINT PROBLEMS

JAE UG JEONG

ABSTRACT. In this paper, we propose an iterative algorithm for
finding a common solution of a system of generalized equilibrium
problems, a split equilibrium problem and a hierarchical fixed point
problem over the common fixed points set of a finite family of nonex-
pansive mappings in Hilbert spaces. Furthermore, we prove that the
proposed iterative method has strong convergence under some mild
conditions imposed on algorithm parameters. The results presented
in this paper improve and extend the corresponding results reported
by some authors recently.

1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||.
Let C' be a nonempty closed convex subset of H. Let T': C' — H be a
nonlinear mapping. We use Fix(T") to denote the set of fixed points of T,
ice., Fix(T) = {x € C : Tx = x}. A mapping T is called nonexpansive
if the following inequality holds:

|Tx —Ty|| < ||z —yll
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for all z,y € C. Moreover, we also denote by R the set of all real
numbers.

Recently, Ceng and Yao [10] considered the following system of gen-
eralized equilibrium problems, which involves finding (z*,y*) € C' x C
such that

{Fl(:p*,m) +{(Biy*, v —a*) + Yo" —y* o — 1) > 0,Vx € C,

H1
FZ(y*7y) + <BQ$*7Z/ - y*> + t@/* - .Z'*, Yy — y*> 2 Ovvy S C?

(1.1)
where Fi, Fy : C x C' — R are two bifunctions, By, By : C' — H are two
nonlinear mappings and pg, o > 0 are two constants. The solution set
of (1.1) is denoted by €.

If F{ = F5, = 0, then problem (1.1) reduces to the following general
system of variational inequalities: Find (z*,y*) € C' x C such that

{(,ulBly* +a*—y"x—a*) >0, Vrel,

1.2
(poBoz* +y* —a*,y —y*) >0, VyeC, (1.2)

which is introduced and considered by Ceng et al. [9].
If By = By = B in (1.2), then problem (1.2) reduces to finding
(x*,y*) € C x C such that
(mBy* +z* —y*,z—2*) >0, Vrel, (1.3)
(uoBx* +y* —a*,x —y*) >0, Vrel, '
which has been introduced and studied by Verma [23,24].
If z* = y* and py = pg, then problem (1.3) collapses to the classical
variational inequality: Find z* € C such that

(Bx*, o —x*) >0, Veel.

The theory of variational inequality emerged as rapidly growing area
of research because of its applications in nonlinear analysis, optimiza-
tion, economics and game theory ( see [1,2,4,5] and the references cited
therein).

The equilibrium problem is to find x € C' such that
F(z,y) >0, VyeC. (1.4)

The solution set of (1.4) is denoted by EP(F'). Numerous problems in
physics, optimization and economics reduce to finding a solution of (1.4)
(' see [12,19]).
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In 1994, Censor and Elfving [11] introduced and studied the following
split feasibility problem:

Let C' and K be nonempty closed convex subsets of the infinite-
dimensional real Hilbert spaces H; and Hs, respectively, and let A :
H, — H, be a bounded linear operator. Then the split feasibility prob-
lem is to find x* € C such that Az* € K.

In this paper, we study the following split equilibrium problem:

Let © : K x K — R be a nonlinear bifunction and A : H; — H, be a
bounded linear operator. Then the split equilibrium problem (SEP) is
to find x* € C' such that

y*=Ar" € K solves O(y",y) >0, VyekK. (1.5)
The solution set of SEP (1.5) is denoted by A = {p € C': Ap € EP(0)}.

Let S : C — H be a nonexpansive mapping. The following problem
is called a hierarchical fixed point problem: find x € F(7T) such that

(x — Sz,y—2x) >0, Vye F(T). (1.6)

It is well known that the iterative methods for finding hierarchical fixed
points of nonexpansive mappings can be used to solve a convex mini-
mization problem ( see [25,26] and the references therein).

In 2001, Yamada [26] considered the following hybrid steepest-decent
iterative method:

Tpi1 = Txy — pr, F(Tx,,),

where F'is k-Lipschitzian continuous and 7-strongly monotone operator
with kK > 0,7 >0and 0 < p < i—’; Under some appropriate condi-
tions, the sequence {z,} converges strongly to the unique solution of
the variational inequality

(F(z*),x —2*) >0, VzeFix(T). (1.7)

Zhou and Wang [28] proposed a simple explicit iterative algorithm for
finding a solution of variational inequality over the set of common fixed
points of a finite family nonexpansive mappings. They introduced an
explicit scheme as follows:

THEOREM 1.1. Let H be a real Hilbert space and F': H — H be an
k-Lipschitzian continuous and n-strongly monotone mapping with K > 0
andn > 0. Let {T;}}X, be N nonexpansive self-mappings of H such that
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C =Y, Fir(T;) # ¢. For any point xy € H, define a sequence {x,} as
follows:

Tuir = (1= ) TRTY - T, n 20,

where 1 € (0,22) and T" = (1 — i) + o' T, fori=1,2,--- ,N. When
the parameters satisfy appropriate conditions, the sequence {x,} con-
verges strongly to the unique solution of the variational inequality (1.7).

Recently, Zhang and Yang [27] proposed an explicit iterative algo-
rithm based on the viscosity method for finding a solution for a class
of variational inequalities over the common fixed points set of a finite
family of nonexpansive mappings as follows:

THEOREM 1.2. Let H be a real Hilbert space and F' : H — H be an
k-Lipschitzian continuous and n-strongly monotone mapping with k > 0
and n > 0. Let {T;}, be N nonexpansive mappings of H such that
C = NN, Fir(T;) # ¢ and V' be an p-Lipschitzian continuous on H with
p > 0. For any point xy € H, define a sequence {x,} as follows:

Tni1 = YV (xy) + (I — anpuF)TNTN_y - - - 12, n >0,

where 0 < yp < 7 with 7 = u(2n — pk?), 0 < p < i—Z, " = (1-
o[+ o!T; fori = 1,2,--- /N and o’ € ((1,¢2) for some (1,( €
(0,1). When the parameters satisfy appropriate conditions, the sequence
{z,} converges strongly to the unique solution x* € C' of the variational

mequality:

(UF —AV)z*, . —2*) >0, Vo € nX, Fig(T;). (1.8)

In this paper, motivated by the above works, we introduce a new it-
erative algorithm for finding the approximate element of the common
set of solutions of (1.1), (1.5) and (1.8) in real Hilbert spaces. Strong
convergence theorems for common elements are established. Our result
improves and extends many known results for solving a system of vari-
ational inequality problems, split equilibrium problems and hierarchical
fixed point theorems (see [6,8,15,18,22,27,28] and the references cited
therein).
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2. Preliminaries

Let C' and K be nonempty closed convex subsets of real Hilbert spaces
H; and Hs, respectively. We denote the strong convergence and the weak
convergence of {x,} to x € H; by z,, = = and x,, — x, respectively. For
every point x € Hip, there exists a unique nearest point in C, denoted
by Pc(z), such that

|z = Po(z)l| < llz —yll, vyeC

Then P is called the metric projection of H; onto C. It is well known
that Py is nonexpansive and satisfies the following property:

(x — Po(x), Po(x) —y) >0, Vre Hp,yeC. (2.1)
DEFINITION 2.1. A mapping T : H; — H; is said to be
(1) n-strongly monotone if there exists n > 0 such that

(Tz —Ty,x—y) >l —yl*, Va,y € Hi;

(2) é-inverse strongly monotone if there exists § > 0 such that

(Tx — Ty,x —y) > 0||Tx — Ty||*, Va,y € Hy;
(3) k-Lipschitzian continuous if there exists x > 0 such that

[Tz = Ty|| < sllz —yll, Va,ye H;

(4) o-averaged if there exists o € (0, 1) such that T'= (1 — o)l 4+ 05,
where I : Hy — H; is the identity mapping and S : H;, — H; is
nonexpansive.

In order to prove our main results in the next section, we need the
following lemmas.

LEMMA 2.1. For all x,y € Hy, there holds the inequality
lz +ylI* < llzl* +2{y, = +y).

AssumpTION 2.1 [3]. Let F': C' x C'— R be a bifunction satisfying
the following assumptions:

(A1) F(xz,x2) =0, VY € C;

(A2) F is monotone, i.e., F(z,y) + F(y,x) <0, Vz,y € C;

(A3) for each z,y,z € C, limy,0 F(tz + (1 — t)x,y) < F(x,y);

(A4) for each x € C, y — F(x,y) is convex and lower semicontinuous.
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LEMMA 2.2 [14]. Let C' be a nonempty closed convexr subset of Hj.
Let Fy : C x C — R satisfy (A1)-(A4). Assume that for r > 0, define a
mapping T : H; — C as follows:

1
TH(z)={2€C: F(zy) + ;(y —z,z—x) > 0,Vy € C},Vo € Hy.
Then the following hold:

(i) T is nonempty and single-valued;
(ii) T is firmly nonexpansive, i.e.,
1T (2) = T W)II* < AT (2) = T (), @ — ), Yo,y € Hy;
(iii) Fiz(TH) = EP(F);
(iv) EP(Fy) is closed and conver.
LEMMA 2.3. [13] Assume that Fy : C' x C' — R satisfies Assumption

2.1 and let TF' be defined as in Lemma 2.2. Let x,y € Hy and 1,79 > 0.
Then

ITE () = T @) < lly = ol + 12— T2 () - |

LEMMA 2.4. [7] Let Fl, Fy : Cx C — R be two bifunctions satisfying
(A1)-(A4). For any (x*,y*) € C x C, (z*,y*) is a solution of (1.1) if
and only if x* is a fixed point of the mapping Q) : C' — C' defined by

Q(z) = Tfll [Tj;?(a: — peBox) — ,ulBlTj;Q(x — peBox)|, Vo € C,
where y* = TF2(x* — paBox*), p; € (0,26;) and B; : C — C is a 6;-
mverse strongly monotone mapping for each v =1, 2.

LEMMA 2.5. [21] Suppose that A € (0,1) and u > 0. Let F : C — C

be a k-Lipschitzian continuous and n-strongly monotone mapping with

k>0 and n > 0. In association with a nonexpansive mapping T : C' —
C, define the mapping T* : C — H; by

Tz = Tx — M\uF(Tz), VxeC.
Then T is a contraction provided pu < i—g, i.€.,
1T = Ty < (1= M)z —yl, Va,yeC,
where 7 =1— /1 — pu(2n — ux?).

LEMMA 2.6. [17]
(i) The composite of finitely many averaged mappings is averaged.
That is, if each of the mappings {T;}Y., is averaged, then so is the
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composite Ty ---T. In particular, if Ty is ai-averaged and Ty is ao-
averaged, where ay, ay € (0, 1), then both T\ Ty and TyT, are a-averaged,
where o = a1 + g — v Qs.

(i) If the mappings {T;}Y., are averaged and have a common fized
point, then NX, Fia(T;) = Fia(T,---Ty). In particular, if N = 2, then
we have Fiz(Ty) N Fir(Ty) = Fie(T\Ty) = Fia(TxT).

LEMMA 2.7. [16] Let Hy be a Hilbert space, C be a closed convex
subset of Hy and T : C'— C' be a nonezpansive mapping with Fix(T) #
¢. If {x,} is a sequence in C' weakly converging to x € C and {(I1—T)x,}
converges strongly toy € C, then (I —T)x =y. In particular, if y =0,
then x € Fia(T).

LEMMA 2.8. [20] Let {z,,} and {y,} be bounded sequences in a Banach
space E and let {B,} be a sequence in [0,1] with 0 < liminf, ,, 3, <
limsup,, ,.. Bn < 1. Suppose x, 11 = Bpxn+(1—p,)yn for all integers n >
T, = 0.

LEMMA 2.9. [25]. Assume {a,} is a sequence of nonnegative real
numbers such that

Ap+1 S (]- - Vn)an + (5n7

where {y,} is a sequence in (0,1) and 6, is a sequence such that
(1) Zle Tn = OO
(2) limsup,, _, ., j—: <0 or Y 2, |0n] < .
Then lim,,_,oo @y, = 0.

3. Main results

THEOREM 3.1. Let Hy and Hy be two real spaces, and C C Hy and
K C Hy be two nonempty closed convex subsets. Let A : Hy — Hy be a
bounded linear operator with its adjoint A*. Assume that Fy, Fy : C X
C —Rand ©: K x K — R are the bifunctions satisfying Assumption
2.1 and © s upper semicontinuous in the first argument. Let B; : C' —
Hy be a v;-inverse strongly monotone mapping for each i = 1,2 and
T; : C — C be a nonexpansive mapping for each i = 1,2,--- , N such
that T = NN, Fig(T) N QN A # ¢. Let F: C — C be a k-Lipschitzian
continuous and n-strongly monotone mapping with £ > 0 and n > 0,
andV : C'— C be a o-Lipschitzian continuous mapping with o > 0. Let
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0<pu< i—’; and 0 < po < 7, where 7 =1 — /1 — u(2n — pk?). Suppose
{an} and {B,} are two sequences in (0,1). Given x, € C, let {x,} be

defined by

2n = Po(x, + 0A* (T2 — I)Axy,),

Yn = Tlﬁl [T,ZZ (Zn - MZBQZn) - ,ulBlT,f} (Zn - HIQBZZn)]a

Tni1 = anpV (2) + Bprn + (1 — B)I — aguF)TRTR -+ Ty, Vn > 1,
(3.1)

where T = (1 — 0! )I + o' T; fori=1,2,--- N, {r,} C (0,2¢), ¢ >0,
i € (0,2v;) for each i = 1,2, 6 € (0,7), L is the spectral radius of
the operator A*A, A* is the adjoint of A and o' € ((1,¢2) for some
(1, G € (0,1). If the following conditions are satisfied:

(1) limy, oo 0, = 0 and 7 | a, = 00;

(ii)) 0 < liminf, . £, < limsup,,_,. B, < 1;

(iii) 0 < liminf, o r, < limsup,,_, . 7 < 2¢ and

lim,, oo |7n41 — | = 0;

(iv) limy, o0 |0y —0h] =0 fori=1,2,--- | N.

Then the sequence {x,} converges strongly to x* € T' = N, Fiz(T;) N
QN A, where z* = Pr(I — pF + pV)x* is the unique solution of the
variational inequality:

(WF —pV)z*,x —2*) >0, Vrel. (3.2)

Proof. Since our methods easily deduce the general case, we prove
Theorem 3.1 for N = 2. Now we divide the proof into several steps.

Step 1. {x,} is bounded.
Indeed, take z* € T' = N, Fix(T;) N Q N A arbitrarily. Since Az* =
T9 (Az*), we have
Az — Aa*|[2 = (T8 — 1) Av, — (T2 Ax, — Az
= (T2 — 1) A2 = 2(TE — 1) A, TO Az, — Aa”)
+ || T° Az, — Ax*||?
< (T8 — 1) Ar |2 = (T — 1) Av,.. TS Az, — Aa”)
+ || Az, — Az*|)?.
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It follows that

1
(T = 1) Aw,, T2 Aw, — Ac*) < J|(T2 = DAz,|P. (33)

Note that * = Po(z*). From (3.1) and (3.3), it follows that

12 — ™|
= || Pe(z, + 0A™(T;) — I)Ax,) — Po(z")|?
< | + AT — I)Az,, — x|
= |lzn — ¥ + 28(x, — 2, A (T2 — I)Ax,,)
+ SAN(TS — 1) Ax,|?
= ||z, — 2||* + 28(A(x, — 2%), (T2 — 1) Az,,)
+83(T° — I)Ax,, AAY (TS — 1) Ax,)
= |z — 2| + 20Ty, (Axy) — Ax™, (T} — I)Awn) — |(T7 — I) A [|)
+83(T° — I)Ax,, AAY (T2 — 1) Ax,)
< flz = 2 + 25 I(TE — DA ~ (T2 ~ DAz, ?)

+ 8| AA|I(TY) — 1) Az |®
= ||z —a*|| = 6(1 = LO)|(T5, — I) Az, ||?
(3.4)

< llwn — 2|

Since B; is a 7;-inverse strongly monotone mapping for each i = 1,2,
o* =T (y* — pBiy*) and y* = T2 (2% — pp Byx*), we obtain from (3.4)

that

lyn — v
=TT (20 — paBazn) — i B1T2 (2 — p12Bazy)]

— THT2 (2% — poBox™) — iy By T2 (2 — pa Bo™)]||
< HTE(zn — peBazy,) — Tﬁ(x* — poBoz™)

— i (BiT 22 (2 — paBazn) — BiTh2 (2" — po Box™))||?
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<N T2 (20 — paBoz) — T2 (2" — pa Boa™)||?

— 241y (BlT£2(zn — peBszy,) — BlT£2 (2" — poBax™),

TE(ZH — peBazy,) — Tﬁ(m* — peBoz™))

+ 13| BI T2 (20 — p2Bazn) — BiT 2 (z* — pio Box™)|
<N T2 (20 — paBazn) — T2 (2 — pa Boa™)||?

— (271 = )| B T2 (20 — p2Bazy) — BiT2 (2" — pio Boa™) ||
< (20 — 2%) — p2(Baz, — Bax®)||?

— 1 (271 — )| BiTS2 (20 — pi2Bazy) — BiTh2 (2 — paBox™)|)?
= ||zn — 2%||* — 2u2(Bazn — Box*, 2, — ) + 13| Bazp — Box™||?

— 1 (271 — )| BiTS2 (2 — p12Bazy) — BiTh2 (2 — paBoa™)|1?
< |z — 2™ = pa(2y2 — po) || Bazn — Box™||?

— m(2m = )| BiT,2 (20 — paBazn) — BiT 2 (a7 — o Bo™)||?
<z — 2|7

<l — 2 (3.5)
From (3.1), (3.5) and Lemma 2.5, we have

[ 241 — 2]
= llompV (n) + Bnwn + (1 = Bu)l — anpu B ) T3 Ty, — 27|
< anllpV(xn) = pF (%) + Bullzn — 27|
+ I = BT = anp ) T3 Ty = (1= )] — o) T3 T 27|
= anl[pV(n) = pF (@) || + Bullen — 27|

Qi nmn Qi nomn ok
+ (1= Bu)ll(I - 11— ﬁnﬂF)TQ Ty — (I — 1 ﬁnﬂF)T2 Iz
QnT * * * *
< (1=B)(1 - m)”yn — 2" + Bullz” — 2| + anllpV (20) — pF (a7)|]

IN

(1= an7)[[zn — 27| + anpl|V (2n) = V(@) + anllpV (2") — pF (27)]]
PV (2") — pF ("]

T — po

< (1= an(7 = po))llzn — 2™ + an(T — po)

_ oy V(") — pF ()]

< maX{Hxn (3.6)
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It follows from (3.6) and induction that
V *\ _ F *
R e e
Therefore {x,} is bounded. We also obtain that {y,} and {z,} are all
bounded.

Step 2. limy, o0 ||Znt1 — 20| = 0.

Indeed, set x,+1 = Bpx, + (1 — By)w, for all n > 1. Then we obtain

Tp+2 — /Bn—i-lxn—l—l B Tn41 — Bnmn

Wpg1 — Wy =
i 1— Bn-i—l 11— Bn
_ an+1pv<xn+1) + ((1 - ﬁnﬂ)l — Oén+1/ﬁF)T2nHTf+lyn+1
1— BnJrl
~anpV(@n) + (1 = Ba)l — anp) T3 Ty,
11— 671
Oén m m
= T (V (1) — P (T T 1)
- ﬁn—i—l
+ 1 6 (W (T3 T yn) — pV (20))

+ T2TL+1T1n+1yn+1 _ TQ"HT{LHyn 4 TQn-i—lTln—i-lyn o TQHTlnyn
It follows that

[wns1 = wall = |2n41 = 2a]
—an+1 n n
STz 6 ~(PIV @)L+ Rl F @ T )

_|_

ﬁn (ull F T yn) | + IV () 1)

+ ||T$+1Tf+1yn = I3TTYnll + 1yns1 = Yull = [ — @l (3.7)
Utilizing the nonexpansivity of T3, we obtain
T3 Ty — T3 Tyl
= (|13 T = T Tyl + T Ty — T3 Ty
< NIy = Tyl + (T3 Ty — T3 Ty (3-8)
Note that
177 g — Tyl = 11 = )0 + 01 Tagn — (L= 03y — 03 11|
< |opsr = onl (lyall + 1 Tayall)-
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Since limy, oo |0f, 4 — 0| = 0 for i = 1,2 and {y,}, {T1y»} are bounded,
we easily obtain

Jim |77y, — Ty = 0. (3.9)
Similarly, we get
175 Ty = T3 Tyl < lorsy — ol (117l + 17277yl
which implies that
T (1777, — 7Ty = 0. (3.10)
Since z, = Po(z, + 6A* (T2 — I)Az,), it follows from Lemma 2.3 that

[
= | Po(@ng1 + SA*(T}),, — I)Axnin) — Po(x, + 6A* (T, — I)Axy)||
< wnpr = @ = SA" A1 — @) || + AT, (Azpgr) = T (A,

Tn "
| Pe(@ns1 + 6A(TS | — I)Azpy)

1
Tn+1

——($n+1+‘dA*CT® __Ix4$n+1”‘

Tn+1

1
< (lonsr = zall* = 20| A1 — 2) | + AN 2041 — 2al?)2

n
+ oA A@n e = 20l + 1 = 1|||Te (Azn 1) = Aznpa])

Tn+1

T+
T'n

+ 1= [ Polwnn + 6A(TS, — DAT,)
n+1

— (@41 + 047 (TSLH — DAz,
= (1= A s — all + AP e — .

Tn
+Ol|AIL = =T, (Azpr) — Az
T'n+1
Tn N
+1- ” 1P (@ne1 +0A (TT(?L+1 — 1Az, )
n+1

— (@1 + SAYTS, — D) Aup)]
Tntl — Tn
= |Tnt1 — o]l + I—; 1 (6| All¥ont1 + Xns1),
n+

where ¢, = ||T.2 (Ax,) — Az,|| and x, = ||Pc(2, + 6A* (T — I)Ax,) —
(zn 4+ 0A*(T2 — I)Ax,,)|. Without loss of generality, let us assume that
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there exists a real number p > 0 such that r,, > p > 0 for all positive
integers n. Then we get

201 = 2all < 1 =l + lrss = ol G1AI 1 + o) (311)
Next, we estimate that
[Yn4+1 — Uall?
= | TR T 2 (21 — poBoznsr) — i B1T L2 (1 — paBozni1))]
— THT 2 (20 — p2Bazn) — i BiT02 (2 — p12Bazy )]||
<N (znar — p2Bazngr) — T2 (2 — p2Bazy)
— i (BiT2 (2041 — p2Baznyr) — BiT2 (20 — piaBaz)) ||
<NT 2 (zns1 — paBazngr) = T2 (20 — paBoz)||?
— m(2m = )| BTz (g1 — p2Boznia) — BiT,2 (20 — paBon)||?
< lzng1 = 20 — p2(Bazni1 — Baz,)|1?
< l2nt1 = zall* = p2(272 — pi2) | Bozn g1 — Baza)?
< Nlznsr — zall*. (3.12)
It follows from (3.11) and (3.12) that
Y41 = Ynll < 2041 — 2|
< s =l + clrnss = Pl @Al + o) (313)
Using (3.8), (3.13) in (3.7), we get
[wns1 = wall = |2nt1 — 20|

On m m
< ——(p||V (@n )| + LI F (T3 T )l
1- ﬁn+1
O nmm
15 (LI E (TSI yn) || + pllV (@)

+ 1T = Tyl + |1 T3 Ty — T3 T |

1
+ p|rn+1 - Tn|(5||A||1/}n+1 + Xn+1)~

Consequently, it follows from (3.9), (3.10) and conditions (i)-(iii) that

lim sup(||wpi1 — Wyl — |2p41 — 24]]) < 0.
n—oo
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Hence by Lemma 2.8, we have

lim ||w, —z,| = 0.
n—o0
Consequently,
B s = aall = i (1= Gl — 7| =0, (3.14)
Step 3. lim, o ||Tn — yu|| = 0 and lim,, . ||z, — 24| = 0.

Indeed, from (3.13), (3.14) and condition (iii), we have

. . 1.
m [ynt1 — ynll < Im ([0 — 20| + = lim |ropg =m0l Af[¥na1 + Xns1)
n—0o0 n—0o0 /,[/ n—0o0
=0.
Since xp11 = appV(zyn) + Bty + (1 = Bu)I — anuF) T3 Ty, we obtain
|20 — T3 TV ynll < lzn — o || + 1z — T3T7 0l
< ”xn - xn—f—l“ + O‘anV(xn) - NF(TQHTlnyn)H

that is,
nmn 1 Qn nmn
[n = T3 T ynll < 7——2 1o — Znpall + 1oV (2n) — nE (T3 yn) ||
1-— Bn 1 - 671
It follows from (3.14) and condition (i) that
lim (@, — 15T 'y,|| = 0. (3.15)
n—o0

From (3.4), (3.5) and Lemma 2.5, we get
[Zn41 — ZU*H2
= (anpV (@n) + Bpwn + (1 = Bu)l — anpuF) T3 T Y — &%, iy — 27)
= (anp(V(2n) = V(2")), 21 — &%) + anlpV(2") = pF (%), tnsy — 27)
+ Buzn = 13T Y, Tngr — 27)
+ (L = o) I3y — (I = anpuB) T3 T3, 2y — )
< @uporltn — 2 Wznss — 2] + anlpV (57) — pF (@), Bt — o)
+ Bullzn =TT Ynlllony — 27 + (1 = an7)llyn — 27|20 41 — 27
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anpa * * * * *
< (lzn —2 12+ lznsr — 2*)°) + an(pV (2*) — pF(2%), i1 — 2¥)
nm * 1— OnT * *
+Ballen = LTyl — 27| + ————(llyn — = 12+ lzngn — 2*)°)
1 — o (7 — po) 2, Qnpo ;
R PP
+ an(pV (") — b (27), p1 — 27) + Bullan — T3 ynll |20 — 27|
1—a,7 112
T
1-— Oén(T — 100-) * On PO *
R A PR
+ an(pV (") — uF(2%), p1 — 27) + Bullan — T3 T yull | 201 — 27|
1—a,7 . .
t— (Izn — ™[> = p2(272 — p2) | B2z — Box*||
— 11 (27 — )| BiTh2 (2 — poBazn) — BiTh2 (2 — paBox™)||?)
1 —Oén(T—pO') * Qn PO *
< 9 Hxn-&-l - ||2+T||$n_x H2
+ an(pV(z*) — pF(27), 2pg1 — %) + Bullzn — T3 T Yn ||| 7041 — x*H
1—a,7 .
+ o (lzn — 2" = 0(1 - LO(Ty) — 1) Az, |?

— pi2(272 — pi) || Bz — Box™||?
— 11 (2% — )| BiTS2 (2 — p12Bazy) — BiTh2 (2% — paBoz™)||?),

(3.16)
which implies that
. Qnpo .2
— < n —
|Zne1 — 2] < 1+o¢n(T—po¢)Hx ||
b2 V() - pF () )
xr) — X ), Tpi1 — I
].+OZ7—L(7—_,00-> P H ) +1
26,
n_T’fLT’n n " _ *
1+an(T_pa>\\x o TV Ynlll|Tngr — 27|
1—a,7
R | L 5(1 — LOY|(T® — I)Ax,|]?
+ |20 — 27| 1+%(T_pa){ ( (T, — 1) Az,

+ 112(272 — pi2)|| B2z — Boa*||?
+ 111 (29 — p) | BiT )2 (20 — paBozn) — BiT 2 (x* — po Box®) ||}
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Then from the above inequality, we get
1—a,7
1+ an(1T — po)

+ 12y — p) BTS2 (20 — paBazn) — BaTh2 (% — pg Box™)||*}

{601 = LO)|(T2 — 1) Azn|]? + us(272 — pi2) || Baz — Baa” |

<_1+4$Ifipagxn_afW—%1+fi?f—paﬁpvwf>—uﬁufxam+l—wﬂ

+1+£ﬁ—mﬂ%_wﬂ%m%ﬂ—fww%—ﬁwwmm—ﬂw
< T o = I Ty Y )~ ) =
+Hﬂﬁ1mﬂ%—wwmwmrww

+ (lzn = 2% + llena = 2" [Dlens — znll-

From (1 — Lé) > 0, 2v; — p; > 0 for ¢ = 1,2, (3.14) and (3.15), we
obtain

lim [|(T2 — I)Az,|| =0, lim |[Baz, — Bea*|| = 0 (3.17)
n—oo

n—oo

and
lim (| BT,2 (20 — p2Bozn) = BiT,2 (2" — paBoa™) | = 0. (3.18)
Since Pg is firmly nonexpansive, we have

|20 — 2"
= ||Po(x, + 6A* (T2 — I)Ax,) — Pe(x¥)|?
<z, — 2,2, + A (TS — 1) Az, — 27)
1
= Slllzn = @[ + llon + 0AN(TT, = DAy — 27|

[z — " — (0, + 6AY(TE — D) Az, — 2*)|}

IA

1
gUllzn =27+l = 2 = |20 — 20 = 6AN(T = D Aza|*}

1 * * *
glllzn —2 12+ Nl = 2° = (20 — @all® + 6% A*(T) — 1) Az ®

— 20(z, — @n, A(T2 — 1) Ax,))}.

A
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Hence we get

120 = 2*[1* < Nl — 2P = |20 — 2all® + 20[| Az — Azy|[|[(T, — I) Aaa|.
(3.19)

Utilizing the firm nonexpansivity of Tj; 2 we have
T2 (2 — paBozn) — y*|1?

= T2 (20 — p2Bazy) — T2 (x* — pio Bo™) ||

ST (2n — 12Bozn) — ", 20 — p2Bazy — (2 — pp Box™))

1 * * *
= §{||T£2(Zn — p2Bozn) — y*|IP + |20 — 2 — po(Bozn — Boa™)|)?
— [lzn — & — pa(Bazn — Bax™) — (T2 (20 — p2Bazn) — 4|1}

112
1 * * *
< §{||T:;2(Zn — p2Bozn) — y* [P + |20 — 2*||* = p2(2v2 — p12)|| B2z — Baa™||?
o~ T2 — 1Ba) — (a° — y°) - pa(Ba, — Ba®)?)
1 * *
< §{||T£2(Zn — p2Bazn) = y*|I* + |20 — ¥
= |lzn = T;ZQ (20 = p2B2z,) — (2" —y")|”
+ 2us(z, — T:;?(zn — peBoz,) — (¢* — y*), Baz, — Boz™)
— 3]| B2z — Baz*||?}
1 * *
< §{||T,f§(zn — p2Bozn) = y*|I* + |20 — ¥

—llzn = Tz (20 — p2Boza) — (2" — y")|I?
+ 22|20 — T2 (20 — p2Baz) — (2" — y")||| Bazn — Bo™|[}.
It follows from (3.19) that
IT752 (20 — p2Bazn) — |12
< lew = @117 = llzn = T (20 — p2Bazy) — (2" = y")|I?
+ 24|z — T2 (20 — p12Bazy) — (2 — y*)|[[| B2 — Boa™||
<l — 2| = llzn — 2al® + 20| Az — Az, |[|[(T7) — 1) Az,
—lzn = T2 (20 — H2Baza) — (" — y")|?
+ 2usl|zn — Tf;(zn — peBaz,) — (" — y*) ||| Bazn — Box™||.  (3.20)
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And we have

lyn — *|?
= |3 (T2 (20 — p2Bazn) — 1 B1 T2 (2n — p2Bazn)) — Tl (y* — i Biy™*)|)?

< (yn — %, T2 (20 — p2Bazn) — 1 B1Th2 (20 — p2Bazn) — (y* — i1 Biy®))

1 * * *
=il 2 12 + I TE2 (2 — p2Bazn) — y* — pa (BT (20 — p2Bazn) — Biy™*)|?
— T2 (20 — p2Bazn) — y* — p1(B1Th2 (20 — p2Bazn) — B1y*) — (yn — )|}
1 * *
=5 lllyn —2 1> + |02 (20 — p2Bazn) — y*|1?
— 201 (T12 (20 — p2Bozn) — y*, BiT)2 (2 — pi2Bozn) — B1y")
+ 13| B1TS? (20 — p2Bazn) — Biy*|?
— T2 (20 — p2Bazn) — yn — 1 (B1Tp2 (20 — p2Bazn) — Biy™) + * — |1}
1 . \
< glllyn — 1> + |2 (20 — p2Bazn) — y*|?
— (2 — )| BiT}j2 (20 — p2Bazn) — Bay*|?
— T2 (2 — p2Bazn) — yn — p1(B1Th2 (20 — p2Bazn) — Biy®) + * — y*|1%}
1 * *
< s{llyn — = ”2 + ”T;ZQ (2n — p2Bazn) —y ”2
— T2 (2 — p2Bazn) — yn + 2 — y*||?
+ 20 (T2 (20 — p2Bozn) — yn + 2 — y*, BIT,2 (20 — paBazn) — Biy")}.

So, we obtain from (3.20) that

lyn — %7
<N T52 (20 — p2Bozn) — y* 1> = | T2 (20 — p2Bazn) — yn + 2 — ||
+ 2 || T2 (2n — p2B2zn) — yn + * — y*|[|| BITS? (20 — p2Bazn) — B1y*|
< lwn — &*)* = llzn — xall* + 26)| Az — Az, |[|[(T7, — I) Az
&

*

—llzn = T3 (20 — p2Bazy) — (2" — y")
+ 22|20 — T2 (20 — 2 Bazy) — (2% — y7)|[| Bazn — Boa®|
- ||T:;2(zn — p2Bazn) — yn + &* — y*|?

+ 2 || T2 (2n — p2Bozn) — yn + * — y*|[|| BITS2 (20 — p2Bazn) — B1y*|..
(3.21)
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From (3.16) and (3.21), we have

[

1 — (7 — po) . appo .
R <A AP
+ an(pV (2") = pF(@"), 2pir — %) + Bullwn — T3 T Ynl | 2041 — 27|
1 —ayT ‘112
P LTy )
1 = an(r o) oL GwpO
< 5 lnsr = 2" |° + =5 = [l — 2|7
+ an(pV (27) — puF(2%), 2pp1 — ) + BullTn — 1311 Ynll | 201 — 27|

1 —oa,7 .
T{Hxn - ”2 - Hzn - In||2 + 25||Azn - A$n||||(T3 - I)Aan

*

— )|
+ 2|20 — Th2 (20 — p2Baz) — (% — y*) ||| B2z — Ba*|
— T2 (2 — poBazn) — Yo + 2 — y*|?

+ 2 || T2 (20 — p2Bozn) — yn + 2% — y* |1 BiTh2 (20 — p2Bazn) — Biy*|1},

— |l2n — T:} (2n — paBazy) — (z

which implies that

[Znr1 — ||

Qn PO %112 2ai, * * *
< —0 — —{(pV(2*) — uF(2*), 2py1 — T
= 1+Oén(T—pO')Hxn T || + 1—|—an(7'—pa)<p ( ) 2 ( ) n+1 >
25y,
1+an(7__pa)||xn 3 T1Ynl | 2041 I
1-— n T 2 2
_1TOT e — 2% = |2 — wa|? + 20]| Az
b (o = o[ = o — 2l + 28] 42,

— Az ||[(T, — I) Az

—|l2n — TF2 (2, — paBazy) — (" — y*)|?

+ 2u2||zn — T}ZQ(,Z” — p2Bazy) — (2" — y*) ||| B2z — Baz™ |}

— T2 (20 — p2Bazn) — yn + 2° — y*||?

+ 2| T2 (20 — p2Bazn) — yn + 2 = y* || BT (20 — p2Bazn) — Biy*|}
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Qnpo 112 200, . . .
<— 7z, — 2 V(xt) — uF _
B 1+Oén(T—PU)Hxn =l 1+om(7'—p0)<p (@7) = B (%) e = 27)
20n

+ —FF |z — T X —iL'* —+ ||x —l’* 2
o e oyl BT vl enss = a7l 4 e — )

+ 26|| Azy, — Azp| | (T2 — I) Ay

+ 2usllzn — Ti;(zn — p2Bazy) — (2% — y")||[| Bazn — Baz™||

+ 2M1HT/Z2(ZH — p2Bazy) —yn + 2% — y7|| HBIT;ﬁQ(zn — p2B220) — Biy’|
1—a,T

1t an(r—po)

+ ||T£2(zn — paBazn) — yn + 2 — y* [P},

Therefore we obtain

{120 — 2l + 120 — T2 (20 — p2Baza) — (2" — )|

1 — QnT 2 F: * *\ |12
ool =l e~ T = paBaz) = (0 = )]

+ ||T:;2(Zn - MZBQZn) — Yn + T — y*||2}

n V — pF yn -
—1_|_Oén(7__p0_)”x ‘T|| +1_‘_an(7__p0_)<p ('I) H (I)x-l—l l’>
20,
" _ nn . " L
e I - BTl )

+ (|2 = 2"l + llwnsr = 2 ) lwnss = 2all + 20| Az — Az | |(T7) = 1) Azy|
+ 2pal|20 — T3 (20 — pi2Baza) — (2" — y*) ||| Beza — Bz’
+ 20 | T02 (20 — p2Bazn) — yn + 2 — y* || B1T12 (20 — p2Baza) — Biy*||.
Thus, from (3.14), (3.15), (3.17) and (3.18), we conclude that
lim ||z, — Ty (20 — p2Bazy) — (2" = y")| = 0,

n—oo
nlggo ||T£2(2n — p2Bozn) —yn + 2" =y =0
and
nh_)rrgo |zn — x| = 0. (3.22)
Since
20 = ynll < 1120 = Tp2 (20 — poBazn) — (z* — )|
T8 (20 — p2Bazn) — yn + 2 — 7,
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we get
Tim |2, = yall = 0. (3.23)
It follows from (3.22) and (3.23) that
i (|2, = ya| < lim [z, = zp[| + lim |z =y
n—oo n—oo n—oo

—0. (3.24)

Step 4. limy, o ||z, — T5'TT'2,|| = 0.
Indeed, from (3.1), we get
lzn = T3 TV || < 20 — Tpsall + 2nsa =TT 2|
< len = 2|l + llan(pV (@) = pF (15T yn))
+ By = T3 yn) + 15Ty — T3 17 0|
< lzn = 2niall + anllpV (2n) — nF (T3 T yn )|
+ Bulln =TTyl + llyn — 2l
So, from (3.14), (3.15) , (3.24) and condition (i), we have

nlggo \|n, — 15Tz, || = 0. (3.25)

Step 5. limsup,,_, . ((uF —yV)z* a* — z,,) <0, where z* = Pr(I —
pE 4+ ~V)x*.

Indeed, since {o}} is bounded for i = 1,2, we can assume that a}‘;j —
ol as j — oo, where 0 < (; < 0, < ( < 1 fori = 1,2. Define
T =(1—0l )+ 0! T fori =1,2. Then we have Fix(T°) = Fix(T;})
for i = 1,2. Note that

|75 = T3 = (1 = oi,)a + 0}, T — (1= ol)x — ol Tz
< Joi, = ol (| + || T
Hence we deduce that

lim sup T = 7] =0, (3.26)
IO zeD
where D is an arbitrary bounded subset of Hy. Since Fix(T7°)NFix(75°) =
Fix(Ty) N Fix(Ty) # ¢ and T7® is o' _-averaged for i = 1,2, by Lemma
2.6, we know that Fix(T5°T7°) = Fix(75°) N Fix(77°). Since {x,} is
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bounded, there exists a subsequence {x,,} of {x,} such that x,, — w
as j — oo. Note that

Hxnj - TzooTlooxnjH < Hmng - T;jTlrlj:[njH + HTzanlnjxnj - TQOOTlnjxnjH
+ ||T2OOT1njxnj _TzooTlooxn]'H
< Hxn] - T;jT{ijnj|‘ + HTzanlnjxnj - TQOOTlnjxnjH
+ HTlnjxnj - TlooxnjH
< lan; — Ty T 2y, + sup |1y 2 — T3z ||
zeD’

+ sup || 1172 — Tz,
zeD"

where D’ is a bounded subset including {7}"z,,} and D" is a bounded
subset including {z,,}. According to (3.25) and (3.26), we obtain

lim ||z, — 151 2y, || = 0.
n—oo

First, it is clear from Lemma 2.7 that w € Fix(T75°717°).

Second, let us show that Aw € EP(0©). Since A is a bounded linear
operator, Ar,, — Aw. Now we set v,, = Ax,, — TT(?L.Axn].. It follows

from (3.17) that lim; ,o v, = 0 and Az, — vy, = Tr(?l Axy,;. Therefore,

from the definition of TT(?L , we have
J

1
@(AZE”]. - an7y) + _<y - (A:L‘nj - V’I’Lj)’ (Axn] - an) - Axnj'> Z Oyvy S K.

5

Since © is upper semicontinuous in the first argument, taking lim sup in
the above inequality as j — oo, we obtain

O(Aw,y) >0, YyeK,

which implies that Aw € EP(0) and w € A.
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Next, we show that w € Q. From (3.22), it is easy to observe that
Zn, — w. For any z,y € C, we have

1Q(x) — QU)|I? = I T2 (2 — poBox) — jn BiT 2 (x — pip Box))
— T, T2 (y = paBay) — i BiT,2 (y — paBay)]|
< T2 (x — paBax) — T2 (y — pi2Bay)
— (BT (x — paBox) — BiT2 (y — pi2 Boy)) ||
< HT,ZQ(fB — e Box) — T,ff(!/ - /1232?!)”2
— 11 (27 — )| BiTS2 (x — paBax) — BiT22 (y — paBaw) |2
< ||Ti2(x — paBax) — Ti2 (y — paBay)||?
< |[(x — paBax) — (y — pa Bay) |1?
<z = ylI* — pa(272 — pa) || Bz — Boy®
<lz —yl*.

This shows that () : C' — C' is nonexpansive. Note that

[y = Q)| = [1Q(20) — Q)|

<z =1l =0 as n— oc.

It follows from Lemma 2.7 that w = Q(w). According to Lemma 2.4,
we obtain w € . Thus we have w € ' = NY, Fix(7;) N QN A.

Finally, we claim that limsup,_,. ((uF — pV)z*, 2* — z,,) < 0. By
v = Pr(I — pF + pV)z* and (2.1), we have

limsup((uF — pV )", 2" — ) = lim (uF — pV)a",a" — 1)
n—oo

n—oo
— ((uF = pV)a", 2" — w)
< 0.

Step 6. z,, — x* as n — oo.
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Indeed, from (3.1), (3.5), Lemma 2.1 and 2.5, we have

i1 — 2|
= [lanpV (2n) + Bnwn + (1 = B) I = uuF) T3 T 'y — &*||?
= llen(pV (xn) — pF(27)) + Bn(2n — %) + (1 = Ba)I — anpF ) T3 T yn
(1= Bu)] — o F)TP T2
< 1Ba@n = 2%) + (1 = Bu)] — anpF) T3 Ty — (1 = Ba)I — anpF) T3 17 2" |?
20, (pV () — BF(3), Zng1 — 7°)
* Qp O
< Bullen =™ + (1 = Bl = 5 — 5 s
+-2anP<Vf$n)—-VTaﬁ),$n+1-x )+ 20 (pV (27) — pF(x ),$n+1——$*>
< (Bullan =™ + (1 = Bo) (1 = 5 Bn
+ 20mpo ||z — 2| lzn g1 — 2 H+—2an<pvﬁx*)—-uPTaﬁ),xn+1——x*>
< (Ballzn — 2| + (1 = B — anT) |25 — 2*[])?
+ anpo(||zn — 2| + w1 — &%) + 200 (pV (27) — pF (2*), 2ps1 — z*)
= [(1 — an7)® + anpolllen — 2*|* + anpo|znr1 — |
+ 20, (pV (27) — pF(x¥), Tpy1 — ).

e pE) T3 T2 ||)?

)llyn —2*[1)?

This implies that

[

1 —an7)? + anpo

( * (12
< _
e
* F _ *
+1_%mx V() - (@), 2 - o)
_ 2.2
e P
1 — Qppo 1 —aypo
* F _ *
) _ 2
- pa o, [ ”2 (T — po)ay, oanT M,
1 — Qppo 1 —appo | 2(1 — po)
Vi(x F(x"), —z*
b V) - i) )|

= (1 = 6p)||zn — 2*|* + Snom,
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where M; = sup{||z, — z*||> : n > 0}, §, = %ﬁ‘;” and o, =

2(6;[:)20) M, + T_lpa (pV (z*) — puF(x*), 2y — x*). It is easy to see that
0n =0, > 0, = 00 and limsup,,_, . 0, < 0. Hence, applying Lemma
2.9 to the last inequality, we immediately obtain that x,, — z* asn — oo.

This completes the proof. O

COROLLARY 3.1. Let C, K be nonempty closed convex subsets of
real Hilbert spaces Hy, Ho, respectively. Let A : Hy — Hy be a bounded
linear operator with its adjoint A*. Assume Fy,Fy : C x C — R and
O : K x K — R are the bifunctions satisfying Assumption 2.1. Let
B; : C"— Hj be a vy;-inverse strongly monotone mapping for eachi = 1,2
such that ' = QNA # ¢. Let F: C'— C be a k-Lipschitzian continuous
and n-strongly monotone mapping with k > 0 andn > 0, andV : C' — C
be a o-Lipschitzian continuous mapping with o > 0. Let 0 < p < i—’; and
0 < po <7, where 7 =1—+/1— pu(2n — ux?). Suppose {a,} and {B,}
are two sequences in (0,1). Given x; € C, let {z,} be defined by

2n = Po(x, + A% (T2 — I)Axy,),
Yn = Tt T2 (2 — p2Bozn) — i BiT52 (20 — p1aBozy)),
Tp1 = anpv(xn) + ann + ((]- - Bn)] - anMF)yna vn Z ]-7

where {r,} C (0,2¢), ¢ >0, p; € (0,2v;) for eachi=1,2,6 € (0,7), L
18 the spectral radius of the operator A*A, A* is the adjoint of A. If the
following conditions are satisfied:

(1) limy, oo 0, =0 and >0 | oy, = 0;

(i) 0 < liminf, o B, < limsup,,_, . 5, < 1;

(iii) 0 < liminf, o7, < limsup, .7 < 2¢ and lim, o [rpe1 —
| = 0.

Then the sequence {x,} converges strongly to x* € QN A, where
¥ = Pora(I — pF + pV)x* is the unique solution of the variational
mequality:

(uF — pV)z*,x —2*) >0, Ve QnA.

Proof. Put Tyx = x for all © = 1,2,--- ,N and x € C, and take
the finite family of sequences {o%}Y | in ({1, () for some (i, ¢ € (0,1)
such that lim, o |0f,; — 04| =0 for all ¢ = 1,2,--- | N. In this case,
TRTN_q -1 is the identity mapping [ of C. It is easy to see that all
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conditions of Theorem 3.1 are satisfied. Thus, the desired result follows
from Theorem 3.1. O]

To verify the theoretical assertions, we consider the following example.

ExaMPLE 3.1. Let H; = Hy = R with the inner product defined by
(x,y) = zy for all z,y € R and the standard norm |-|. Let C' = [0, +00),
K = (—00,0], By = By = 0 and py = ps = 1. Define the mappings
A:R—-R F,F5:CxC—->R, 0: KxK—R,T,: C— C for each
1=1,2,--- N, F:C —CandV :C — C as follows:

Fi(z,y) = —32% + zy + 2v°, Fy(x,y) = —5a% + zy + 4y?,

Tiw) = 0fori=1,2,-- N, F(z) =z, V(a:)—%x, W, y) € C x C,

@(Iay) = —l'(l' - y)7 V(ZL’,y) €K xK
and

Ar = —2x, Vx €eR.

Itiseasytoseethata:%,n:nzlandhenceo<u<3—222. Put
p=1. Then 7 = 1 — /1 —pu(2n — px?) = 1. From 0 < po < 7, we
have p € (0,2). Without loss of generality, we put p = 1. Let «,, = %,
g = 2’?;1, r, = 1 and o' = % for each 2 = 1,2,--- , N. The sequences
{an}, {Bn}, {rn} and {o?} satisfy conditions (i)-(iv). Since Tj(x) = 0 for
i=1,2,--- N and Ax = —2z for every x € R, we have NI, Fix(T};) =
{0} and A is a bounded linear operator with A* = A and ||A| = 2.
Obviously, EP(O) = {0}, A = {p € C : Ap € EP(O)} = {0} and
Fi, F3, © satisfy Assumption 2.1. For r, = 1 = o = 1, u,, = Tfi(Axn)
is equivalent to

O(tp,v) + (v — Uy, uy — Ax,) >0, Vv e K,n€N.

Hence, we can easily find u, = —x,, € K. It is not hard to compute

AT —I)Ax, = A*(u, — Azy,) = —2(u,, — Azy,) = =22, for all n € N.

Hence, for 6 = %, we have
1 ... 0 1 3
Ty + gA (T, — 1Az, = 2, + g(—Qﬂfn) = 7%n eC, VneN.
So, we have
3
n = T (3.27)
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From v,, = T/f;? z, and vy, = Tlf;l v, we have
0 S F2(Un7y) + <y — Un, Up — Zn>
= 502+ vy + 47+ (y — vp) (v — 20), Yy € C, (3.28)
and

0 S Fl(ynyy) + <y —YnyYn — Un>
= =3y2 + Yy + 20" + (y — Yn) (Yo — vn), Vy € C. (3.29)

From (3.28) and (3.29), we have

0 < 4y® + (20, — 2n)y — 6V2 +v,2,, Yy € C,
and

0 <2y + (2yn — )y — 492 + Ypvn, Yy € C.

Let Ai(y) = 49> + (2u, — 2,)y — 602 + v,2,, and As(y) = 29* + 2y, —
Vn)Y — 4y% + y,v,. Then we determine the discriminants A\; of A; and
Ny of Ay as follows:

A= (202 — 2,)? — 16(—602 + v, 2,)
= 22 — 20w, 2, + 10002

= (2, — 10v,)?
and
Ny = (2yn — v,)? — 8(—4y2 + y,v,)
=02 — 12y,v, + 36y>
= (v, — 6yn)>
By Ai(y) > 0 and Ay(y) > 0, we have Ay = Ay = 0. So, we get
Uy = 1—102n and vy, = évn. (3.30)

For every n > 1, from (3.27) and (3.30), we can rewrite (3.1) as follows:
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that is,

dn —1 1
S T
2, 1 L
=(z+——- — —)Tp.
372402V 6n

Observe that for all n > 1,

2 1 1
w1 =0 =+ 577 —=)2n—0
161
< —|z, —0].
< Jag/™ 0
Hence we have |z,.1 — 0] < (355)"]@1 — 0| for all n > 1. This implies

that {z,} converges strongly to 0 € I' = N, Fix(T;) N Q2 N A. Observe
that ((uF — pV)0,2 — 0)) > 0, € T', that is, 0 is the solution of the
variational inequality ((uF — pV)az*,x —2*) >0,z € I

REMARK 3.1. Theorem 3.1 improves and extends many recent corre-
sponding main results of other authors (see [15,21,27,28]) in the following
ways:

(a) The explicit iterative methods in [15,27,28] have been extended
to the new iterative method (3.1) in Theorem 3.1. So, their iterative
methods are some special cases of our iterative method (3.1) and some
of their main results have been included in Theorem 3.1.

(b) The iterative approximating point in Theorem 3.1 is also the
unique solution of the variational inequality (3.2). In fact, (3.2) is
a hierarchical fixed point problem which closely relates to a convex
minimization problem. In hierarchical fixed point problem (1.6), if
S =1—(pV — pF), then we can get the variational inequality (3.2). In
(3.2), if V' =0, then we get the variational inequality (Fz*, z —x*) > 0,
Vo € T' = NN, Fix(T;) N QN A, which just is the variational inequality
studied by Suzuki [21] extending the common set of solutions of a sys-
tem of variational inequalities (1.1), a split equilibrium problem (1.5), a
hierarchical fixed point problem (3.2) and the common fixed points set
of a finite family of avereged mappings. So, the result of Theorem 3.1 in
this paper have many useful applications.
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