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SOME PROPERTIES OF FUZZY LATTICES AS FUZZY

RELATIONS

Inheung Chon

Abstract. We define a fuzzy lattice as a fuzzy relation, prove the
distributive inequalities and the modular inequality of fuzzy lattices,
and show that the fuzzy totally ordered set is a distributive fuzzy
lattice and that the distributive fuzzy lattice is modular.

1. Introduction

The concept of a fuzzy set was first introduced by Zadeh ([7]) and this
concept was adapted by Goguen ([4]) and Sanchez ([5]) to define and
study fuzzy relations. Ajmal and Thomas ([1]) defined a fuzzy lattice
as a fuzzy algebra and studied fuzzy lattices. Chon ([2], [3]) defined a
fuzzy lattice as a fuzzy relation and characterized that lattice. However,
the antisymmetric condition of the fuzzy lattice in [2] seems to be too
strong and upper (or lower) bound conditions of the fuzzy lattice in [3]
turn out to be inadequate. In this note, we weaken the antisymmetric
condition and strengthen the upper (or lower) bound conditions of the
fuzzy lattice, redefine a fuzzy lattice, and develop some properties of the
fuzzy lattices.

In section 2, we give some definitions and review some basic properties
of fuzzy lattices which will be used in the next section. In section 3,
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we prove the distributive inequalities of fuzzy lattices and the modular
inequality of fuzzy lattices, and show that a fuzzy totally ordered set is a
distributive fuzzy lattice and that a distributive fuzzy lattice is modular.

2. Preliminaries

In this section, we give some definitions and review some basic prop-
erties of fuzzy lattices which will be used in the next section.

Definition 2.1. Let X be a set. A function A : X × X → [0, 1]
is called a fuzzy relation in X. The fuzzy relation A in X is reflex-
ive iff A(x, x) = 1 for all x ∈ X and A is transitive iff A(x, z) ≥
supy∈X min(A(x, y), A(y, z)).

In [8], a fuzzy relation A in a set X was called antisymmetric iff
A(x, y) > 0 and A(y, x) > 0 imply x = y. However, this definition seems
to be too strong. Venugopalan ([6]) weakened this definition, that is, he
call A antisymmetric iff A(x, y) + A(y, x) > 1 imply x = y. We redefine
it in the following definition.

Definition 2.2. Let X be a set. A fuzzy relation A in X is antisym-
metric iff A(x, y) + A(y, x) > 1 implies x = y and A(x, y) = A(y, x) > 0
implies x = y. A fuzzy relation A in X is a fuzzy partial order re-
lation if A is reflexive, antisymmetric, and transitive. A fuzzy partial
order relation A in X is a fuzzy total order relation iff A(x, y) > 0 and
A(y, x) ≤ A(x, y) or A(y, x) > 0 and A(x, y) ≤ A(y, x) for all x, y ∈ X.
If A is a fuzzy partial order relation in X, then (X,A) is called a fuzzy
partially ordered set. If A is a fuzzy total order relation in X, then (X,A)
is called a fuzzy totally ordered set.

Chon ([3]) defined a fuzzy lattice, however the upper (or lower) bound
conditions of the fuzzy lattice turn out to be somewhat inadequate. We
strengthen those conditions in Definition 2.3 and define a fuzzy lattice
based on Definition 2.2 and Definition 2.3.

Definition 2.3. Let (X,A) be a fuzzy partially ordered set and let
S ⊆ X. An element u ∈ X is said to be an upper bound for a set S iff
A(u, b) ≤ A(b, u) and A(b, u) > 0 for all b ∈ S. An upper bound u0 for
S is the least upper bound of S iff A(u, u0) ≤ A(u0, u) and A(u0, u) > 0
for every upper bound u for S. An element v ∈ X is said to be a lower
bound for S iff A(b, v) ≤ A(v, b) and A(v, b) > 0 for all b ∈ S. A lower
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bound v0 for S is the greatest lower bound of S iff A(v0, v) ≤ A(v, v0)
and A(v, v0) > 0 for every lower bound v for S.

We denote the least upper bound of the set {x, y} by x∨y and denote
the greatest lower bound of the set {x, y} by x ∧ y. ∨ is called a join
and ∧ is called a meet.

Definition 2.4. Let (X,A) be a fuzzy partially ordered set. Then
(X,A) is a fuzzy lattice iff x ∨ y and x ∧ y exist for all x, y ∈ X.

Example of a fuzzy lattice. Let X = {x, y, z} and let A : X ×X →
[0, 1] be a fuzzy relation such that A(x, x) = A(y, y) = A(z, z) = 1,
A(x, y) = 0.2, A(x, z) = 0.1, A(y, z) = 0.1, A(y, x) = 0.5, A(z, x) = 0.3,
and A(z, y) = 0.2. Then it is easily checked that (X,A) is a fuzzy
lattice. In ([3]), a fuzzy relation B is antisymmetric iff B(x, y) > 0
and B(y, x) > 0 implies x = y. Clearly A is not antisymmetric by the
definition in [3], and hence (X,A) is not a fuzzy lattice in [3].

From the above example, the fuzzy lattice in this note is not same as
that defined in [3].

Proposition 2.5. Let (X,A) be a fuzzy lattice and let x, y, z ∈ X.
Then

(1) A(x, x ∨ y) > 0 and A(x ∨ y, x) ≤ A(x, x ∨ y)
(2) A(y, x ∨ y) > 0 and A(x ∨ y, y) ≤ A(y, x ∨ y)
(3) A(x ∧ y, x) > 0 and A(x, x ∧ y) ≤ A(x ∧ y, x)
(4) A(x ∧ y, y) > 0 and A(y, x ∧ y) ≤ A(x ∧ y, y)
(5) If A(x, z) > 0, A(z, x) ≤ A(x, z), A(y, z) > 0, and A(z, y) ≤

A(y, z), then A(x ∨ y, z) > 0 and A(z, x ∨ y) ≤ A(x ∨ y, z).
(6) If A(z, x) > 0, A(x, z) ≤ A(z, x), A(z, y) > 0, and A(y, z) ≤

A(z, y), then A(z, x ∧ y) > 0 and A(x ∧ y, z) ≤ A(z, x ∧ y).
(7) A(x, y) > 0 and A(y, x) ≤ A(x, y) iff x ∨ y = y.
(8) A(x, y) > 0 and A(y, x) ≤ A(x, y) iff x ∧ y = x.

Proof. The proof is same as that of Proposition 2.5 of [2].

Proposition 2.6. Let (X,A) be a fuzzy lattice and let x, y ∈ X.
Then

(1) x ∨ x = x, x ∧ x = x.
(2) x ∨ y = y ∨ x, x ∧ y = y ∧ x.
(3) (x ∨ y) ∧ x = x, (x ∧ y) ∨ x = x.
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Proof. The proof is same as that of Proposition 2.6 of [2]. �
We may show that the operations of join and meet in fuzzy lattices

are isotone and associative by the same way as shown in [2].

3. Some properties of fuzzy lattices

In this section, we prove the distributive inequalities of fuzzy lattices
and the modular inequality of fuzzy lattices, and show that the fuzzy
totally ordered set is a distributive fuzzy lattice and that the distributive
fuzzy lattice is modular.

Theorem 3.1. (Distributive inequalities) Let (X,A) be a fuzzy lat-
tice and let x, y, z ∈ X. Then

(1) A(x ∧ (y ∨ z), (x ∧ y) ∨ (x ∧ z)) ≤ A((x ∧ y) ∨ (x ∧ z), x ∧ (y ∨ z))
and A((x ∧ y) ∨ (x ∧ z), x ∧ (y ∨ z)) > 0

(2) A((x ∨ y) ∧ (x ∨ z), x ∨ (y ∧ z)) ≤ A(x ∨ (y ∧ z), (x ∨ y) ∧ (x ∨ z))
and A(x ∨ (y ∧ z), (x ∨ y) ∧ (x ∨ z)) > 0.

Proof.
(1) Since A(x ∧ y, y) > 0 and A(y, y ∨ z) > 0, A(x ∧ y, y ∨ z) > 0.

Clearly

A(x ∧ y, y ∨ z) ≥ min [A(x ∧ y, y), A(y, y ∨ z)]

≥ min [A(y, x ∧ y), A(y ∨ z, y)].

(i) We consider the case of A(y ∨ z, y) > A(y, x ∧ y).
Then A(x ∧ y, y ∨ z) ≥ A(y, x ∧ y). Also

A(y, x ∧ y) ≥ min [A(y, y ∨ z), A(y ∨ z, x ∧ y)]

≥ min [A(y ∨ z, y), A(y ∨ z, x ∧ y)].

If A(y ∨ z, y) ≤ A(y ∨ z, x ∧ y), then A(y, x ∧ y) ≥ A(y ∨ z, y) and this
contradicts A(y∨z, y) > A(y, x∧y). That is, A(y∨z, y) > A(y∨z, x∧y),
and hence A(y, x∧y) ≥ A(y∨z, x∧y). Thus A(x∧y, y∨z) ≥ A(y, x∧y) ≥
A(y ∨ z, x ∧ y).
(ii) We consider the case of A(y, x ∧ y) > A(y ∨ z, y).
Then A(x ∧ y, y ∨ z) ≥ A(y ∨ z, y). Also

A(y ∨ z, y) ≥ min [A(y ∨ z, x ∧ y), A(x ∧ y, y)]

≥ min [A(y ∨ z, x ∧ y), A(y, x ∧ y)].
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If A(y, x ∧ y) ≤ A(y ∨ z, x ∧ y), then A(y ∨ z, y) ≥ A(y, x ∧ y) and this
contradicts A(y, x∧y) > A(y∨z, y). That is, A(y, x∧y) > A(y∨z, x∧y),
and hence A(y∨z, y) ≥ A(y∨z, x∧y). Thus A(x∧y, y∨z) ≥ A(y∨z, y) ≥
A(y ∨ z, x ∧ y).
(iii) We consider the case of A(y, x∧y) = A(y∨z, y) and A(y∨z, x∧y) ≥
A(x ∧ y, y).
Since A(y ∨ z, y) ≥ min [A(y ∨ z, x ∧ y), A(x ∧ y, y)] ≥ A(x ∧ y, y),

A(y ∨ z, y) ≥ A(x ∧ y, y) ≥ A(y, x ∧ y) = A(y ∨ z, y).

Thus A(x ∧ y, y) = A(y, x ∧ y) > 0. That is, x ∧ y = y. Hence A(x ∧
y, y ∨ z) = A(y, y ∨ z) ≥ A(y ∨ z, y) = A(y ∨ z, x ∧ y).
(iv) We consider the case of A(y, x∧y) = A(y∨z, y) and A(y∨z, x∧y) <
A(x ∧ y, y).
Then A(y ∨ z, y) ≥ min [A(y ∨ z, x ∧ y), A(x ∧ y, y)] = A(y ∨ z, x ∧ y).
Since A(x ∧ y, y ∨ z) ≥ A(y ∨ z, y) = A(y, x ∧ y), A(x ∧ y, y ∨ z) ≥
A(y ∨ z, y) ≥ A(y ∨ z, x ∧ y).

From (i), (ii), (iii), and (iv), A(x∧ y, y ∨ z) ≥ A(y ∨ z, x∧ y). Clearly
A(x∧ y, y ∨ z) > 0. Also A(x∧ y, x) > 0 and A(x∧ y, x) ≥ A(x, x∧ y).
By (6) of Proposition 2.5,

A(x∧y, x∧ (y∨z)) ≥ A(x∧ (y∨z), x∧y) and A(x∧y, x∧ (y∨z)) > 0.

That is, x ∧ (y ∨ z) is an upper bound of {x ∧ y}.
Since A(x∧ z, z) > 0 and A(z, y ∨ z) > 0, A(x∧ z, y ∨ z) > 0. Clearly

A(x∧z, y∨z) ≥ min [A(x∧z, z), A(z, y∨z)] ≥ min [A(z, x∧z), A(y∨z, z)].

(i)′ We consider the case of A(y ∨ z, z) > A(z, x ∧ z).
Then A(x ∧ z, y ∨ z) ≥ A(z, x ∧ z). Also

A(z, x ∧ z) ≥ min [A(z, y ∨ z), A(y ∨ z, x ∧ z)]

≥ min [A(y ∨ z, z), A(y ∨ z, x ∧ z)].

Since A(y ∨ z, z) > A(z, x ∧ z), A(z, x ∧ z) ≥ A(y ∨ z, x ∧ z). Thus
A(x ∧ z, y ∨ z) ≥ A(y ∨ z, x ∧ z).
(ii)′ We consider the case of A(z, x ∧ z) > A(y ∨ z, z).
Then A(x ∧ z, y ∨ z) ≥ A(y ∨ z, z). Also

A(y ∨ z, z) ≥ min [A(y ∨ z, x ∧ z), A(x ∧ z, z)]

≥ min [A(y ∨ z, x ∧ z), A(z, x ∧ z)].

Since A(z, x ∧ z) > A(y ∨ z, z), A(y ∨ z, z) ≥ A(y ∨ z, x ∧ z). Thus
A(x ∧ z, y ∨ z) ≥ A(y ∨ z, x ∧ z).
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(iii)′ We consider the case of A(z, x ∧ z) = A(y ∨ z, z).
Then A(x ∧ z, y ∨ z) ≥ A(y ∨ z, z) = A(z, x ∧ z). Also A(y ∨ z, z) ≥
min [A(y ∨ z, x ∧ z), A(x ∧ z, z)]. If A(x ∧ z, z) ≥ A(y ∨ z, x ∧ z), then
A(x∧z, y∨z) ≥ A(y∨z, z) ≥ A(y∨z, x∧z). If A(x∧z, z) < A(y∨z, x∧z),
then A(y ∨ z, z) ≥ A(x ∧ z, z) ≥ A(z, x ∧ z) = A(y ∨ z, z), that is,
A(x∧ z, z) = A(z, x∧ z) > 0, thus x∧ z = z, and hence A(x∧ z, y∨ z) =
A(z, y ∨ z) ≥ A(y ∨ z, z) = A(y ∨ z, x ∧ z).

From (i)′, (ii)′, and (iii)′, A(x ∧ z, y ∨ z) ≥ A(y ∨ z, x ∧ z). Clearly
A(x∧ z, y ∨ z) > 0. Also A(x∧ z, x) > 0 and A(x∧ z, x) ≥ A(x, x∧ z).
By (6) of Proposition 2.5,

A(x∧ z, x∧ (y∨ z)) ≥ A(x∧ (y∨ z), x∧ z) and A(x∧ z, x∧ (y∨ z)) > 0.

Thus x∧(y∨z) is an upper bound of {x∧y, x∧z}. Since (x∧y)∨(x∧z)
is the least upper bound of {x∧y, x∧z}, A((x∧y)∨(x∧z), x∧(y∨z)) ≥
A(x∧ (y ∨ z), (x∧ y)∨ (x∧ z)) and A((x∧ y)∨ (x∧ z), x∧ (y ∨ z)) > 0.

(2) Since A(y ∧ z, y) > 0 and A(y, x ∨ y) > 0, A(y ∧ z, x ∨ y) > 0.
Clearly

A(y ∧ z, x ∨ y) ≥ min [A(y ∧ z, y), A(y, x ∨ y)]

≥ min [A(y, y ∧ z), A(x ∨ y, y)].

(i) We consider the case of A(y, y ∧ z) > A(x ∨ y, y).
Then A(y ∧ z, x∨ y) ≥ A(x∨ y, y). Also A(x∨ y, y) ≥ min [A(x∨ y, y ∧
z), A(y ∧ z, y)] ≥ min [A(x ∨ y, y ∧ z), A(y, y ∧ z)]. Since A(y, y ∧ z) >
A(x ∨ y, y), A(x ∨ y, y) ≥ A(x ∨ y, y ∧ z). Thus A(y ∧ z, x ∨ y) ≥
A(x ∨ y, y ∧ z).
(ii) We consider the case of A(x ∨ y, y) > A(y, y ∧ z).
Then A(y ∧ z, x ∨ y) ≥ A(y, y ∧ z). Also

A(y, y ∧ z) ≥ min [A(y, x ∨ y), A(x ∨ y, y ∧ z)]

≥ min [A(x ∨ y, y), A(x ∨ y, y ∧ z)].

Since A(x ∨ y, y) > A(y, y ∧ z), A(y, y ∧ z) ≥ A(x ∨ y, y ∧ z). Thus
A(y ∧ z, x ∨ y) ≥ A(x ∨ y, y ∧ z).
(iii) We consider the case of A(x ∨ y, y) = A(y, y ∧ z).
Then A(y ∧ z, x ∨ y) ≥ A(y, y ∧ z) = A(x ∨ y, y). Also A(x ∨ y, y) ≥
min [A(x ∨ y, y ∧ z), A(y ∧ z, y)]. If A(y ∧ z, y) ≥ A(x ∨ y, y ∧ z), then
A(y∧z, x∨y) ≥ A(x∨y, y) ≥ A(x∨y, y∧z). If A(y∧z, y) < A(x∨y, y∧z),
then A(x∨y, y) ≥ min[A(x∨y, y∧z), A(y∧z, y)] = A(y∧z, y) ≥ A(y, y∧
z) = A(x ∨ y, y), that is, A(y ∧ z, y) = A(y, y ∧ z) > 0, thus y = y ∧ z,
and hence A(y ∧ z, x ∨ y) = A(y, x ∨ y) ≥ A(x ∨ y, y) = A(x ∨ y, y ∧ z).
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From (i), (ii), and (iii), A(y ∧ z, x ∨ y) ≥ A(x ∨ y, y ∧ z). Clearly
A(y ∧ z, x ∨ y) > 0. Also A(x, x ∨ y) > 0 and A(x, x ∨ y) ≥ A(x ∨ y, x).
By (5) of Proposition 2.5,

A(x∨ (y∧z), x∨y) ≥ A(x∨y, x∨ (y∧z)) and A(x∨ (y∧z), x∨y) > 0.

That is, x ∨ (y ∧ z) is a lower bound of {x ∨ y}.
Since A(y ∧ z, z) > 0 and A(z, x∨ z) > 0, A(y ∧ z, x∨ z) > 0. Clearly

A(y ∧ z, x ∨ z) ≥ min [A(y ∧ z, z), A(z, x ∨ z)]

≥ min [A(z, y ∧ z), A(x ∨ z, z)].

(i)′ We consider the case of A(z, y ∧ z) > A(x ∨ z, z).
Then A(y ∧ z, x ∨ z) ≥ A(x ∨ z, z). Also

A(x ∨ z, z) ≥ min [A(x ∨ z, y ∧ z), A(y ∧ z, z)]

≥ min [A(x ∨ z, y ∧ z), A(z, y ∧ z)].

Since A(z, y ∧ z) > A(x ∨ z, z), A(x ∨ z, z) ≥ A(x ∨ z, y ∧ z). Thus
A(y ∧ z, x ∨ z) ≥ A(x ∨ z, y ∧ z).
(ii)′ We consider the case of A(x ∨ z, z) > A(z, y ∧ z).
Then A(y ∧ z, x ∨ z) ≥ A(z, y ∧ z). Also

A(z, y ∧ z) ≥ min [A(z, x ∨ z), A(x ∨ z, y ∧ z)]

≥ min [A(x ∨ z, z), A(x ∨ z, y ∧ z)].

Since A(x ∨ z, z) > A(z, y ∧ z), A(z, y ∧ z) ≥ A(x ∨ z, y ∧ z). Thus
A(y ∧ z, x ∨ z) ≥ A(x ∨ z, y ∧ z).
(iii)′ We consider the case of A(x ∨ z, z) = A(z, y ∧ z).
Then A(y ∧ z, x ∨ z) ≥ A(z, y ∧ z) = A(x ∨ z, z). Also A(x ∨ z, z) ≥
min [A(x ∨ z, y ∧ z), A(y ∧ z, z)]. If A(y ∧ z, z) ≥ A(x ∨ z, y ∧ z), then
A(y∧z, x∨z) ≥ A(x∨z, z) ≥ A(x∨z, y∧z). If A(y∧z, z) < A(x∨z, y∧z),
then A(x ∨ z, z) ≥ A(y ∧ z, z) ≥ A(z, y ∧ z) = A(x ∨ z, z), that is,
A(y∧ z, z) = A(z, y∧ z) > 0, thus z = y∧ z, and hence A(y∧ z, x∨ z) =
A(z, x ∨ z) ≥ A(x ∨ z, z) = A(x ∨ z, y ∧ z).

From (i)′, (ii)′, and (iii)′, A(y ∧ z, x ∨ z) ≥ A(x ∨ z, y ∧ z). Clearly
A(y ∧ z, x ∨ z) > 0. Also A(x, x ∨ z) > 0 and A(x, x ∨ z) ≥ A(x ∨ z, x).
By (5) of Proposition 2.5,

A(x∨ (y∧z), x∨z) ≥ A(x∨z, x∨ (y∧z)) and A(x∨ (y∧z), x∨z)) > 0.

Thus x∨(y∧z) is a lower bound of {x∨y, x∨z}. Since (x∨y)∧(x∨z) is
the greatest lower bound of {x∨y, x∨z}, A(x∨(y∧z), (x∨y)∧(x∨z)) ≥
A((x∨y)∧(x∨z), x∨(y∧z)) and A(x∨(y∧z), (x∨y)∧(x∨z)) > 0.
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Definition 3.2. Let (X,A) be a fuzzy lattice. (X,A) is distributive
iff x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z).

From the distributive inequalities, (X,A) is distributive iff A(x∧ (y∨
z), (x ∧ y) ∨ (x ∧ z)) > 0, A(x ∧ (y ∨ z), (x ∧ y) ∨ (x ∧ z)) ≥ A((x ∧
y) ∨ (x ∧ z), x ∧ (y ∨ z)), A((x ∨ y) ∧ (x ∨ z), x ∨ (y ∧ z)) > 0, and
A((x ∨ y) ∧ (x ∨ z), x ∨ (y ∧ z)) ≥ A(x ∨ (y ∧ z), (x ∨ y) ∧ (x ∨ z)).

Proposition 3.3. Let (X,A) be a fuzzy lattice and let x, y, z ∈ X.
Then

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) iff x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Proof. (⇒) From the hypothesis, (x∨y)∧(x∨z) = [(x∨y)∧x]∨ [(x∨
y)∧z]. Since (x∨y)∧x = x by (3) of Proposition 2.6, (x∨y)∧ (x∨z) =
x∨[(x∨y)∧z] = x∨[z∧(x∨y)] = x∨[(z∧x)∨(z∧y)] = x∨(z∧x)∨(z∧y).
Since x ∨ (z ∧ x) = x by (3) of Proposition 2.6, (x ∨ y) ∧ (x ∨ z) =
x ∨ (z ∧ y) = x ∨ (y ∧ z).
(⇐) From the hypothesis, (x∧ y)∨ (x∧ z) = [(x∧ y)∨ x]∧ [(x∧ y)∨ z].
Since (x ∧ y) ∨ x = x and x ∧ (z ∨ x) = x by (3) of Proposition 2.6,
(x∧y)∨ (x∧z) = x∧ [z∨ (x∧y)] = x∧ [(z∨x)∧ (z∨y)] = [x∧ (z∨x)]∧
(z∨y) = x∧ (z∨y) = x∧ (y∨z). Thus (x∧y)∨ (x∧z) = x∧ (y∨z).

Theorem 3.4. Let (X,A) be a fuzzy totally ordered set. Then (X,A)
is a distributive fuzzy lattice.

Proof. Let (X,A) be a fuzzy totally ordered set and let x, y ∈ X.
Then A(x, y) > 0 and A(y, x) ≤ A(x, y) or A(y, x) > 0 and A(x, y) ≤
A(y, x).
(i) We consider the case of A(x, y) > 0 and A(y, x) ≤ A(x, y).
Since A(y, y) = 1 > 0, y is an upper bound of {x, y}. Let u be an upper
bound of {x, y}. Then A(y, u) > 0 and A(u, y) ≤ A(y, u). Thus y is
the least upper bound of {x, y}. Since A(x, y) > 0, A(y, x) ≤ A(x, y),
and A(x, x) = 1 > 0, x is a lower bound of {x, y}. Let v be a lower
bound of {x, y}. Then A(v, x) > 0 and A(x, v) ≤ A(v, x). Thus x is the
greatest lower bound of {x, y}. Thus (X,A) is a fuzzy lattice. By (8)
of Proposition 2.5, x ∧ y = x. Since A(x ∧ (y ∨ z), x) > 0, A(x ∧ (y ∨
z), x∧ y) > 0. By (1) of Proposition 2.5, A(x∧ y, (x∧ y)∨ (x∧ z)) > 0.
Thus

A(x ∧ (y ∨ z), (x ∧ y) ∨ (x ∧ z))

≥ min [A(x ∧ (y ∨ z), x ∧ y), A(x ∧ y, (x ∧ y) ∨ (x ∧ z))] > 0.
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Since x ∨ (x ∧ z) = x and x ∧ y = x,

A(x ∧ (y ∨ z), (x ∧ y) ∨ (x ∧ z)) = A(x ∧ (y ∨ z), x ∨ (x ∧ z))

= A(x ∧ (y ∨ z), x)

≥ A(x, x ∧ (y ∨ z))

= A(x ∨ (x ∧ z), x ∧ (y ∨ z))

= A((x ∧ y) ∨ (x ∧ z), x ∧ (y ∨ z)).

By the distributive inequalities, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). By
Proposition 3.3, (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z). Hence (X,A) is a
distributive fuzzy lattice.
(ii) We consider the case of A(y, x) > 0 and A(x, y) ≤ A(y, x).
Since A(x, x) = 1 > 0, x is an upper bound of {x, y}. Let u be an upper
bound of {x, y}. Then A(x, u) > 0 and A(u, x) ≤ A(x, u). Thus x is
the least upper bound of {x, y}. Since A(y, x) > 0, A(x, y) ≤ A(y, x),
and A(y, y) = 1 > 0, y is a lower bound of {x, y}. Let v be a lower
bound of {x, y}. Then A(v, y) > 0 and A(y, v) ≤ A(v, y). Thus y is
the greatest lower bound of {x, y}. Thus (X,A) is a fuzzy lattice. By
(7) of Proposition 2.5, x ∨ y = x. Thus A((x ∨ y) ∧ (x ∨ z), x) =
A(x ∧ (x ∨ z), x) > 0. By (1) of Proposition 2.5, A(x, x ∨ (y ∧ z)) > 0.
Thus A((x∨y)∧(x∨z), x∨(y∧z)) ≥ min [A((x∨y)∧(x∨z), x), A(x, x∨
(y ∧ z))] > 0. Since x ∨ y = x and (x ∨ z) ∧ x = x,

A((x ∨ y) ∧ (x ∨ z), x ∨ (y ∧ z)) = A(x ∧ (x ∨ z), x ∨ (y ∧ z))

= A(x, x ∨ (y ∧ z))

≥ A(x ∨ (y ∧ z), x)

= A(x ∨ (y ∧ z), x ∧ (x ∨ z))

= A(x ∨ (y ∧ z), (x ∨ y) ∧ (x ∨ z)).

By the distributive inequalities, (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z). By
Proposition 3.3, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Hence (X,A) is a
distributive fuzzy lattice.

Theorem 3.5. (Modular inequality) Let (X,A) be a fuzzy lattice
and let x, y, z ∈ X. Then A(x, z) > 0 and A(z, x) ≤ A(x, z) implies
A(x ∨ (y ∧ z), (x ∨ y) ∧ z) > 0 and A((x ∨ y) ∧ z, x ∨ (y ∧ z)) ≤
A(x ∨ (y ∧ z), (x ∨ y) ∧ z).

Proof. Since A(x, x ∨ y) > 0 and A(x, z) > 0, A(x, (x ∨ y) ∧ z) > 0
by (6) of Proposition 2.5. Since A(y ∧ z, y) > 0 and A(y, x ∨ y) > 0,
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A(y ∧ z, x ∨ y) > 0. Since A(y ∧ z, z) > 0, A(y ∧ z, (x ∨ y) ∧ z) > 0
by (6) of Proposition 2.5. Thus A(x∨ (y ∧ z), (x∨ y)∧ z) > 0 by (5) of
Proposition 2.5. Also

A(y∧z, x∨y) ≥ min [A(y∧z, y), A(y, x∨y)] ≥ min [A(y, y∧z), A(x∨y, y)].

(i) We consider the case of A(y, y ∧ z) > A(x ∨ y, y).
Clearly A(y∧z, x∨y) ≥ A(x∨y, y). Also A(x∨y, y) ≥ min [A(x∨y, y∧
z), A(y∧z, y)] ≥ min [A(x∨y, y∧z), A(y, y∧z)]. Since A(y, y∧z) > A(x∨
y, y), A(x∨y, y) ≥ A(x∨y, y∧z). Thus A(y∧z, x∨y) ≥ A(x∨y, y∧z).
(ii) We consider the case of A(y, y ∧ z) < A(x ∨ y, y).
Clearly A(y ∧ z, x ∨ y) ≥ A(y, y ∧ z). Also A(y, y ∧ z) ≥ min [A(y, x ∨
y), A(x∨y, y∧z)] ≥ min [A(x∨y, y), A(x∨y, y∧z)]. Since A(y, y∧z) <
A(x ∨ y, y), A(y, y ∧ z) ≥ A(x ∨ y, y ∧ z). Thus A(y ∧ z, x ∨ y) ≥
A(x ∨ y, y ∧ z).
(iii) We consider the case of A(y, y ∧ z) = A(x ∨ y, y).
Then A(y ∧ z, x ∨ y) ≥ A(y, y ∨ z) = A(x ∨ y, y). Also A(x ∨ y, y) ≥
min [A(x ∨ y, y ∧ z), A(y ∧ z, y)]. If A(y ∧ z, y) ≥ A(x ∨ y, y ∧ z), then
A(y ∧ z, x ∨ y) ≥ A(x ∨ y, y ∧ z). If A(y ∧ z, y) < A(x ∨ y, y ∧ z),
then A(x ∨ y, y) ≥ A(y ∧ z, y) ≥ A(y, y ∧ z) = A(x ∨ y, y), and hence
A(y ∧ z, y) = A(y, y ∧ z) > 0. That is, y ∧ z = y. Thus A(y ∧ z, x∨ y) =
A(y, x ∨ y) ≥ A(x ∨ y, y) = A(x ∨ y, y ∧ z).

From (i), (ii), and (iii), A(y ∧ z, x ∨ y) ≥ A(x ∨ y, y ∧ z) and A(y ∧
z, x ∨ y) > 0. Since A(y ∧ z, z) ≥ A(z, y ∧ z) and A(y ∧ z, z) > 0,

A(y ∧ z, (x∨ y)∧ z) ≥ A((x∨ y)∧ z, y ∧ z) and A(y ∧ z, (x∨ y)∧ z) > 0.

Since A(x, z) ≥ A(z, x), A(x, z) > 0, A(x, x ∨ y) ≥ A(x ∨ y, x), and
A(x, x ∨ y) > 0,

A(x, (x ∨ y) ∧ z) ≥ A((x ∨ y) ∧ z, x) and A(x, (x ∨ y) ∧ z) > 0.

Thus
A((x ∨ y) ∧ z, x ∨ (y ∧ z)) ≤ A(x ∨ (y ∧ z), (x ∨ y) ∧ z) and
A(x ∨ (y ∧ z), (x ∨ y) ∧ z) > 0.

Definition 3.6. A fuzzy lattice (X,A) is modular iff A(x, z) > 0 and
A(x, z) ≥ A(z, x) imply x ∨ (y ∧ z) = (x ∨ y) ∧ z for x, y, z ∈ X.

By the modular inequality, a fuzzy lattice (X,A) is modular iff A(x, z) >
0 and A(x, z) ≥ A(z, x) imply A((x ∨ y) ∧ z, x ∨ (y ∧ z)) > 0 and
A((x ∨ y) ∧ z, x ∨ (y ∧ z)) ≥ A(x ∨ (y ∧ z), (x ∨ y) ∧ z) for x, y, z ∈ X.
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Theorem 3.7. Let (X,A) be a distributive fuzzy lattice. Then (X,A)
is modular.

Proof. Since (X,A) is distributive, (x∨y)∧z = (x∧z)∨(y∧z). Thus
A((x∨y)∧z, x∨(y∧z)) = A((x∧z)∨(y∧z), x∨(y∧z)). Since A(x, z) > 0
and A(z, x) ≤ A(x, z), x ∧ z = x by (8) of Proposition 2.5. Thus
A((x∨y)∧z, x∨(y∧z)) = A((x∧z)∨(y∧z), x∨(y∧z)) = A(x∨(y∧z), x∨
(y∧z)) > 0. Since A(x, z) > 0 and A(z, x) ≤ A(x, z), x∨z = z by (7) of
Proposition 2.5. Since (X,A) is distributive, x∨(y∧z) = (x∨y)∧(x∨z).
Thus A((x∨ y)∧ z, x∨ (y ∧ z)) = A((x∧ z)∨ (y ∧ z), (x∨ y)∧ (x∨ z)) =
A(x ∨ (y ∧ z), (x ∨ y) ∧ z) > 0. Hence (x ∨ y) ∧ z = x ∨ (y ∧ z).
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