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A GENERIC RESEARCH ON NONLINEAR

NON-CONVOLUTION TYPE SINGULAR INTEGRAL

OPERATORS
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Abstract. In this paper, we present some general results on the
pointwise convergence of the non-convolution type nonlinear singular
integral operators in the following form:

Tλ(f ;x) =

∫
Ω

Kλ (t, x, f (t)) dt, x ∈ Ψ, λ ∈ Λ,

where Ψ = 〈a, b〉 and Ω = 〈A,B〉 stand for arbitrary closed, semi-
closed or open bounded intervals in R or these set notations de-
note R, and Λ is a set of non-negative numbers, to the function
f ∈ Lp,w (Ω), where Lp,w (Ω) denotes the space of all measurable

functions f for which
∣∣∣ fw ∣∣∣p (1 ≤ p < ∞) is integrable on Ω, and

w : R→ R+ is a weight function satisfying some conditions.

1. Introduction

Approximating functions with simpler functions is one of the major
problems of mathematical analysis. The main aim is to make the ap-
proximation error smaller, i.e., to make simpler functions closer to the
original function. Here, simpler functions refer to the family or sequence
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of functions equipped with good properties, such as continuity, differen-
tiability and integrability. There are many approximation methods in
the literature. In particular, approximation of integrable functions by
a family of integrable functions is a classical method used by many re-
searchers. To make this sentence clear, we outline some of the significant
studies as follows:

Taberski [27] analyzed the pointwise convergence of integrable func-
tions and the approximation properties of derivatives of integrable func-
tions in L1 〈−π, π〉, where 〈−π, π〉 is an arbitrary closed, semi-closed or
open interval, by the following integral operator

(1.1) Lλ (f ;x) =

π∫
−π

f (t)Kλ (t− x) dt, x ∈ 〈−π, π〉 , λ ∈ Λ ⊂ R+
0 ,

where Kλ (t) is the kernel fulfilling appropriate conditions and Λ is a
given set of non-negative numbers with accumulation point λ0. Further,
the singularity condition is satisfied by Kλ (t) , i.e., Kλ (0) tends to in-
finity as λ tends to λ0.

Following Taberski [27], Gadjiev [12] and Rydzewska [26] studied
pointwise convergence of the operators of type (1.1) at different char-
acteristic points of integrable functions. In addition, Bardaro [2] studied
the rate of convergence of the linear singular integral operators in differ-
ent function spaces. Further, in [3], Bardaro and Vinti obtained some
approximation properties of certain non-convolution type integral op-
erators. Later on, Alexits [1], Mamedov [15] and Esen [10] presented
necessary conditions satisfied by kernel functions in order to obtain a
good approximation, separately.

In the year 1983, Musielak [21] studied the convergence of convolution
type nonlinear integral operators in the following form:

(1.2) Sw(f ; y) =

∫
G

Kw(x− y, f(x))dx, y ∈ G, w ∈ Λ,

where G is a locally compact Abelian group equipped with Haar mea-
sure and Λ 6= ∅ is an index set with any topology, and he extended the
scope of the singularity assumption via replacing the linearity property
of the integral operators of type (1.1) by an assumption of Lipschitz con-
dition for Kw with respect to second variable. In [22], Musielak stepped
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up his previous analysis by presenting the significant approximation re-
sults for the operators of type (1.2) in generalized Orlicz spaces. Af-
ter these pioneering studies, Swiderski and Wachnicki [23] investigated
the pointwise convergence of the operators of type (1.2) at p−Lebesgue
points of functions f ∈ Lp (−π, π) , where 1 ≤ p < ∞. The conver-
gence properties of specific types of nonlinear integral operators were
investigated, for example, the pointwise convergence of nonlinear Mellin
type convolution operators at Lebesgue points was studied by Bardaro
and Mantellini [6]. In [14], Karsli investigated the approximation proper-
ties of non-convolution type nonlinear integral operators and established
the rate of pointwise convergence. Some further approximation results
concerning approximation by non-convolution type singular integral op-
erators can be found in [10,11]. Based on the results given by Esen [10],
Guller et al. [13] presented some approximation theorems. For some
advanced results concerning the convergence of several types of nonlin-
ear singular integral operators in modular function spaces, we refer the
reader to the monograph by Bardaro et al. [5] and the articles by Bar-
daro and Vinti [3, 4]. Recently, some weighted pointwise approximation
results for the nonlinear counterpart of the operator of type (1.1) were
presented in [28] using the approximation method presented by Esen [10].
For some studies concerning the applications of approximation of func-
tions by linear and nonlinear operators, we refer the reader to see the
works [8, 9, 16-20, 24].

In this paper, we prove the convergence of non-convolution type non-
linear singular integral operators designated by

(1.3) Tλ(f ;x) =

∫
Ω

Kλ (t, x, f (t)) dt, x ∈ Ψ, λ ∈ Λ,

where Ψ = 〈a, b〉 and Ω = 〈A,B〉 stand for arbitrary closed, semi-closed
or open bounded intervals in R or the indicated set notations represent
R, and Λ is a set of non-negative numbers, to the function f ∈ Lp,w (Ω) ,

where Lp,w (Ω) is the space of all measurable functions f for which
∣∣ f
w

∣∣p
(1 ≤ p < ∞) is integrable on Ω, and w : R → R+ is a weight function,
at a common µ-generalized Lebesgue point of the functions f

w
and w. In

this work, the weighted approximation method presented by Esen [10]
is harnessed.

The paper is organized as follows: In Section 2, we introduce basic
definitions. In Section 3, we prove the existence of the operators type
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(1.3). In Section 4, we present two theorems concerning the pointwise
convergence of Tλ (f ;x) to the value f (x0) as (x, λ) tends to (x0, λ0) ,
where x0 is a µ−generalized Lebesgue point of f ∈ Lp (Ω) . In Section
5, we present two theorems concerning the pointwise convergence of
Tλ (f ;x) to the value f (x0) as (x, λ) tends to (x0, λ0) , where x0 is a
common µ−generalized Lebesgue point of f ∈ Lp,w (Ω) and w ∈ Lp (Ω) .
In Section 6, we give two theorems concerning the rate of pointwise
convergence.

2. Preliminaries

Definition 2.1. A point x0 ∈ Ω is called a µ−generalized Lebesgue
point of the function f ∈ Lp (Ω) if

lim
h→0

 1

µ(h)

h∫
0

|f(t+ x0)− f(x0)|p dt


1
P

= 0, 1 ≤ p <∞,

where µ : R→ R is an increasing and absolutely continuous function on
[0, B − A] with µ(0) = 0 [26].

Using the kernel properties given in [11, 14], the following definition
is obtained:

Definition 2.2. (Class Aw) Let Λ be a set of non-negative set of
numbers with accumulation point λ0. Suppose that for every fixed x ∈ Ψ
there exists a point x0 ∈ Ω. We say that the family of functions (Kλ)λ∈Λ ,
Kλ : R×R×R→ R belongs to class Aw if the following conditions are
satisfied:

a. Kλ(t, x, 0) = 0, for every t, x ∈ R and λ ∈ Λ.
b. The function Lλ : R×R→ R+

0 which is integrable for every t, x ∈ R
and for each λ ∈ Λ exists such that the inequality

|Kλ (t, x, u)−Kλ (t, x, v)| ≤ Lλ (t, x) |u− v|
holds for every t, x, u, v ∈ R and for each λ ∈ Λ.

c. lim(x,λ)→(x0,λ0)

∣∣∣∣∫
R
Kλ(t, x, u)dt− u

∣∣∣∣ = 0, for every u ∈ R.

d. lim(x,λ)→(x0,λ0)

(
supt∈R\〈x0−ξ,x0+ξ〉 Lλ(t, x)

)
= 0, for every ξ > 0.

e. lim(x,λ)→(x0,λ0)

(∫
R\〈x0−ξ,x0+ξ〉 Lλ(t, x)dt

)
= 0, for every ξ > 0.
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f. There exists δ0 > 0 such that Lλ(t, x) is non-decreasing as a func-
tion of t on 〈x0 − δ0, x0] and non-increasing as a function of t on
[x0, x0 + δ0〉 , for each fixed λ ∈ Λ.

g.
∥∥∥ w(·)
w(x)

Lλ(·, x)
∥∥∥
L1(R)

≤M <∞, where M is a constant whose value

does not depend on x ∈ Ψ and λ ∈ Λ.
h. ‖αLλ‖Lq(R×R) ≤ N < ∞, where N is a constant whose value does

not depend on λ ∈ Λ, 1 < q <∞ and α (t, x) = w(t)
w(x)

.

Throughout this paper Kλ belongs to class Aw.

3. Existence of the Operators

Theorem 3.1. Let f ∈ L1,w(Ω). Then, Tλ ∈ L1,w(Ω) and the follow-
ing inequality

‖Tλ(f ;x)‖L1,w(Ω) ≤
∥∥∥∥ w(·)
w(x)

Lλ(·, x)

∥∥∥∥
L1(R)

‖f‖L1,w(Ω)

holds for every x ∈ Ψ and λ ∈ Λ.

Proof. Assume that Ψ = 〈a, b〉 and Ω = 〈A,B〉 stand for arbitrary
closed, semi-closed or open bounded intervals in R.

Using conditions (a), (b) of class Aw and Fubini’s Theorem (see, e.g.,
[7]), we may write

‖Tλ(f ;x)‖L1,w(Ω) =

∫
Ω

1

w(x)

∣∣∣∣∣∣
∫
Ω

Kλ(t, x, f(t))dt

∣∣∣∣∣∣ dx
≤

∫
Ω

1

w(x)

∫
Ω

∣∣∣∣f(t)
w(t)

w(t)
Lλ(t, x)

∣∣∣∣ dtdx
≤

∫
Ω

∣∣∣∣ f(t)

w(t)

∣∣∣∣
∫

R

w(t)

w(x)
Lλ(t, x)dx

 dt
≤ M ‖f‖L1,w(Ω) .

The proof is completed for the indicated case. One may prove the asser-
tion for the case Ψ = Ω = R by following similar steps. Thus the proof
is completed.
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Theorem 3.2. Let f ∈ Lp,w(Ω). Then, Tλ ∈ Lq,w(Ω) and the follow-
ing inequality

‖Tλ(f ;x)‖Lq,w(Ω) ≤ ‖αLλ‖Lq(R×R) ‖f‖Lp,w(Ω)

holds for every x ∈ Ψ and λ ∈ Λ. Here, 1
q

+ 1
p

= 1 provided that
1 < p, q <∞.

Proof. Suppose that Ψ = 〈a, b〉 and Ω = 〈A,B〉 stand for arbitrary
closed, semi-closed or open bounded intervals in R.

Let us define a new function by

g(t) :=

{
f(t), if t ∈ Ω,

0, if t ∈ R\Ω.
It is easy to see that the following inequality

‖Tλ(f ;x)‖Lq(Ω) = ‖Tλ(g;x)‖Lq(Ω)

=

∫
Ω

1

wq(x)

∣∣∣∣∣∣
∫
R

Kλ(t, x, g(t))dt

∣∣∣∣∣∣
q

dx


1
q

≤

∫
Ω

1

wq(x)

∫
R

|g(t)Lλ(t, x)| dt

q

dx


1
q

holds. Now, applying Hölder’s inequality (see, e.g., [25]) to the above
inequality, we obtain

‖Tλ(f ;x)‖Lq(Ω)

≤

∫
Ω

1

wq(x)


∫

R

∣∣∣∣ g(t)

w(t)

∣∣∣∣p dt
 1

p
∫

R

|w(t)Lλ(t, x)|q dt

 1
q


q

dx


1
q

≤ ‖f‖Lp,w(Ω)

∫
Ω

∫
R

∣∣∣∣ w(t)

w(x)
Lλ(t, x)

∣∣∣∣q dt
 dx

 1
q

≤ ‖f‖Lp,w(Ω)

∫
R

∫
R

∣∣∣∣ w(t)

w(x)
Lλ(t, x)

∣∣∣∣q dt
 dx

 1
q

≤ ‖f‖Lp,w(Ω) ‖αLλ‖Lq(R×R)

≤ N ‖f‖Lp,w(Ω) .
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Hence, the proof is completed for the indicated case. One may prove
the assertion for the case Ψ = Ω = R by following similar steps. Thus
the proof is completed.

4. Convergence at Characteristic Points

Throughout this section we assume that w(t) = 1. Also, in the fol-
lowing theorem, Ψ = 〈a, b〉 and Ω = 〈A,B〉 denote arbitrary closed,
semi-closed or open bounded intervals in R.

Theorem 4.1. Let x0 ∈ Ω be a µ−generalized Lebesgue point of
function f ∈ Lp(Ω). Then,

lim
(x,λ)→(x0,λ0)

|Tλ(f ;x)− f(x0)| = 0

on any set Z on which the function

x0+δ∫
x0−δ

Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt
is bounded as (x, λ) tends to (x0, λ0).

Proof. We prove the theorem for the case 1 < p < ∞. The proof of
the case p = 1 is quite similar to the proof of the case 1 < p <∞ and it
is omitted.

Let 〈x0 − δ, x0 + δ〉 ⊂ Ω, for fixed δ > 0, where x0 is a µ−generalized
Lebesgue point of function f ∈ Lp(Ω). Set E (x, λ) := |Tλ(f ;x)− f(x0)| .
According to condition (c), we shall write

E (x, λ) =

∣∣∣∣∣∣
∫
Ω

Kλ(t, x, f(t))dt− f(x0)

∣∣∣∣∣∣
≤

∫
Ω

|f(t)− f(x0)|Lλ(t, x)dt+

∣∣∣∣∣∣
∫
R

Kλ(t, x, f(x0))dt− f(x0)

∣∣∣∣∣∣
+ |f(x0)|

∫
R\Ω

Lλ(t, x)dt

= I1 + I2 + I3.
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By condition (e), I3 → 0 as (x, λ) tends to (x0, λ0). Using well known
inequality (m + n)p ≤ 2p(mp + np), where m and n are positive real
numbers (see, e.g., [25]), we have

(I1 + I2)p

≤ 2p(Ip1 + Ip2 )

= 2p

∫
Ω

|f(t)− f(x0)|Lλ(t, x)dt

p

+ 2p

∣∣∣∣∣∣
∫
R

Kλ(t, x, f(x0))dt− f(x0)

∣∣∣∣∣∣
p

= 2p(I4 + I5).

It is clear that I5 → 0 as (x, λ) tends to (x0, λ0) in view of condition (c).

Applying Hölder’s inequality to the integral I4 (see, e.g., [25]), we have

I4 =

∫
Ω

|f(t)− f(x0)|Lλ(t, x)dt

p

≤
∫
Ω

|f(t)− f(x0)|p Lλ(t, x)dt

∫
R

Lλ(t, x)dt


p
q

= I41 × I42.

Using condition (g), we see that I42 ≤M
P
q <∞.

Now, let us find an appropriate inequality for the integral I41. Splitting
I41 into two parts, we have that

I41

=

∫
Ω

|f(t)− f(x0)|p Lλ(t, x)dt

=

∫
〈x0−δ,x0+δ〉

|f(t)− f(x0)|p Lλ(t, x)dt+

∫
Ω\〈x0−δ,x0+δ〉

|f(t)− f(x0)|p Lλ(t, x)dt

= I411 + I412.
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For the integral I412, we may write

I412 =

∫
Ω\〈x0−δ,x0+δ〉

|f(t)− f(x0)|p Lλ(t, x)dt

≤ 2p

 sup
t∈Ω\〈x0−δ,x0+δ〉

Lλ(t, x)

∫
Ω\〈x0−δ,x0+δ〉

|f(t)− f(x0)|p dt


≤ 2p

(
sup

t∈Ω\〈x0−δ,x0+δ〉
Lλ(t, x)

[
‖f‖pLp(Ω) + |f(x0)|p |B − A|

])
.

Hence, by condition (d), I412 → 0 as (x, λ) tends to (x0, λ0).

For the integral I411, we may write

I411 =

∫
〈x0−δ,x0+δ〉

|f(t)− f(x0)|p Lλ(t, x)dt

=


x0∫

x0−δ

+

x0+δ∫
x0

 |f(t)− f(x0)|p Lλ(t, x)dt

= I4111 + I4112.

Now, by definition of µ−generalized Lebesgue point, for every ε > 0
there exists δ > 0 such that the inequality

x0∫
x0−h

|f(t)− f(x0)|p dt < εpµ(h)

holds for every 0 < h ≤ δ < δ0. We define the new function as

G(t) =

x0∫
t

|f(u)− f(x0)|p du.

Then, for every t satisfying 0 < x0 − t ≤ δ, we have

|G(t)| ≤ εpµ(x0 − t).



554 G. Uysal, V.N. Mishra, O.O. Guller, and E. Ibikli

We can write the integral I4111 as

|I4111| =

∣∣∣∣∣∣
x0∫

x0−δ

|f(t)− f(x0)|p Lλ(t, x)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣(LS)

x0∫
x0−δ

Lλ(t, x)d [−G(t)]

∣∣∣∣∣∣ ,
where (LS) denotes Lebesgue-Stieltjes integral.

Applying integration by parts method to the Lebesgue-Stieltjes inte-
gral, we have

|I4111| ≤
x0∫

x0−δ

|G(t)| |dtLλ(t, x)|+ |G(x0 − δ)|Lλ(x0 − δ, x)

≤ εp
x0∫

x0−δ

µ(x0 − t) |dtLλ(t, x)|+ εpµ(δ)Lλ(x0 − δ, x)

= εp
x0∫

x0−δ

Lλ(t, x)
∣∣{µ(x0 − t)}′t

∣∣ dt.
Using similar technic, one may obtain the following inequality for the

integral I4112:

|I4112| ≤ εp
x0+δ∫
x0

Lλ(t, x)
∣∣{µ(t− x0)}′t

∣∣ dt.
Combining above inequalities, we get

|I411| ≤ εp
x0+δ∫
x0−δ

Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt.
Since the expression on the right hand side of the inequality is bounded
by the hypothesis, we get the desired result for the case 1 < p <∞, i.e.,
the proof is completed.

In the following theorem, Ψ = Ω = R.
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Theorem 4.2. Let x0 ∈ R be a µ−generalized Lebesgue point of
function f ∈ Lp(R). Then,

lim
(x,λ)→(x0,λ0)

|Tλ(f ;x)− f(x0)| = 0

on any set Z on which the function

x0+δ∫
x0−δ

Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt
is bounded as (x, λ) tends to (x0, λ0).

Proof. The proof of this theorem is quite similar to preceding one and
we skip it.

5. Weighted Pointwise Approximation

Throughout this section we assume that f /∈ Lp (Ω) , where 1 ≤ p <
∞. Also, in the following theorem, Ψ = 〈a, b〉 and Ω = 〈A,B〉 denote
arbitrary closed, semi-closed or open bounded intervals in R.

Theorem 5.1. Let w and Lλ be differentiable functions almost every-
where on R with respect to variable t such that the following inequality

d

dt
w(t)

d

dt
Lλ(t, x) > 0, for any fixed x ∈ R

holds. If x0 ∈ Ω is a common µ−generalized Lebesgue point of functions
f ∈ Lp,w(Ω) and w ∈ Lp(Ω) then

lim
(x,λ)→(x0,λ0)

|Tλ(f ;x)− f(x0)| = 0

on any set Z on which the function

x0+δ∫
x0−δ

w(t)Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt
is bounded as (x, λ) tends to (x0, λ0).

Proof. We prove the theorem for the case 1 < p < ∞. The proof of
the case p = 1 is quite similar to the proof of the case 1 < p <∞ and it
is omitted.
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Let 〈x0 − δ, x0 + δ〉 ⊂ Ω, for fixed δ > 0, where x0 is a common
µ−generalized Lebesgue point of functions f ∈ Lp,w(Ω) and w ∈ Lp(Ω).
Using Theorem 4.1, we have

∣∣∣∣∣∣
∫
Ω

Kλ(t, x, f(t))dt− f(x0)

∣∣∣∣∣∣

≤
∫
Ω

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣w(t)Lλ(t, x)dt+

∣∣∣∣∣∣
∫
Ω

Kλ(t, x,
f(x0)

w(x0)
w(t))dt− f(x0)

∣∣∣∣∣∣ .
It is easy to see that the following inequality

∣∣∣∣∣∣
∫
Ω

Kλ(t, x, f(t))dt− f(x0)

∣∣∣∣∣∣
p

≤ 2p

∫
Ω

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣w(t)Lλ(t, x)dt

p

+2p

∣∣∣∣∣∣
∫
Ω

Kλ(t, x,
f(x0)

w(x0)
w(t))dt− f(x0)

∣∣∣∣∣∣
p

= 2p(I1 + I2)

holds. By Theorem 4.1, I2 → 0 as (x, λ) tends to (x0, λ0). Applying
Hölder’s inequality to the integral I1, we have

I1 ≤
∫
Ω

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣pw(t)Lλ(t, x)dt

∫
Ω

w(t)Lλ(t, x)dt


p
q

= I11 × I12.



Nonlinear non-convolution type singular integral operators 557

In view of condition (g), I12 → (w(x0)M)
p
q < ∞ as (x, λ) tends to

(x0, λ0). Let us find an appropriate inequality for the integral I11. Split-
ting the integral I11 into two parts, we have

I11 =

∫
Ω

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣pw(t)Lλ(t, x)dt

=

∫
〈x0−δ,x0+δ〉

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣pw(t)Lλ(t, x)dt

+

∫
Ω\〈x0−δ,x0+δ〉

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣pw(t)Lλ(t, x)dt

= I111 + I112.

For the integral I112, we may write

I112

=

∫
Ω\〈x0−δ,x0+δ〉

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣pw(t)Lλ(t, x)dt

≤ 2p sup
t∈Ω\〈x0−δ,x0+δ〉

Lλ(t, x) sup
t∈Ω\〈x0−δ,x0+δ〉

w(t)

∫
Ω\〈x0−δ,x0+δ〉

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣p dt
≤ 2p

(
sup

t∈Ω\〈x0−δ,x0+δ〉
Lλ(t, x) sup

t∈Ω\〈x0−δ,x0+δ〉)
w(t)

[
‖f‖pLp,w(Ω) +

∣∣∣∣ f(x0)

w(x0)

∣∣∣∣p |B −A|]
)
.

By the hypothesis, monotonicity behavior of w is similar to Lλ. There-
fore, w(t) is bounded on R\Ω. Hence by condition (d), I112 → 0 as (x, λ)
tends to (x0, λ0).

Write

I111 =

∫
〈x0−δ,x0+δ〉

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣pw(t)Kλ(t, x)dt

=


x0∫

x0−δ

+

x0+δ∫
x0


∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣pw(t)Kλ(t, x)dt

= I1111 + I1112.
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Now, by definition of µ−generalized Lebesgue point, for every ε > 0
there exists δ > 0 such that the inequality

x0∫
x0−h

∣∣∣∣ f(t)

w(t)
− f(x0)

w(x0)

∣∣∣∣p dt < εpµ(h)

holds for every 0 < h ≤ δ < δ0. We define the new function as

G̃(t) =

x0∫
t

∣∣∣∣ f(u)

w(u)
− f(x0)

w(x0)

∣∣∣∣p du.
Then, for every t satisfying 0 < x0 − t ≤ δ we have∣∣∣G̃(t)

∣∣∣ ≤ εpµ(x0 − t).

Hence

|I1111| =

∣∣∣∣∣∣
x0∫

x0−δ

∣∣∣∣ f(u)

w(u)
− f(x0)

w(x0)

∣∣∣∣pw(t)Lλ(t, x)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣(LS)

x0∫
x0−δ

w(t)Lλ(t, x)d
[
−G̃(t)

]∣∣∣∣∣∣ ,
where (LS) denotes Lebesgue-Stieltjes integral.

Applying integration by parts method to the Lebesgue-Stieltjes inte-
gral, we have

I1111 =

x0∫
x0−δ

∣∣∣G̃(t)
∣∣∣ dt [w(t)Lλ(t, x)] + G̃(x0 − δ)w(x0 − δ)Lλ(x0 − δ, x)

≤ εp
x0∫

x0−δ

µ(x0 − t) |dt [w(t)Lλ(t, x)]|+ εpµ(δ)w(x0 − δ)Lλ(x0 − δ, x)

= εp
x0∫

x0−δ

w(t)Lλ(t, x)
∣∣{µ(x0 − t)}′t

∣∣ dt.
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Using similar technic, one may obtain the following inequality for the
integral I1112:

|I1112| ≤ εp
x0+δ∫
x0

w(t)Lλ(t, x)
∣∣{µ(t− x0)}′t

∣∣ dt.
Combining above inequalities, we get

|I111| ≤ εp
x0+δ∫
x0−δ

w(t)Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt.
Since the expression on the right hand side of the inequality is bounded
by the hypothesis, we get the desired result for the case 1 < p <∞, i.e.,
the proof is completed.

In the following theorem, Ψ = Ω = R.

Theorem 5.2. Let w and Lλ be differentiable functions almost every-
where on R with respect to variable t such that the following inequality

d

dt
w(t)

d

dt
Lλ(t, x) > 0, for any fixed x ∈ R

holds. If x0 ∈ R is a common µ−generalized Lebesgue point of functions
f ∈ Lp,w(R) and w ∈ Lp(R) then

lim
(x,λ)→(x0,λ0)

|Tλ(f ;x)− f(x0)| = 0

on any set Z on which the function

x0+δ∫
x0−δ

w(t)Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt
is bounded as (x, λ) tends to (x0, λ0).

Proof. Following the same strategy as in Theorem 5.1, we have∣∣∣∣∣∣
∫
R

Kλ(t, x, f(t))dt− f(x0)

∣∣∣∣∣∣
p

≤
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22p (w(x)M)
p
q sup
t∈R\〈x0−δ,x0+δ〉

Lλ(t, x) sup
t∈R\〈x0−δ,x0+δ〉)

w(t) ‖f‖pLp,w(R)

+22p (w(x)M)
p
q sup
t∈R\〈x0−δ,x0+δ〉)

w(t)

∣∣∣∣ f(x0)

w(x0)

∣∣∣∣p ∫
R\〈x0−δ,x0+δ〉

Lλ(t, x)dt

+2pεp (w(x)M)
p
q

x0+δ∫
x0−δ

w(t)Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt
+2p

∣∣∣∣∣∣
∫
R

Kλ(t, x,
f(x0)

w(x0)
w(t))dt− f(x0)

∣∣∣∣∣∣
p

.

The rest of the proof is clear by the hypotheses.

6. Rate of Weighted Pointwise Convergence

In this section, two theorems concerning rate of pointwise convergence
will be given.

Theorem 6.1. Suppose that the hypothesis of Theorem 5.1 is satis-
fied. Let

∆(x, λ, δ) =

x0+δ∫
x0−δ

w(t)Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt,
where 0 < δ < δ0, for a fixed (and finite!) positive number δ0, and the
following conditions are satisfied:

(i) ∆(x, λ, δ)→ 0 as (x, λ)→ (x0, λ0), for some δ > 0.
(ii) For every ξ > 0,

sup
t∈R\〈x0−ξ,x0+ξ〉

Lλ(t, x) = o(∆(x, λ, δ))

as (x, λ)→ (x0, λ0)

(iii)

∣∣∣∣∫
Ω

Kλ(t, x,
f(x0)
ϕ(x0)

ϕ(t))dt− f(x0)

∣∣∣∣ = o(∆(x, λ, δ)).

Then, at each common Lebesgue point of functions f ∈ Lp,ϕ (Ω) and
ϕ ∈ Lp (Ω) we have
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|Tλ (f ;x)− f (x0)|p = o(∆(x, λ, δ))

as (x, λ)→ (x0, λ0).

Proof. By the hypotheses of Theorem 5.1, we have∣∣∣∣∣∣
∫
Ω

Kλ(t, x, f(t))dt− f(x0)

∣∣∣∣∣∣
p

≤

22p (w(x)M)
p
q sup
t∈R\〈x0−δ,x0+δ〉

Lλ(t, x) sup
t∈R\〈x0−δ,x0+δ〉)

w(t) ‖f‖pLp,w(Ω)

+22p (w(x)M)
p
q sup
t∈R\〈x0−δ,x0+δ〉)

w(t) sup
t∈R\〈x0−δ,x0+δ〉

Lλ(t, x)

∣∣∣∣ f(x0)

w(x0)

∣∣∣∣p |B − A|
+2pεp (w(x)M)

p
q

x0+δ∫
x0−δ

w(t)Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt
+2p

∣∣∣∣∣∣
∫
Ω

Kλ(t, x,
f(x0)

w(x0)
w(t))dt− f(x0)

∣∣∣∣∣∣
p

.

The remaining part is obvious by the conditions (i)− (iii). The proof of
the case p = 1 is quite similar. Thus the proof is completed.

Theorem 6.2. Suppose that the hypothesis of Theorem 5.2 is satis-
fied. Let

∆(x, λ, δ) =

x0+δ∫
x0−δ

w(t)Lλ(t, x)
∣∣{µ(|x0 − t|)}′t

∣∣ dt,
where 0 < δ < δ0, for a fixed (and finite!) positive number δ0, and the
following conditions are satisfied:

(i) ∆(x, λ, δ)→ 0 as (x, λ)→ (x0, λ0), for some δ > 0.
(ii) For every ξ > 0,

sup
t∈R\〈x0−ξ,x0+ξ〉

Lλ(t, x) = o(∆(x, λ, δ))

as (x, λ)→ (x0, λ0).
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(iii) For every ξ > 0,∫
R\〈x0−ξ,x0+ξ〉

Lλ(t, x)dt = o(∆(x, λ, δ))

as (x, λ)→ (x0, λ0).

(iv)

∣∣∣∣∫
R
Kλ(t, x,

f(x0)
ϕ(x0)

ϕ(t))dt− f(x0)

∣∣∣∣ = o(∆(x, λ, δ)).

Then, at each common Lebesgue point of functions f ∈ Lp,ϕ (R) and
ϕ ∈ Lp (R) we have

|Tλ (f ;x)− f (x0)|p = o(∆(x, λ, δ))

as (x, λ)→ (x0, λ0).

Proof. Imposing the conditions (i)-(iv) on the resulting inequality of
the proof of Theorem 5.2, we obtain the desired result. The proof of the
case p = 1 is quite similar. Thus the proof is completed.

7. Concluding Remark

In this paper, weighted approximation properties of nonlinear non-
convolution type singular integral operators are studied. For this aim,
the class of kernel functions, called Class Aw, is defined. Therefore,
main theorems are presented as Theorem 5.1 and Theorem 5.2.
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